This file is indexed.

/usr/include/shogun/machine/BaggingMachine.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Viktor Gal
 * Copyright (C) 2013 Viktor Gal
 */

#ifndef BAGGINGMACHINE_H
#define BAGGINGMACHINE_H

#include <shogun/machine/Machine.h>
#include <shogun/ensemble/CombinationRule.h>
#include <shogun/evaluation/Evaluation.h>

namespace shogun
{
	/**
	 * @brief: Bagging algorithm
	 * i.e. bootstrap aggregating
     */
	class CBaggingMachine : public CMachine
	{
		public:
			/** default ctor */
			CBaggingMachine();

			/**
			 * constructor
			 *
			 * @param features training features
			 * @param labels training labels
			 */
			CBaggingMachine(CFeatures* features, CLabels* labels);

			virtual ~CBaggingMachine();

			virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
			virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
			virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);

			/**
			 * Set number of bags/machine to create
			 *
			 * @param num_bags number of bags
			 */
			void set_num_bags(int32_t num_bags);

			/**
			 * Get number of bags/machines
			 *
			 * @return number of bags
			 */
			int32_t get_num_bags() const;

			/**
			 * Set number of feature vectors to use
			 * for each bag/machine
			 *
			 * @param bag_size number of vectors to use for a bag
			 */
			void set_bag_size(int32_t bag_size);

			/**
			 * Get number of feature vectors that are use
			 * for training each bag/machine
			 *
			 * @return number of vectors used for training for each bag.
			 */
			int32_t get_bag_size() const;

			/**
			 * Get machine for bagging
			 *
			 * @return machine that is being used in bagging
			 */
			CMachine* get_machine() const;

			/**
			 * Set machine to use in bagging
			 *
			 * @param machine the machine to use for bagging
			 */
			void set_machine(CMachine* machine);

			/**
			 * Set the combination rule to use for aggregating the classification
			 * results
			 *
			 * @param rule combination rule
			 */
			void set_combination_rule(CCombinationRule* rule);

			/**
			 * Get the combination rule that is used for aggregating the results
			 *
			 * @return CCombinationRule
			 */
			CCombinationRule* get_combination_rule() const;

			/** get classifier type
			 *
			 * @return classifier type CT_BAGGING
			 */
			virtual EMachineType get_classifier_type() { return CT_BAGGING; }

			/** get out-of-bag error
			 * CombinationRule is used for combining the predictions.
			 *
			 * @param eval Evaluation method to use for calculating the error
			 * @return out-of-bag error.
			 */
			float64_t get_oob_error(CEvaluation* eval) const;

			/** name **/
			virtual const char* get_name() const { return "BaggingMachine"; }

		protected:
			virtual bool train_machine(CFeatures* data=NULL);

			/** helper function for the apply_{regression,..} functions that
			 * computes the output
			 *
			 * @param data the data to compute the output for
			 * @return predictions
			 */
			SGVector<float64_t> apply_get_outputs(CFeatures* data);

		private:
			void register_parameters();
			void init();

			/**
			 * get the vector of indices for feature vectors that are out of bag
			 *
			 * @param in_bag vector of indices that are in bag.
			 * NOTE: in_bag is a randomly generated with replacement
			 * @return
			 */
			CDynamicArray<index_t>* get_oob_indices(const SGVector<index_t>& in_bag);

			void clear_oob_indicies();

		private:
			/** bags array */
			CDynamicObjectArray* m_bags;

			/** features to train on */
			CFeatures* m_features;

			/** machine to use for bagging */
			CMachine* m_machine;

			/** number of bags to create */
			int32_t m_num_bags;

			/** number of vectors to use from the training features */
			int32_t m_bag_size;

			/** combination rule to use */
			CCombinationRule* m_combination_rule;

			/** indices of all feature vectors that are out of bag */
			SGVector<bool> m_all_oob_idx;

			/** array of oob indices */
			CDynamicObjectArray* m_oob_indices;
	};
}

#endif /* BAGGINGMACHINE_H */