This file is indexed.

/usr/include/shogun/machine/LinearMachine.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _LINEARCLASSIFIER_H__
#define _LINEARCLASSIFIER_H__

#include <shogun/lib/common.h>
#include <shogun/labels/Labels.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/machine/Machine.h>

#include <stdio.h>

namespace shogun
{
	class CDotFeatures;
	class CMachine;
	class CLabels;

/** @brief Class LinearMachine is a generic interface for all kinds of linear
 * machines like classifiers.
 *
 * A linear classifier computes
 *
 *  \f[
 *		f({\bf x})= {\bf w} \cdot {\bf x} + b
 *	\f]
 *
 * where \f${\bf w}\f$ are the weights assigned to each feature in training
 * and \f$b\f$ the bias.
 *
 * To implement a linear classifier all that is required is to define the
 * train() function that delivers \f${\bf w}\f$ above.
 *
 * Note that this framework works with linear classifiers of arbitraty feature
 * type, e.g. dense and sparse and even string based features. This is
 * implemented by using CDotFeatures that may provide a mapping function
 * \f$\Phi({\bf x})\mapsto {\cal R^D}\f$ encapsulating all the required
 * operations (like the dot product). The decision function is thus
 *
 *  \f[
 *		f({\bf x})= {\bf w} \cdot \Phi({\bf x}) + b.
 *	\f]
 *
 *	The following linear classifiers are implemented
 *	\li Linear Descriminant Analysis (CLDA)
 *	\li Linear Programming Machines (CLPM, CLPBoost)
 *	\li Perceptron (CPerceptron)
 *	\li Linear SVMs (CSVMSGD, CLibLinear, CSVMOcas, CSVMLin, CSubgradientSVM)
 *
 *	\sa CDotFeatures
 *
 * */
class CLinearMachine : public CMachine
{
	public:
		/** default constructor */
		CLinearMachine();

		/** destructor */
		virtual ~CLinearMachine();

		/** copy constructor */
		CLinearMachine(CLinearMachine* machine);

		/** get w
		 *
		 * @return weight vector
		 */
		virtual SGVector<float64_t> get_w() const;

		/** set w
		 *
		 * @param src_w new w
		 */
		virtual void set_w(const SGVector<float64_t> src_w);

		/** set bias
		 *
		 * @param b new bias
		 */
		virtual void set_bias(float64_t b);

		/** get bias
		 *
		 * @return bias
		 */
		virtual float64_t get_bias();

		/** set features
		 *
		 * @param feat features to set
		 */
		virtual void set_features(CDotFeatures* feat);

		/** apply linear machine to data
		 * for binary classification problem
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);

		/** apply linear machine to data
		 * for regression problem
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);

		/** applies to one vector */
		virtual float64_t apply_one(int32_t vec_idx);

		/** get features
		 *
		 * @return features
		 */
		virtual CDotFeatures* get_features();

		/** Returns the name of the SGSerializable instance.  It MUST BE
		 *  the CLASS NAME without the prefixed `C'.
		 *
		 * @return name of the SGSerializable
		 */
		virtual const char* get_name() const { return "LinearMachine"; }

	protected:

		/** apply get outputs
		 *
		 * @param data features to compute outputs
		 * @return outputs
		 */
		virtual SGVector<float64_t> apply_get_outputs(CFeatures* data);

		/** Stores feature data of underlying model. Does nothing because
		 * Linear machines store the normal vector of the separating hyperplane
		 * and therefore the model anyway
		 */
		virtual void store_model_features();

	private:

		void init();

	protected:
		/** w */
		SGVector<float64_t> w;
		/** bias */
		float64_t bias;
		/** features */
		CDotFeatures* features;
};
}
#endif