This file is indexed.

/usr/include/shogun/multiclass/QDA.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2012 Fernando José Iglesias García
 * Copyright (C) 2012 Fernando José Iglesias García
 */

#ifndef _QDA_H__
#define _QDA_H__

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3

#include <shogun/features/DotFeatures.h>
#include <shogun/features/DenseFeatures.h>
#include <shogun/machine/NativeMulticlassMachine.h>
#include <shogun/lib/SGNDArray.h>

namespace shogun
{

//#define DEBUG_QDA

/** @brief Class QDA implements Quadratic Discriminant Analysis.
 *
 *  QDA learns a quadratic classifier and requires examples to be CSimplefeatures.
 *  This classifier is optimal under the assumptions that the classes are normally
 *  distributed (i.e. they are Gaussians). Unlike LDA, QDA does not assume that all
 *  the classes are distributed with equal co-variance.
 *  TODO
 */
class CQDA : public CNativeMulticlassMachine
{
	public:
		MACHINE_PROBLEM_TYPE(PT_MULTICLASS)

		/** constructor
		 *
		 * @param tolerance tolerance used in training
		 * @param store_covs whether to store the within class covariances
		 */
		CQDA(float64_t tolerance = 1e-4, bool store_covs = false);

		/** constructor
		 *
		 * @param traindat training features
		 * @param trainlab labels for training features
		 * @param tolerance tolerance used in training
		 * @param store_covs whether to store the within class covariances
		 */
		CQDA(CDenseFeatures<float64_t>* traindat, CLabels* trainlab, float64_t tolerance = 1e-4, bool store_covs = false);

		virtual ~CQDA();

		/** apply QDA to data
		 *
		 * @param data (test) data to be classified
		 * @return labels result of classification
		 */
		virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);

		/** set store_covs
		 *
		 * @param store_covs whether to store the within class covariances
		 */
		inline void set_store_covs(bool store_covs) { m_store_covs = store_covs; }

		/** get store_covs
		 *
		 * @return store_covs whether the class covariances are stored
		 */
		inline bool get_store_covs() { return m_store_covs; }

		/** set tolerance
		 *
		 * @param tolerance tolerance used during training
		 */
		inline void set_tolerance(float64_t tolerance) { m_tolerance = tolerance; }

		/** get tolerance
		 *
		 * @return tolerance used during training
		 */
		inline bool get_tolerance() { return m_tolerance; }

		/** get classifier type
		 *
		 * @return classifier type QDA
		 */
		virtual EMachineType get_classifier_type() { return CT_QDA; }

		/** set features
		 *
		 * @param feat features to set
		 */
		virtual void set_features(CDotFeatures* feat)
		{
			if (feat->get_feature_class() != C_DENSE ||
				feat->get_feature_type() != F_DREAL)
				SG_ERROR("QDA requires SIMPLE REAL valued features\n")

			SG_REF(feat);
			SG_UNREF(m_features);
			m_features = feat;
		}

		/** get features
		 *
		 * @return features
		 */
		virtual CDotFeatures* get_features() { SG_REF(m_features); return m_features; }

		/** get object name
		 *
		 * @return object name
		 */
		virtual const char* get_name() const { return "QDA"; }

		/** get a class' mean vector
		 *
		 * @param c class index
		 *
		 * @return mean vector of class c
		 */
		inline SGVector< float64_t > get_mean(int32_t c) const
		{
			return SGVector< float64_t >(m_means.get_column_vector(c), m_dim, false);
		}

		/** get a class' covariance matrix
		 *
		 * @param c class index
		 *
		 * @return covariance matrix of class c
		 */
		inline SGMatrix< float64_t > get_cov(int32_t c) const
		{
			return SGMatrix< float64_t >(m_covs.get_matrix(c), m_dim, m_dim, false);
		}

	protected:
		/** train QDA classifier
		 *
		 * @param data training data
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data = NULL);

	private:
		void init();

		void cleanup();

	private:
		/** feature vectors */
		CDotFeatures* m_features;

		/** tolerance used during training */
		float64_t m_tolerance;

		/** whether to store the within class covariances */
		bool m_store_covs;

		/** number of classes */
		int32_t m_num_classes;

		/** dimension of the features space */
		int32_t m_dim;

		/** feature covariances for each of the classes in the training data
		 *  stored iif store_covs
		 */
		SGNDArray< float64_t > m_covs;

		/** feature means for each of the classes in the training data */
		SGMatrix< float64_t > m_means;

		/** matrices computed in training and used in classification */
		SGNDArray< float64_t > m_M;

		/** vector computed in training and used in classification */
		SGVector< float32_t > m_slog;

}; /* class QDA */
}  /* namespace shogun */

#endif /* HAVE_EIGEN3 */
#endif /* _QDA_H__ */