This file is indexed.

/usr/include/shogun/machine/gp/ProbitLikelihood.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 */

#ifndef _PROBITLIKELIHOOD_H_
#define _PROBITLIKELIHOOD_H_

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3

#include <shogun/machine/gp/LikelihoodModel.h>

namespace shogun
{

/** @brief Class that models Probit likelihood.
 *
 * \f[
 * p(y|f) = \prod_{i=1}^n \text{normal\_cdf}(y_i * f_i)
 * \f]
 *
 * where \f$\text{normal\_cdf}(z)\f$ - cumulative distribution function (CDF) of
 * the normal distribution \f$\mathcal{N}(0, 1)\f$.
 */
class CProbitLikelihood : public CLikelihoodModel
{
public:
	/** default constructor */
	CProbitLikelihood();

	virtual ~CProbitLikelihood();

	/** returns the name of the likelihood model
	 *
	 * @return name ProbitLikelihood
	 */
	virtual const char* get_name() const { return "ProbitLikelihood"; }

	/** returns variance of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
	 *
	 * NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
	 *
	 * @param mu posterior mean of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param s2 posterior variance of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param lab labels \f$y_*\f$
	 *
	 * @return final variances evaluated by likelihood function
	 */
	virtual SGVector<float64_t> get_predictive_means(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab=NULL) const;

	/** returns variance of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
	 *
	 * NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
	 *
	 * @param mu posterior mean of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param s2 posterior variance of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param lab labels \f$y_*\f$
	 *
	 * @return final variances evaluated by likelihood function
	 */
	virtual SGVector<float64_t> get_predictive_variances(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab=NULL) const;

	/** get model type
	 *
	 * @return model type PROBIT
	 */
	virtual ELikelihoodModelType get_model_type() const { return LT_PROBIT; }

	/** returns the logarithm of the point-wise likelihood \f$log(p(y_i|f_i))\f$
	 * for each label \f$y_i\f$.
	 *
	 * One can evaluate log-likelihood like: \f$log(p(y|f)) = \sum_{i=1}^{n}
	 * log(p(y_i|f_i))\f$
	 *
	 * @param lab labels \f$y_i\f$
	 * @param func values of the function \f$f_i\f$
	 *
	 * @return logarithm of the point-wise likelihood
	 */
	virtual SGVector<float64_t> get_log_probability_f(const CLabels* lab,
			SGVector<float64_t> func) const;

	/** get derivative of log likelihood \f$log(P(y|f))\f$ with respect to
	 * function location \f$f\f$
	 *
	 * @param lab labels used
	 * @param func function location
	 * @param i index, choices are 1, 2, and 3 for first, second, and third
	 * derivatives respectively
	 *
	 * @return derivative
	 */
	virtual SGVector<float64_t> get_log_probability_derivative_f(
			const CLabels* lab, SGVector<float64_t> func, index_t i) const;

	/** returns the zeroth moment of a given (unnormalized) probability
	 * distribution:
	 *
	 * \f[
	 * log(Z_i) = log\left(\int p(y_i|f_i) \mathcal{N}(f_i|\mu,\sigma^2)
	 * df_i\right)
	 * \f]
	 *
	 * for each \f$f_i\f$.
	 *
	 * @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param lab labels \f$y_i\f$
	 *
	 * @return log zeroth moments \f$log(Z_i)\f$
	 */
	virtual SGVector<float64_t> get_log_zeroth_moments(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab) const;

	/** returns the first moment of a given (unnormalized) probability
	 * distribution \f$q(f_i) = Z_i^-1
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
	 *
	 * This method is useful for EP local likelihood approximation.
	 *
	 * @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param lab labels \f$y_i\f$
	 * @param i index i
	 *
	 * @return first moment of \f$q(f_i)\f$
	 */
	virtual float64_t get_first_moment(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab, index_t i) const;

	/** returns the second moment of a given (unnormalized) probability
	 * distribution \f$q(f_i) = Z_i^-1
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
	 *
	 * This method is useful for EP local likelihood approximation.
	 *
	 * @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param lab labels \f$y_i\f$
	 * @param i index i
	 *
	 * @return the second moment of \f$q(f_i)\f$
	 */
	virtual float64_t get_second_moment(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab, index_t i) const;

	/** return whether logit likelihood function supports binary classification
	 *
	 * @return true
	 */
	virtual bool supports_binary() const { return true; }

};
}
#endif /* HAVE_EIGEN3 */
#endif /* _PROBITLIKELIHOOD_H_ */