/usr/include/shogun/multiclass/MulticlassStrategy.h is in libshogun-dev 3.2.0-7.5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2012 Chiyuan Zhang
* Written (W) 2013 Shell Hu and Heiko Strathmann
* Copyright (C) 2012 Chiyuan Zhang
*/
#ifndef MULTICLASSSTRATEGY_H__
#define MULTICLASSSTRATEGY_H__
#include <shogun/base/SGObject.h>
#include <shogun/labels/BinaryLabels.h>
#include <shogun/labels/MulticlassLabels.h>
#include <shogun/multiclass/RejectionStrategy.h>
#include <shogun/mathematics/Statistics.h>
namespace shogun
{
/** multiclass prob output heuristics in [1]
* OVA_NORM: simple normalization of probabilites, eq.(6)
* OVA_SOFTMAX: normalizing using softmax function, eq.(7)
* OVO_PRICE: proposed by Price et al. see method 1 in [1]
* OVO_HASTIE: proposed by Hastie et al. see method 2 [9] in [1]
* OVO_HAMAMURA: proposed by Hamamura et al. see eq.(14) in [1]
*
* [1] J. Milgram, M. Cheriet, R.Sabourin, "One Against One" or "One Against One":
* Which One is Better for Handwriting Recognition with SVMs?
*/
enum EProbHeuristicType
{
PROB_HEURIS_NONE = 0,
OVA_NORM = 1,
OVA_SOFTMAX = 2,
OVO_PRICE = 3,
OVO_HASTIE = 4,
OVO_HAMAMURA = 5
};
/** @brief class MulticlassStrategy used to construct generic
* multiclass classifiers with ensembles of binary classifiers
*/
class CMulticlassStrategy: public CSGObject
{
public:
/** constructor */
CMulticlassStrategy();
/** constructor
* @param prob_heuris probability estimation heuristic
*/
CMulticlassStrategy(EProbHeuristicType prob_heuris);
/** destructor */
virtual ~CMulticlassStrategy() {}
/** get name */
virtual const char* get_name() const
{
return "MulticlassStrategy";
};
/** set number of classes */
void set_num_classes(int32_t num_classes)
{
m_num_classes = num_classes;
}
/** get number of classes */
int32_t get_num_classes() const
{
return m_num_classes;
}
/** get rejection strategy */
CRejectionStrategy *get_rejection_strategy()
{
SG_REF(m_rejection_strategy);
return m_rejection_strategy;
}
/** set rejection strategy */
void set_rejection_strategy(CRejectionStrategy *rejection_strategy)
{
SG_REF(rejection_strategy);
SG_UNREF(m_rejection_strategy);
m_rejection_strategy = rejection_strategy;
}
/** start training */
virtual void train_start(CMulticlassLabels *orig_labels, CBinaryLabels *train_labels);
/** has more training phase */
virtual bool train_has_more()=0;
/** prepare for the next training phase.
* @return The subset that should be applied. Return NULL when no subset is needed.
*/
virtual SGVector<int32_t> train_prepare_next();
/** finish training, release resources */
virtual void train_stop();
/** decide the final label.
* @param outputs a vector of output from each machine (in that order)
*/
virtual int32_t decide_label(SGVector<float64_t> outputs)=0;
/** decide the final label.
* @param outputs a vector of output from each machine (in that order)
* @param n_outputs number of outputs
*/
virtual SGVector<index_t> decide_label_multiple_output(SGVector<float64_t> outputs, int32_t n_outputs)
{
SG_NOTIMPLEMENTED
return SGVector<index_t>();
}
/** get number of machines used in this strategy.
*/
virtual int32_t get_num_machines()=0;
/** get prob output heuristic type */
EProbHeuristicType get_prob_heuris_type()
{
return m_prob_heuris;
}
/** set prob output heuristic type
* @param prob_heuris type of probability heuristic
*/
void set_prob_heuris_type(EProbHeuristicType prob_heuris)
{
m_prob_heuris = prob_heuris;
}
/** rescale multiclass outputs according to the selected heuristic
* NOTE: no matter OVA or OVO, only num_classes rescaled outputs
* will be returned as the posteriors
* @param outputs a vector of output from each machine (in that order)
*/
virtual void rescale_outputs(SGVector<float64_t> outputs)
{
SG_NOTIMPLEMENTED
}
/** rescale multiclass outputs according to the selected heuristic
* this function only being called with OVA_SOFTMAX heuristic
* the CStatistics::fit_sigmoid() should be called first
* @param outputs a vector of output from each machine (in that order)
* @param As fitted sigmoid parameters a one for each machine
* @param Bs fitted sigmoid parameters b one for each machine
*/
virtual void rescale_outputs(SGVector<float64_t> outputs,
const SGVector<float64_t> As, const SGVector<float64_t> Bs)
{
SG_NOTIMPLEMENTED
}
private:
/** initialize variables which will be called by all constructors */
void init();
protected:
CRejectionStrategy* m_rejection_strategy; ///< rejection strategy
CBinaryLabels *m_train_labels; ///< labels used to train the submachines
CMulticlassLabels *m_orig_labels; ///< original multiclass labels
int32_t m_train_iter; ///< index of current iterations
int32_t m_num_classes; ///< number of classes in this problem
EProbHeuristicType m_prob_heuris; ///< prob output heuristic
};
} // namespace shogun
#endif /* end of include guard: MULTICLASSSTRATEGY_H__ */
|