/usr/share/libsigrokdecode/decoders/jitter/pd.py is in libsigrokdecode4 0.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | ##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
# Helper dictionary for edge detection.
edge_detector = {
'rising': lambda x, y: bool(not x and y),
'falling': lambda x, y: bool(x and not y),
'both': lambda x, y: bool(x ^ y),
}
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'jitter'
name = 'Jitter'
longname = 'Timing jitter calculation'
desc = 'Retrieves the timing jitter between two digital signals.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['jitter']
channels = (
{'id': 'clk', 'name': 'Clock', 'desc': 'Clock reference channel'},
{'id': 'sig', 'name': 'Resulting signal', 'desc': 'Resulting signal controlled by the clock'},
)
options = (
{'id': 'clk_polarity', 'desc': 'Clock edge polarity',
'default': 'rising', 'values': ('rising', 'falling', 'both')},
{'id': 'sig_polarity', 'desc': 'Resulting signal edge polarity',
'default': 'rising', 'values': ('rising', 'falling', 'both')},
)
annotations = (
('jitter', 'Jitter value'),
('clk_missed', 'Clock missed'),
('sig_missed', 'Signal missed'),
)
annotation_rows = (
('jitter', 'Jitter values', (0,)),
('clk_missed', 'Clock missed', (1,)),
('sig_missed', 'Signal missed', (2,)),
)
binary = (
('ascii-float', 'Jitter values as newline-separated ASCII floats'),
)
def __init__(self):
self.state = 'CLK'
self.samplerate = None
self.oldclk, self.oldsig = 0, 0
self.clk_start = None
self.sig_start = None
self.clk_missed = 0
self.sig_missed = 0
def start(self):
self.clk_edge = edge_detector[self.options['clk_polarity']]
self.sig_edge = edge_detector[self.options['sig_polarity']]
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_clk_missed = self.register(srd.OUTPUT_META,
meta=(int, 'Clock missed', 'Clock transition missed'))
self.out_sig_missed = self.register(srd.OUTPUT_META,
meta=(int, 'Signal missed', 'Resulting signal transition missed'))
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# Helper function for jitter time annotations.
def putx(self, delta):
# Adjust granularity.
if delta == 0 or delta >= 1:
delta_s = '%.1fs' % (delta)
elif delta <= 1e-12:
delta_s = '%.1ffs' % (delta * 1e15)
elif delta <= 1e-9:
delta_s = '%.1fps' % (delta * 1e12)
elif delta <= 1e-6:
delta_s = '%.1fns' % (delta * 1e9)
elif delta <= 1e-3:
delta_s = '%.1fμs' % (delta * 1e6)
else:
delta_s = '%.1fms' % (delta * 1e3)
self.put(self.clk_start, self.sig_start, self.out_ann, [0, [delta_s]])
# Helper function for ASCII float jitter values (one value per line).
def putb(self, delta):
if delta is None:
return
# Format the delta to an ASCII float value terminated by a newline.
x = str(delta) + '\n'
self.put(self.clk_start, self.sig_start, self.out_binary,
[0, x.encode('UTF-8')])
# Helper function for missed clock and signal annotations.
def putm(self, data):
self.put(self.samplenum, self.samplenum, self.out_ann, data)
def handle_clk(self, clk, sig):
if self.clk_start == self.samplenum:
# Clock transition already treated.
# We have done everything we can with this sample.
return True
if self.clk_edge(self.oldclk, clk):
# Clock edge found.
# We note the sample and move to the next state.
self.clk_start = self.samplenum
self.state = 'SIG'
return False
else:
if self.sig_start is not None \
and self.sig_start != self.samplenum \
and self.sig_edge(self.oldsig, sig):
# If any transition in the resulting signal
# occurs while we are waiting for a clock,
# we increase the missed signal counter.
self.sig_missed += 1
self.put(self.samplenum, self.samplenum, self.out_sig_missed, self.sig_missed)
self.putm([2, ['Missed signal', 'MS']])
# No clock edge found, we have done everything we
# can with this sample.
return True
def handle_sig(self, clk, sig):
if self.sig_start == self.samplenum:
# Signal transition already treated.
# We have done everything we can with this sample.
return True
if self.sig_edge(self.oldsig, sig):
# Signal edge found.
# We note the sample, calculate the jitter
# and move to the next state.
self.sig_start = self.samplenum
self.state = 'CLK'
# Calculate and report the timing jitter.
delta = (self.sig_start - self.clk_start) / self.samplerate
self.putx(delta)
self.putb(delta)
return False
else:
if self.clk_start != self.samplenum \
and self.clk_edge(self.oldclk, clk):
# If any transition in the clock signal
# occurs while we are waiting for a resulting
# signal, we increase the missed clock counter.
self.clk_missed += 1
self.put(self.samplenum, self.samplenum, self.out_clk_missed, self.clk_missed)
self.putm([1, ['Missed clock', 'MC']])
# No resulting signal edge found, we have done
# everything we can with this sample.
return True
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
while True:
# Wait for a transition on CLK and/or SIG.
clk, sig = self.wait([{0: 'e'}, {1: 'e'}])
# State machine:
# For each sample we can move 2 steps forward in the state machine.
while True:
# Clock state has the lead.
if self.state == 'CLK':
if self.handle_clk(clk, sig):
break
if self.state == 'SIG':
if self.handle_sig(clk, sig):
break
# Save current CLK/SIG values for the next round.
self.oldclk, self.oldsig = clk, sig
|