This file is indexed.

/usr/include/shogun/machine/gp/StudentsTLikelihood.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 * Copyright (C) 2012 Jacob Walker
 * Copyright (C) 2013 Roman Votyakov
 *
 * Code adapted from the GPML Toolbox:
 * http://www.gaussianprocess.org/gpml/code/matlab/doc/
 */

#ifndef CSTUDENTSTLIKELIHOOD_H_
#define CSTUDENTSTLIKELIHOOD_H_

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3

#include <shogun/machine/gp/LikelihoodModel.h>

namespace shogun
{

/** @brief Class that models a Student's-t likelihood.
 *
 * \f[
 * p(y|f)=\prod_{i=1}^{n} \frac{\Gamma(\frac{\nu+1}{2})}
 * {\Gamma(\frac{\nu}{2})\sqrt{\nu\pi}\sigma}
 * \left(1+\frac{(y_i-f_i)^2}{\nu\sigma^2} \right)^{-\frac{\nu+1}{2}}
 * \f]
 *
 * The hyperparameters of the Student's t-likelihood model are \f$\sigma\f$ -
 * scale parameter, and \f$\nu\f$ - degrees of freedom.
 */
class CStudentsTLikelihood: public CLikelihoodModel
{
public:
	/** default constructor */
	CStudentsTLikelihood();

	/** constructor
	 *
	 * @param sigma noise variance
	 * @param df degrees of freedom
	 */
	CStudentsTLikelihood(float64_t sigma, float64_t df);

	virtual ~CStudentsTLikelihood();

	/** returns the name of the likelihood model
	 *
	 * @return name StudentsTLikelihood
	 */
	virtual const char* get_name() const { return "StudentsTLikelihood"; }

	/** returns the scale paramter
	 *
	 * @return scale parameter
	 */
	float64_t get_sigma() { return m_sigma; }

	/** sets the scale parameter
	 *
	 * @param sigma scale parameter
	 */
	void set_sigma(float64_t sigma)
	{
		REQUIRE(sigma>0.0, "Scale parameter must be greater than zero\n")
		m_sigma=sigma;
	}

	/** get degrees of freedom
	 *
	 * @return degrees of freedom
	 */
	float64_t get_degrees_freedom() { return m_df; }

	/** set degrees of freedom
	 *
	 * @param df degrees of freedom
	 */
	void set_degrees_freedom(float64_t df)
	{
		REQUIRE(df>1.0, "Number of degrees of freedom must be greater than one\n")
		m_df=df;
	}

	/** helper method used to specialize a base class instance
	 *
	 * @param likelihood likelihood model
	 * @return casted CStudentsTLikelihood object
	 */
	static CStudentsTLikelihood* obtain_from_generic(CLikelihoodModel* likelihood);

	/** returns mean of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
	 *
	 * NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
	 *
	 * @param mu posterior mean of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param s2 posterior variance of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param lab labels \f$y_*\f$
	 *
	 * @return final means evaluated by likelihood function
	 */
	virtual SGVector<float64_t> get_predictive_means(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab=NULL) const;

	/** returns variance of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
	 *
	 * NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
	 *
	 * @param mu posterior mean of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param s2 posterior variance of a Gaussian distribution
	 * \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
	 * posterior marginal \f$p(f_*|X,y,x_*)\f$
	 * @param lab labels \f$y_*\f$
	 *
	 * @return final variances evaluated by likelihood function
	 */
	virtual SGVector<float64_t> get_predictive_variances(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab=NULL) const;

	/** get model type
	 *
	 * @return model type Student's-t
	 */
	virtual ELikelihoodModelType get_model_type() const { return LT_STUDENTST; }

	/** returns the logarithm of the point-wise likelihood \f$log(p(y_i|f_i))\f$
	 * for each label \f$y_i\f$.
	 *
	 * One can evaluate log-likelihood like: \f$log(p(y|f)) = \sum_{i=1}^{n}
	 * log(p(y_i|f_i))\f$
	 *
	 * @param lab labels \f$y_i\f$
	 * @param func values of the function \f$f_i\f$
	 *
	 * @return logarithm of the point-wise likelihood
	 */
	virtual SGVector<float64_t> get_log_probability_f(const CLabels* lab,
			SGVector<float64_t> func) const;

	/** get derivative of log likelihood \f$log(P(y|f))\f$ with respect to
	 * function location \f$f\f$
	 *
	 * @param lab labels used
	 * @param func function location
	 * @param i index, choices are 1, 2, and 3 for first, second, and third
	 * derivatives respectively
	 *
	 * @return derivative
	 */
	virtual SGVector<float64_t> get_log_probability_derivative_f(
			const CLabels* lab, SGVector<float64_t> func, index_t i) const;

	/** get derivative of log likelihood \f$log(P(y|f))\f$ with respect to given
	 * parameter
	 *
	 * @param lab labels used
	 * @param func function location
	 * @param param parameter
	 *
	 * @return derivative
	 */
	virtual SGVector<float64_t> get_first_derivative(const CLabels* lab,
			SGVector<float64_t> func, const TParameter* param) const;

	/** get derivative of the first derivative of log likelihood with respect to
	 * function location, i.e. \f$\frac{\partial log(P(y|f))}{\partial f}\f$
	 * with respect to given parameter
	 *
	 * @param lab labels used
	 * @param func function location
	 * @param param parameter
	 *
	 * @return derivative
	 */
	virtual SGVector<float64_t> get_second_derivative(const CLabels* lab,
			SGVector<float64_t> func, const TParameter* param) const;

	/** get derivative of the second derivative of log likelihood with respect
	 * to function location, i.e. \f$\frac{\partial^{2} log(P(y|f))}{\partial
	 * f^{2}}\f$ with respect to given parameter
	 *
	 * @param lab labels used
	 * @param func function location
	 * @param param parameter
	 *
	 * @return derivative
	 */
	virtual SGVector<float64_t> get_third_derivative(const CLabels* lab,
			SGVector<float64_t> func, const TParameter* param) const;

	/** returns the zeroth moment of a given (unnormalized) probability
	 * distribution:
	 *
	 * \f[
	 * log(Z_i) = log\left(\int p(y_i|f_i) \mathcal{N}(f_i|\mu,\sigma^2)
	 * df_i\right)
	 * \f]
	 *
	 * for each \f$f_i\f$.
	 *
	 * @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param lab labels \f$y_i\f$
	 *
	 * @return log zeroth moments \f$log(Z_i)\f$
	 */
	virtual SGVector<float64_t> get_log_zeroth_moments(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab) const;

	/** returns the first moment of a given (unnormalized) probability
	 * distribution \f$q(f_i) = Z_i^-1
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
	 *
	 * This method is useful for EP local likelihood approximation.
	 *
	 * @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param lab labels \f$y_i\f$
	 * @param i index i
	 *
	 * @return first moment of \f$q(f_i)\f$
	 */
	virtual float64_t get_first_moment(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab, index_t i) const;

	/** returns the second moment of a given (unnormalized) probability
	 * distribution \f$q(f_i) = Z_i^-1
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
	 * p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
	 *
	 * This method is useful for EP local likelihood approximation.
	 *
	 * @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
	 * @param lab labels \f$y_i\f$
	 * @param i index i
	 *
	 * @return the second moment of \f$q(f_i)\f$
	 */
	virtual float64_t get_second_moment(SGVector<float64_t> mu,
			SGVector<float64_t> s2, const CLabels* lab, index_t i) const;

	/** return whether Student's likelihood function supports regression
	 *
	 * @return true
	 */
	virtual bool supports_regression() const { return true; }

private:
	/** initialize function */
	void init();

	/** scale parameter */
	float64_t m_sigma;

	/** degrees of freedom */
	float64_t m_df;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CSTUDENTSTLIKELIHOOD_H_ */