This file is indexed.

/usr/include/shogun/structure/CCSOSVM.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2012 Viktor Gal
 * Copyright (C) 2008 Chun-Nam Yu
 */

#ifndef __CCSOSVM_H__
#define __CCSOSVM_H__

#include <shogun/lib/config.h>
#include <shogun/machine/LinearStructuredOutputMachine.h>
#include <shogun/base/DynArray.h>

#ifdef USE_MOSEK
#include <mosek.h>
#endif

namespace shogun
{

	/**
	 * Enum
	 * Training method selection
	 */
	enum EQPType
	{
		MOSEK=1,         /**< MOSEK. */
		SVMLIGHT=2       /**< SVM^Light */
	};

	/** @brief CCSOSVM
	 *
	 * Structured Output Support Vector Machine based on [1]
	 *
	 * [1] T. Joachims, T. Finley and C.-N. Yu,
	 *     Cutting-Plane Training of Structural SVMs,
	 *     Machine Learning Journal, 77(1):27-59
	 */
	class CCCSOSVM : public CLinearStructuredOutputMachine
	{
		public:
			/** default constructor*/
			CCCSOSVM();

			/** constructor
			 * @param model structured output model
			 * @param w initial w (optional)
			 */
			CCCSOSVM(CStructuredModel* model, SGVector<float64_t> w = SGVector<float64_t>());

			/** destructor */
			virtual ~CCCSOSVM();

			/** @return object name */
			inline virtual const char* get_name() const { return "CCSOSVM"; }

			/** set initial value of weight vector w
			 *
			 * @param W     initial weight vector
			 */
			inline void set_w(SGVector< float64_t > W)
			{
				REQUIRE(W.vlen == m_model->get_dim(), "Dimension of the initial "
						"solution must match the model's dimension!\n");
				m_w=W;
			}

			/** set epsilon
			 *
			 * @param eps epsilon
			 */
			inline void set_epsilon(float64_t eps)
			{
				m_eps = eps;
			}

			/** get epsilon
			 *
			 * @return epsilon
			 */
			inline float64_t get_epsilon() const
			{
				return m_eps;
			}

			/** set C
			 *
			 * @param C constant
			 */
			inline void set_C(float64_t C)
			{
				m_C = C;
			}

			/** get C
			 *
			 * @return C constant
			 */
			inline float64_t get_C() const
			{
				return m_C;
			}

			/** set maximum number of iterations
			 *
			 * @param max_iter maximum number of iterations
			 */
			inline void set_max_iter(index_t max_iter)
			{
				m_max_iter = max_iter;
			}

			/** get maximum number of iterations
			 *
			 * @return maximum number of iterations
			 */
			inline index_t get_max_iter() const
			{
				return m_max_iter;
			}

			/** get the primal objective value
			 *
			 * @return primal objective value
			 */
			inline float64_t compute_primal_objective()
			{
				return m_primal_obj;
			}

			/** get maximum rho value
			 *
			 * @return max rho value
			 */
			inline float64_t get_max_rho() const
			{
				return m_max_rho;
			}

			/** set maximum rho value
			 *
			 * @param max_rho maximum rho value
			 */
			inline void set_max_rho(float64_t max_rho)
			{
				m_max_rho = max_rho;
			}

			/** get the currently used qp solver
			 *
			 * @return qp solver
			 */
			inline EQPType get_qp_type() const
			{
				return m_qp_type;
			}

			/** set the qp solver to be used
			 *
			 * @param type qp solver
			 */
			inline void set_qp_type(EQPType type)
			{
				m_qp_type = type;
			}

			/** get classifier type
			 *
			 * @return classifier type CT_CCSOSVM
			 */
			virtual EMachineType get_classifier_type();

		protected:
			bool train_machine(CFeatures* data=NULL);

		private:
			/** find new cutting plane
			 *
			 * @param margin new margin value
			 * @return new cutting plane
			 */
			SGSparseVector<float64_t> find_cutting_plane(float64_t* margin);

			int32_t resize_cleanup(int32_t size_active, SGVector<int32_t>& idle, SGVector<float64_t>&alpha,
					SGVector<float64_t>& delta, SGVector<float64_t>& gammaG0,
					SGVector<float64_t>& proximal_rhs, float64_t ***ptr_G,
					DynArray<SGSparseVector<float64_t> >& dXc, SGVector<float64_t>& cut_error);

			int32_t mosek_qp_optimize(float64_t** G, float64_t* delta, float64_t* alpha, int32_t k, float64_t* dual_obj, float64_t rho);

			/** init class */
			void init();

		private:
			/** C */
			float64_t m_C;
			/** epsilon */
			float64_t m_eps;
			/** primary objective value */
			float64_t m_primal_obj;
			float64_t m_alpha_thrld;
			float64_t m_max_rho;

			/** maximum number of iterations */
			index_t m_max_iter;
			/** number of iterations before checking for cleaning up idle cutting planes */
			index_t m_cleanup_check;
			/** maximum number of idle iterations before marking as an idle cutting plane */
			index_t m_idle_iter;

			/** QP solver type */
			EQPType m_qp_type;
#ifdef USE_MOSEK
			/** Mosek environment */
			MSKenv_t m_msk_env;
#endif
	};
}

#endif