/usr/share/libsigrokdecode/decoders/i2c/pd.py is in libsigrokdecode4 0.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | ##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Implement support for 10bit slave addresses.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
import sigrokdecode as srd
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>:
- 'START' (START condition)
- 'START REPEAT' (Repeated START condition)
- 'ADDRESS READ' (Slave address, read)
- 'ADDRESS WRITE' (Slave address, write)
- 'DATA READ' (Data, read)
- 'DATA WRITE' (Data, write)
- 'STOP' (STOP condition)
- 'ACK' (ACK bit)
- 'NACK' (NACK bit)
- 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
For example, a slave address field could be 0x51 (instead of 0xa2).
For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
'''
# CMD: [annotation-type-index, long annotation, short annotation]
proto = {
'START': [0, 'Start', 'S'],
'START REPEAT': [1, 'Start repeat', 'Sr'],
'STOP': [2, 'Stop', 'P'],
'ACK': [3, 'ACK', 'A'],
'NACK': [4, 'NACK', 'N'],
'BIT': [5, 'Bit', 'B'],
'ADDRESS READ': [6, 'Address read', 'AR'],
'ADDRESS WRITE': [7, 'Address write', 'AW'],
'DATA READ': [8, 'Data read', 'DR'],
'DATA WRITE': [9, 'Data write', 'DW'],
}
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'i2c'
name = 'I²C'
longname = 'Inter-Integrated Circuit'
desc = 'Two-wire, multi-master, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['i2c']
channels = (
{'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
{'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
)
options = (
{'id': 'address_format', 'desc': 'Displayed slave address format',
'default': 'shifted', 'values': ('shifted', 'unshifted')},
)
annotations = (
('start', 'Start condition'),
('repeat-start', 'Repeat start condition'),
('stop', 'Stop condition'),
('ack', 'ACK'),
('nack', 'NACK'),
('bit', 'Data/address bit'),
('address-read', 'Address read'),
('address-write', 'Address write'),
('data-read', 'Data read'),
('data-write', 'Data write'),
('warnings', 'Human-readable warnings'),
)
annotation_rows = (
('bits', 'Bits', (5,)),
('addr-data', 'Address/Data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
('warnings', 'Warnings', (10,)),
)
binary = (
('address-read', 'Address read'),
('address-write', 'Address write'),
('data-read', 'Data read'),
('data-write', 'Data write'),
)
def __init__(self):
self.samplerate = None
self.ss = self.es = self.ss_byte = -1
self.bitcount = 0
self.databyte = 0
self.wr = -1
self.is_repeat_start = 0
self.state = 'FIND START'
self.pdu_start = None
self.pdu_bits = 0
self.bits = []
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_bitrate = self.register(srd.OUTPUT_META,
meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putp(self, data):
self.put(self.ss, self.es, self.out_python, data)
def putb(self, data):
self.put(self.ss, self.es, self.out_binary, data)
def handle_start(self, pins):
self.ss, self.es = self.samplenum, self.samplenum
self.pdu_start = self.samplenum
self.pdu_bits = 0
cmd = 'START REPEAT' if (self.is_repeat_start == 1) else 'START'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND ADDRESS'
self.bitcount = self.databyte = 0
self.is_repeat_start = 1
self.wr = -1
self.bits = []
# Gather 8 bits of data plus the ACK/NACK bit.
def handle_address_or_data(self, pins):
scl, sda = pins
self.pdu_bits += 1
# Address and data are transmitted MSB-first.
self.databyte <<= 1
self.databyte |= sda
# Remember the start of the first data/address bit.
if self.bitcount == 0:
self.ss_byte = self.samplenum
# Store individual bits and their start/end samplenumbers.
# In the list, index 0 represents the LSB (I²C transmits MSB-first).
self.bits.insert(0, [sda, self.samplenum, self.samplenum])
if self.bitcount > 0:
self.bits[1][2] = self.samplenum
if self.bitcount == 7:
self.bitwidth = self.bits[1][2] - self.bits[2][2]
self.bits[0][2] += self.bitwidth
# Return if we haven't collected all 8 + 1 bits, yet.
if self.bitcount < 7:
self.bitcount += 1
return
d = self.databyte
if self.state == 'FIND ADDRESS':
# The READ/WRITE bit is only in address bytes, not data bytes.
self.wr = 0 if (self.databyte & 1) else 1
if self.options['address_format'] == 'shifted':
d = d >> 1
bin_class = -1
if self.state == 'FIND ADDRESS' and self.wr == 1:
cmd = 'ADDRESS WRITE'
bin_class = 1
elif self.state == 'FIND ADDRESS' and self.wr == 0:
cmd = 'ADDRESS READ'
bin_class = 0
elif self.state == 'FIND DATA' and self.wr == 1:
cmd = 'DATA WRITE'
bin_class = 3
elif self.state == 'FIND DATA' and self.wr == 0:
cmd = 'DATA READ'
bin_class = 2
self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth
self.putp(['BITS', self.bits])
self.putp([cmd, d])
self.putb([bin_class, bytes([d])])
for bit in self.bits:
self.put(bit[1], bit[2], self.out_ann, [5, ['%d' % bit[0]]])
if cmd.startswith('ADDRESS'):
self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
w = ['Write', 'Wr', 'W'] if self.wr else ['Read', 'Rd', 'R']
self.putx([proto[cmd][0], w])
self.ss, self.es = self.ss_byte, self.samplenum
self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
'%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
# Done with this packet.
self.bitcount = self.databyte = 0
self.bits = []
self.state = 'FIND ACK'
def get_ack(self, pins):
scl, sda = pins
self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
cmd = 'NACK' if (sda == 1) else 'ACK'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
# There could be multiple data bytes in a row, so either find
# another data byte or a STOP condition next.
self.state = 'FIND DATA'
def handle_stop(self, pins):
# Meta bitrate
elapsed = 1 / float(self.samplerate) * (self.samplenum - self.pdu_start + 1)
bitrate = int(1 / elapsed * self.pdu_bits)
self.put(self.ss_byte, self.samplenum, self.out_bitrate, bitrate)
cmd = 'STOP'
self.ss, self.es = self.samplenum, self.samplenum
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND START'
self.is_repeat_start = 0
self.wr = -1
self.bits = []
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
self.wait({})
while True:
# State machine.
if self.state == 'FIND START':
# Wait for a START condition (S): SCL = high, SDA = falling.
self.handle_start(self.wait({0: 'h', 1: 'f'}))
elif self.state == 'FIND ADDRESS':
# Wait for a data bit: SCL = rising.
self.handle_address_or_data(self.wait({0: 'r'}))
elif self.state == 'FIND DATA':
# Wait for any of the following conditions (or combinations):
# a) Data sampling of receiver: SCL = rising, and/or
# b) START condition (S): SCL = high, SDA = falling, and/or
# c) STOP condition (P): SCL = high, SDA = rising
pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])
# Check which of the condition(s) matched and handle them.
if self.matched[0]:
self.handle_address_or_data(pins)
elif self.matched[1]:
self.handle_start(pins)
elif self.matched[2]:
self.handle_stop(pins)
elif self.state == 'FIND ACK':
# Wait for a data/ack bit: SCL = rising.
self.get_ack(self.wait({0: 'r'}))
|