/usr/share/libsigrokdecode/decoders/lpc/pd.py is in libsigrokdecode4 0.5.0-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | ##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
# ...
fields = {
# START field (indicates start or stop of a transaction)
'START': {
0b0000: 'Start of cycle for a target',
0b0001: 'Reserved',
0b0010: 'Grant for bus master 0',
0b0011: 'Grant for bus master 1',
0b0100: 'Reserved',
0b0101: 'Reserved',
0b0110: 'Reserved',
0b0111: 'Reserved',
0b1000: 'Reserved',
0b1001: 'Reserved',
0b1010: 'Reserved',
0b1011: 'Reserved',
0b1100: 'Reserved',
0b1101: 'Start of cycle for a Firmware Memory Read cycle',
0b1110: 'Start of cycle for a Firmware Memory Write cycle',
0b1111: 'Stop/abort (end of a cycle for a target)',
},
# Cycle type / direction field
# Bit 0 (LAD[0]) is unused, should always be 0.
# Neither host nor peripheral are allowed to drive 0b11x0.
'CT_DR': {
0b0000: 'I/O read',
0b0010: 'I/O write',
0b0100: 'Memory read',
0b0110: 'Memory write',
0b1000: 'DMA read',
0b1010: 'DMA write',
0b1100: 'Reserved / not allowed',
0b1110: 'Reserved / not allowed',
},
# SIZE field (determines how many bytes are to be transferred)
# Bits[3:2] are reserved, must be driven to 0b00.
# Neither host nor peripheral are allowed to drive 0b0010.
'SIZE': {
0b0000: '8 bits (1 byte)',
0b0001: '16 bits (2 bytes)',
0b0010: 'Reserved / not allowed',
0b0011: '32 bits (4 bytes)',
},
# CHANNEL field (bits[2:0] contain the DMA channel number)
'CHANNEL': {
0b0000: '0',
0b0001: '1',
0b0010: '2',
0b0011: '3',
0b0100: '4',
0b0101: '5',
0b0110: '6',
0b0111: '7',
},
# SYNC field (used to add wait states)
'SYNC': {
0b0000: 'Ready',
0b0001: 'Reserved',
0b0010: 'Reserved',
0b0011: 'Reserved',
0b0100: 'Reserved',
0b0101: 'Short wait',
0b0110: 'Long wait',
0b0111: 'Reserved',
0b1000: 'Reserved',
0b1001: 'Ready more (DMA only)',
0b1010: 'Error',
0b1011: 'Reserved',
0b1100: 'Reserved',
0b1101: 'Reserved',
0b1110: 'Reserved',
0b1111: 'Reserved',
},
}
class Decoder(srd.Decoder):
api_version = 2
id = 'lpc'
name = 'LPC'
longname = 'Low-Pin-Count'
desc = 'Protocol for low-bandwidth devices on PC mainboards.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['lpc']
channels = (
{'id': 'lframe', 'name': 'LFRAME#', 'desc': 'Frame'},
{'id': 'lclk', 'name': 'LCLK', 'desc': 'Clock'},
{'id': 'lad0', 'name': 'LAD[0]', 'desc': 'Addr/control/data 0'},
{'id': 'lad1', 'name': 'LAD[1]', 'desc': 'Addr/control/data 1'},
{'id': 'lad2', 'name': 'LAD[2]', 'desc': 'Addr/control/data 2'},
{'id': 'lad3', 'name': 'LAD[3]', 'desc': 'Addr/control/data 3'},
)
optional_channels = (
{'id': 'lreset', 'name': 'LRESET#', 'desc': 'Reset'},
{'id': 'ldrq', 'name': 'LDRQ#', 'desc': 'Encoded DMA / bus master request'},
{'id': 'serirq', 'name': 'SERIRQ', 'desc': 'Serialized IRQ'},
{'id': 'clkrun', 'name': 'CLKRUN#', 'desc': 'Clock run'},
{'id': 'lpme', 'name': 'LPME#', 'desc': 'LPC power management event'},
{'id': 'lpcpd', 'name': 'LPCPD#', 'desc': 'Power down'},
{'id': 'lsmi', 'name': 'LSMI#', 'desc': 'System Management Interrupt'},
)
annotations = (
('warnings', 'Warnings'),
('start', 'Start'),
('cycle-type', 'Cycle-type/direction'),
('addr', 'Address'),
('tar1', 'Turn-around cycle 1'),
('sync', 'Sync'),
('data', 'Data'),
('tar2', 'Turn-around cycle 2'),
)
annotation_rows = (
('data', 'Data', (1, 2, 3, 4, 5, 6, 7)),
('warnings', 'Warnings', (0,)),
)
def __init__(self):
self.state = 'IDLE'
self.oldlclk = -1
self.samplenum = 0
self.clocknum = 0
self.lad = -1
self.addr = 0
self.cur_nibble = 0
self.cycle_type = -1
self.databyte = 0
self.tarcount = 0
self.synccount = 0
self.oldpins = None
self.ss_block = self.es_block = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putb(self, data):
self.put(self.ss_block, self.es_block, self.out_ann, data)
def handle_get_start(self, lad, lad_bits, lframe):
# LAD[3:0]: START field (1 clock cycle).
# The last value of LAD[3:0] before LFRAME# gets de-asserted is what
# the peripherals must use. However, the host can keep LFRAME# asserted
# multiple clocks, and we output all START fields that occur, even
# though the peripherals are supposed to ignore all but the last one.
self.es_block = self.samplenum
self.putb([1, [fields['START'][lad], 'START', 'St', 'S']])
self.ss_block = self.samplenum
# Output a warning if LAD[3:0] changes while LFRAME# is low.
# TODO
if (self.lad != -1 and self.lad != lad):
self.putb([0, ['LAD[3:0] changed while LFRAME# was asserted']])
# LFRAME# is asserted (low). Wait until it gets de-asserted again
# (the host is allowed to keep it asserted multiple clocks).
if lframe != 1:
return
self.start_field = self.lad
self.state = 'GET CT/DR'
def handle_get_ct_dr(self, lad, lad_bits):
# LAD[3:0]: Cycle type / direction field (1 clock cycle).
self.cycle_type = fields['CT_DR'][lad]
# TODO: Warning/error on invalid cycle types.
if self.cycle_type == 'Reserved':
self.putb([0, ['Invalid cycle type (%s)' % lad_bits]])
self.es_block = self.samplenum
self.putb([2, ['Cycle type: %s' % self.cycle_type]])
self.ss_block = self.samplenum
self.state = 'GET ADDR'
self.addr = 0
self.cur_nibble = 0
def handle_get_addr(self, lad, lad_bits):
# LAD[3:0]: ADDR field (4/8/0 clock cycles).
# I/O cycles: 4 ADDR clocks. Memory cycles: 8 ADDR clocks.
# DMA cycles: no ADDR clocks at all.
if self.cycle_type in ('I/O read', 'I/O write'):
addr_nibbles = 4 # Address is 16bits.
elif self.cycle_type in ('Memory read', 'Memory write'):
addr_nibbles = 8 # Address is 32bits.
else:
addr_nibbles = 0 # TODO: How to handle later on?
# Addresses are driven MSN-first.
offset = ((addr_nibbles - 1) - self.cur_nibble) * 4
self.addr |= (lad << offset)
# Continue if we haven't seen all ADDR cycles, yet.
if (self.cur_nibble < addr_nibbles - 1):
self.cur_nibble += 1
return
self.es_block = self.samplenum
s = 'Address: 0x%%0%dx' % addr_nibbles
self.putb([3, [s % self.addr]])
self.ss_block = self.samplenum
self.state = 'GET TAR'
self.tar_count = 0
def handle_get_tar(self, lad, lad_bits):
# LAD[3:0]: First TAR (turn-around) field (2 clock cycles).
self.es_block = self.samplenum
self.putb([4, ['TAR, cycle %d: %s' % (self.tarcount, lad_bits)]])
self.ss_block = self.samplenum
# On the first TAR clock cycle LAD[3:0] is driven to 1111 by
# either the host or peripheral. On the second clock cycle,
# the host or peripheral tri-states LAD[3:0], but its value
# should still be 1111, due to pull-ups on the LAD lines.
if lad_bits != '1111':
self.putb([0, ['TAR, cycle %d: %s (expected 1111)' % \
(self.tarcount, lad_bits)]])
if (self.tarcount != 1):
self.tarcount += 1
return
self.tarcount = 0
self.state = 'GET SYNC'
def handle_get_sync(self, lad, lad_bits):
# LAD[3:0]: SYNC field (1-n clock cycles).
self.sync_val = lad_bits
self.cycle_type = fields['SYNC'][lad]
# TODO: Warnings if reserved value are seen?
if self.cycle_type == 'Reserved':
self.putb([0, ['SYNC, cycle %d: %s (reserved value)' % \
(self.synccount, self.sync_val)]])
self.es_block = self.samplenum
self.putb([5, ['SYNC, cycle %d: %s' % (self.synccount, self.sync_val)]])
self.ss_block = self.samplenum
# TODO
self.cycle_count = 0
self.state = 'GET DATA'
def handle_get_data(self, lad, lad_bits):
# LAD[3:0]: DATA field (2 clock cycles).
# Data is driven LSN-first.
if (self.cycle_count == 0):
self.databyte = lad
elif (self.cycle_count == 1):
self.databyte |= (lad << 4)
else:
raise Exception('Invalid cycle_count: %d' % self.cycle_count)
if (self.cycle_count != 1):
self.cycle_count += 1
return
self.es_block = self.samplenum
self.putb([6, ['DATA: 0x%02x' % self.databyte]])
self.ss_block = self.samplenum
self.cycle_count = 0
self.state = 'GET TAR2'
def handle_get_tar2(self, lad, lad_bits):
# LAD[3:0]: Second TAR field (2 clock cycles).
self.es_block = self.samplenum
self.putb([7, ['TAR, cycle %d: %s' % (self.tarcount, lad_bits)]])
self.ss_block = self.samplenum
# On the first TAR clock cycle LAD[3:0] is driven to 1111 by
# either the host or peripheral. On the second clock cycle,
# the host or peripheral tri-states LAD[3:0], but its value
# should still be 1111, due to pull-ups on the LAD lines.
if lad_bits != '1111':
self.putb([0, ['Warning: TAR, cycle %d: %s (expected 1111)'
% (self.tarcount, lad_bits)]])
if (self.tarcount != 1):
self.tarcount += 1
return
self.tarcount = 0
self.state = 'IDLE'
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
# If none of the pins changed, there's nothing to do.
if self.oldpins == pins:
continue
# Store current pin values for the next round.
self.oldpins = pins
# Get individual pin values into local variables.
(lframe, lclk, lad0, lad1, lad2, lad3) = pins[:6]
(lreset, ldrq, serirq, clkrun, lpme, lpcpd, lsmi) = pins[6:]
# Only look at the signals upon rising LCLK edges. The LPC clock
# is the same as the PCI clock (which is sampled at rising edges).
if not (self.oldlclk == 0 and lclk == 1):
self.oldlclk = lclk
continue
# Store LAD[3:0] bit values (one nibble) in local variables.
# Most (but not all) states need this.
if self.state != 'IDLE':
lad = (lad3 << 3) | (lad2 << 2) | (lad1 << 1) | lad0
lad_bits = bin(lad)[2:].zfill(4)
# self.putb([0, ['LAD: %s' % lad_bits]])
# TODO: Only memory read/write is currently supported/tested.
# State machine
if self.state == 'IDLE':
# A valid LPC cycle starts with LFRAME# being asserted (low).
if lframe != 0:
continue
self.ss_block = self.samplenum
self.state = 'GET START'
self.lad = -1
# self.clocknum = 0
elif self.state == 'GET START':
self.handle_get_start(lad, lad_bits, lframe)
elif self.state == 'GET CT/DR':
self.handle_get_ct_dr(lad, lad_bits)
elif self.state == 'GET ADDR':
self.handle_get_addr(lad, lad_bits)
elif self.state == 'GET TAR':
self.handle_get_tar(lad, lad_bits)
elif self.state == 'GET SYNC':
self.handle_get_sync(lad, lad_bits)
elif self.state == 'GET DATA':
self.handle_get_data(lad, lad_bits)
elif self.state == 'GET TAR2':
self.handle_get_tar2(lad, lad_bits)
|