This file is indexed.

/usr/include/shogun/structure/PrimalMosekSOSVM.h is in libshogun-dev 3.2.0-7.5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2012 Fernando José Iglesias García
 * Copyright (C) 2012 Fernando José Iglesias García
 */

#ifndef _PRIMAL_MOSEK_SOSVM__H__
#define _PRIMAL_MOSEK_SOSVM__H__

#ifdef USE_MOSEK

#include <shogun/machine/LinearStructuredOutputMachine.h>
#include <shogun/mathematics/Mosek.h>

namespace shogun
{

/**
 * @brief Class PrimalMosekSOSVM that implements the optimization
 * algorithm for structured output (SO) problems presented in [1] for SVM
 * learning. The optimization problem is solved using a cutting plane algorithm.
 *
 * [1] Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.
 *     Support Vector Machine Learning for Interdependent and Structured Ouput
 *     Spaces.
 *     http://www.cs.cornell.edu/People/tj/publications/tsochantaridis_etal_04a.pdf
 */
class CPrimalMosekSOSVM : public CLinearStructuredOutputMachine
{
	public:
		/** default constructor */
		CPrimalMosekSOSVM();

		/** standard constructor
		 *
		 * @param model structured model with application specific functions
		 * @param labs structured labels
		 */
		CPrimalMosekSOSVM(CStructuredModel* model, CStructuredLabels* labs);

		/** destructor */
		~CPrimalMosekSOSVM();

		/** get slacks
		 *
		 * @return slacks
		 */
		inline SGVector< float64_t > get_slacks() const { return m_slacks; }

		/** compute the primal objective value
		 *
		 * @return primal objective value.
		 */
		virtual float64_t compute_primal_objective() const;

		/** @return name of SGSerializable */
		virtual const char* get_name() const { return "PrimalMosekSOSVM"; }

		/** get classifier type
		 *
		 * @return classifier type CT_PRIMALMOSEKSOSVM
		 */
		virtual EMachineType get_classifier_type();

		/** set regularization constant C
		 *
		 * @param C regularization constant
		 */
		void set_regularization(float64_t C);

		/** set epsilon
		 *
		 * @param epsilon if slack_i > max_slack_i + epsilon, add to cutting plane set
		 */
		void set_epsilon(float64_t epsilon);

	protected:
		/** train primal SO-SVM
		 *
		 * @param data training data
		 * @return whether the training was successful
		 */
		virtual bool train_machine(CFeatures* data = NULL);

	private:
		void init();

		/** computes the result of TODO equation
		 *
		 * @param result CResultSet structure with any argmax output
		 * @return result of the operation
		 */
		float64_t compute_loss_arg(CResultSet* result) const;

		/** insert element in the list of argmax results
		 *
		 * @param result_list list of CResultSet
		 * @param result element to insert in the list
		 */
		bool insert_result(CList* result_list, CResultSet* result) const;

		/** introduces a new constraint of type Ax <= b in the
		 * optimization problem. Remember that each row i in A takes the
		 * form
		 *
		 * \f[
		 * \Psi(\vec{x}_i,{\hat{y}_i}) - \Psi(\vec{x}_i,y_i) ~|~-\delta_{ji}
		 *\f]
		 *
		 * and the corresponding element in b is
		 *
		 * \f[
		 * -\Delta(y, \hat{y}_i)
		 *\f]
		 *
		 * @param mosek MOSEK optimization problem instance
		 * @param result structure with numerical information of the
		 * constraint
		 * @param con_idx row index in A for this new constraint
		 * @param train_idx training example associated to this
		 * constraint
		 *
		 * @return whether the new constraint has been succesfully added
		 */
		bool add_constraint(CMosek* mosek, CResultSet* result, index_t con_idx, index_t train_idx) const;

	private:
		/** slack variables associated to each training example */
		SGVector< float64_t > m_slacks;

		/** primal objective value */
		float64_t po_value;

		/** regularization constant */
		float64_t m_regularization;

		/** epsilon */
		float64_t m_epsilon;

}; /* class CPrimalMosekSOSVM */

} /* namespace shogun */

#endif /* USE_MOSEK */
#endif /* _PRIMAL_MOSEK_SOSVM__H__ */