This file is indexed.

/usr/include/SoapySDR/Device.hpp is in libsoapysdr-dev 0.6.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
///
/// \file SoapySDR/Device.hpp
///
/// Interface definition for Soapy SDR devices.
///
/// \copyright
/// Copyright (c) 2014-2017 Josh Blum
/// Copyright (c) 2016-2016 Bastille Networks
/// SPDX-License-Identifier: BSL-1.0
///

#pragma once
#include <SoapySDR/Config.hpp>
#include <SoapySDR/Types.hpp>
#include <SoapySDR/Constants.h>
#include <SoapySDR/Errors.h>
#include <vector>
#include <string>
#include <complex>
#include <cstddef> //size_t

namespace SoapySDR
{

//! Forward declaration of stream handle for type safety
class Stream;

/*!
 * Abstraction for an SDR tranceiver device - configuration and streaming.
 */
class SOAPY_SDR_API Device
{
public:

    //! virtual destructor for inheritance
    virtual ~Device(void);

    /*!
     * Enumerate a list of available devices on the system.
     * \param args device construction key/value argument filters
     * \return a list of argument maps, each unique to a device
     */
    static KwargsList enumerate(const Kwargs &args = Kwargs());

    /*!
     * Enumerate a list of available devices on the system.
     * Markup format for args: "keyA=valA, keyB=valB".
     * \param args a markup string of key/value argument filters
     * \return a list of argument maps, each unique to a device
     */
    static KwargsList enumerate(const std::string &args);

    /*!
     * Make a new Device object given device construction args.
     * The device pointer will be stored in a table so subsequent calls
     * with the same arguments will produce the same device.
     * For every call to make, there should be a matched call to unmake.
     *
     * \param args device construction key/value argument map
     * \return a pointer to a new Device object
     */
    static Device *make(const Kwargs &args = Kwargs());

    /*!
     * Make a new Device object given device construction args.
     * The device pointer will be stored in a table so subsequent calls
     * with the same arguments will produce the same device.
     * For every call to make, there should be a matched call to unmake.
     *
     * \param args a markup string of key/value arguments
     * \return a pointer to a new Device object
     */
    static Device *make(const std::string &args);

    /*!
     * Unmake or release a device object handle.
     *
     * \param device a pointer to a device object
     */
    static void unmake(Device *device);

    /*******************************************************************
     * Identification API
     ******************************************************************/

    /*!
     * A key that uniquely identifies the device driver.
     * This key identifies the underlying implementation.
     * Serveral variants of a product may share a driver.
     */
    virtual std::string getDriverKey(void) const;

    /*!
     * A key that uniquely identifies the hardware.
     * This key should be meaningful to the user
     * to optimize for the underlying hardware.
     */
    virtual std::string getHardwareKey(void) const;

    /*!
     * Query a dictionary of available device information.
     * This dictionary can any number of values like
     * vendor name, product name, revisions, serials...
     * This information can be displayed to the user
     * to help identify the instantiated device.
     */
    virtual Kwargs getHardwareInfo(void) const;

    /*******************************************************************
     * Channels API
     ******************************************************************/

    /*!
     * Set the frontend mapping of available DSP units to RF frontends.
     * This mapping controls channel mapping and channel availability.
     * \param direction the channel direction RX or TX
     * \param mapping a vendor-specific mapping string
     */
    virtual void setFrontendMapping(const int direction, const std::string &mapping);

    /*!
     * Get the mapping configuration string.
     * \param direction the channel direction RX or TX
     * \return the vendor-specific mapping string
     */
    virtual std::string getFrontendMapping(const int direction) const;

    /*!
     * Get a number of channels given the streaming direction
     */
    virtual size_t getNumChannels(const int direction) const;

    /*!
     * Query a dictionary of available channel information.
     * This dictionary can any number of values like
     * decoder type, version, available functions...
     * This information can be displayed to the user
     * to help identify the instantiated channel.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return channel information
     */
    virtual Kwargs getChannelInfo(const int direction, const size_t channel) const;

    /*!
     * Find out if the specified channel is full or half duplex.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true for full duplex, false for half duplex
     */
    virtual bool getFullDuplex(const int direction, const size_t channel) const;

    /*******************************************************************
     * Stream API
     ******************************************************************/

    /*!
     * Query a list of the available stream formats.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of allowed format strings. See setupStream() for the format syntax.
     */
    virtual std::vector<std::string> getStreamFormats(const int direction, const size_t channel) const;

    /*!
     * Get the hardware's native stream format for this channel.
     * This is the format used by the underlying transport layer,
     * and the direct buffer access API calls (when available).
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param [out] fullScale the maximum possible value
     * \return the native stream buffer format string
     */
    virtual std::string getNativeStreamFormat(const int direction, const size_t channel, double &fullScale) const;

    /*!
     * Query the argument info description for stream args.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of argument info structures
     */
    virtual ArgInfoList getStreamArgsInfo(const int direction, const size_t channel) const;

    /*!
     * Initialize a stream given a list of channels and stream arguments.
     * The implementation may change switches or power-up components.
     * All stream API calls should be usable with the new stream object
     * after setupStream() is complete, regardless of the activity state.
     *
     * The API allows any number of simultaneous TX and RX streams, but many dual-channel
     * devices are limited to one stream in each direction, using either one or both channels.
     * This call will throw an exception if an unsupported combination is requested,
     * or if a requested channel in this direction is already in use by another stream.
     *
     * When multiple channels are added to a stream, they are typically expected to have
     * the same sample rate. See setSampleRate().
     *
     * \param direction the channel direction (`SOAPY_SDR_RX` or `SOAPY_SDR_TX`)
     * \param format A string representing the desired buffer format in read/writeStream()
     * \parblock
     *
     * The first character selects the number type:
     *   - "C" means complex
     *   - "F" means floating point
     *   - "S" means signed integer
     *   - "U" means unsigned integer
     *
     * The type character is followed by the number of bits per number (complex is 2x this size per sample)
     *
     *  Example format strings:
     *   - "CF32" -  complex float32 (8 bytes per element)
     *   - "CS16" -  complex int16 (4 bytes per element)
     *   - "CS12" -  complex int12 (3 bytes per element)
     *   - "CS4" -  complex int4 (1 byte per element)
     *   - "S32" -  int32 (4 bytes per element)
     *   - "U8" -  uint8 (1 byte per element)
     *
     * \endparblock
     * \param channels a list of channels or empty for automatic.
     * \param args stream args or empty for defaults.
     * \parblock
     *
     *   Recommended keys to use in the args dictionary:
     *    - "WIRE" - format of the samples between device and host
     * \endparblock
     * \return an opaque pointer to a stream handle.
     * \parblock
     *
     * The returned stream is not required to have internal locking, and may not be used
     * concurrently from multiple threads.
     * \endparblock
     */
    virtual Stream *setupStream(
        const int direction,
        const std::string &format,
        const std::vector<size_t> &channels = std::vector<size_t>(),
        const Kwargs &args = Kwargs());

    /*!
     * Close an open stream created by setupStream
     * The implementation may change switches or power-down components.
     * \param stream the opaque pointer to a stream handle
     */
    virtual void closeStream(Stream *stream);

    /*!
     * Get the stream's maximum transmission unit (MTU) in number of elements.
     * The MTU specifies the maximum payload transfer in a stream operation.
     * This value can be used as a stream buffer allocation size that can
     * best optimize throughput given the underlying stream implementation.
     *
     * \param stream the opaque pointer to a stream handle
     * \return the MTU in number of stream elements (never zero)
     */
    virtual size_t getStreamMTU(Stream *stream) const;

    /*!
     * Activate a stream.
     * Call activate to prepare a stream before using read/write().
     * The implementation control switches or stimulate data flow.
     *
     * The timeNs is only valid when the flags have SOAPY_SDR_HAS_TIME.
     * The numElems count can be used to request a finite burst size.
     * The SOAPY_SDR_END_BURST flag can signal end on the finite burst.
     * Not all implementations will support the full range of options.
     * In this case, the implementation returns SOAPY_SDR_NOT_SUPPORTED.
     *
     * \param stream the opaque pointer to a stream handle
     * \param flags optional flag indicators about the stream
     * \param timeNs optional activation time in nanoseconds
     * \param numElems optional element count for burst control
     * \return 0 for success or error code on failure
     */
    virtual int activateStream(
        Stream *stream,
        const int flags = 0,
        const long long timeNs = 0,
        const size_t numElems = 0);

    /*!
     * Deactivate a stream.
     * Call deactivate when not using using read/write().
     * The implementation control switches or halt data flow.
     *
     * The timeNs is only valid when the flags have SOAPY_SDR_HAS_TIME.
     * Not all implementations will support the full range of options.
     * In this case, the implementation returns SOAPY_SDR_NOT_SUPPORTED.
     *
     * \param stream the opaque pointer to a stream handle
     * \param flags optional flag indicators about the stream
     * \param timeNs optional deactivation time in nanoseconds
     * \return 0 for success or error code on failure
     */
    virtual int deactivateStream(
        Stream *stream,
        const int flags = 0,
        const long long timeNs = 0);

    /*!
     * Read elements from a stream for reception.
     * This is a multi-channel call, and buffs should be an array of void *,
     * where each pointer will be filled with data from a different channel.
     *
     * **Client code compatibility:**
     * The readStream() call should be well defined at all times,
     * including prior to activation and after deactivation.
     * When inactive, readStream() should implement the timeout
     * specified by the caller and return SOAPY_SDR_TIMEOUT.
     *
     * \param stream the opaque pointer to a stream handle
     * \param buffs an array of void* buffers num chans in size
     * \param numElems the number of elements in each buffer
     * \param flags optional flag indicators about the result
     * \param timeNs the buffer's timestamp in nanoseconds
     * \param timeoutUs the timeout in microseconds
     * \return the number of elements read per buffer or error code
     */
    virtual int readStream(
        Stream *stream,
        void * const *buffs,
        const size_t numElems,
        int &flags,
        long long &timeNs,
        const long timeoutUs = 100000);

    /*!
     * Write elements to a stream for transmission.
     * This is a multi-channel call, and buffs should be an array of void *,
     * where each pointer will be filled with data for a different channel.
     *
     * **Client code compatibility:**
     * Client code relies on writeStream() for proper back-pressure.
     * The writeStream() implementation must enforce the timeout
     * such that the call blocks until space becomes available
     * or timeout expiration.
     *
     * \param stream the opaque pointer to a stream handle
     * \param buffs an array of void* buffers num chans in size
     * \param numElems the number of elements in each buffer
     * \param flags optional input flags and output flags
     * \param timeNs the buffer's timestamp in nanoseconds
     * \param timeoutUs the timeout in microseconds
     * \return the number of elements written per buffer or error
     */
    virtual int writeStream(
        Stream *stream,
        const void * const *buffs,
        const size_t numElems,
        int &flags,
        const long long timeNs = 0,
        const long timeoutUs = 100000);

    /*!
     * Readback status information about a stream.
     * This call is typically used on a transmit stream
     * to report time errors, underflows, and burst completion.
     *
     * **Client code compatibility:**
     * Client code may continually poll readStreamStatus() in a loop.
     * Implementations of readStreamStatus() should wait in the call
     * for a status change event or until the timeout expiration.
     * When stream status is not implemented on a particular stream,
     * readStreamStatus() should return SOAPY_SDR_NOT_SUPPORTED.
     * Client code may use this indication to disable a polling loop.
     *
     * \param stream the opaque pointer to a stream handle
     * \param chanMask to which channels this status applies
     * \param flags optional input flags and output flags
     * \param timeNs the buffer's timestamp in nanoseconds
     * \param timeoutUs the timeout in microseconds
     * \return 0 for success or error code like timeout
     */
    virtual int readStreamStatus(
        Stream *stream,
        size_t &chanMask,
        int &flags,
        long long &timeNs,
        const long timeoutUs = 100000);

    /*******************************************************************
     * Direct buffer access API
     ******************************************************************/

    /*!
     * How many direct access buffers can the stream provide?
     * This is the number of times the user can call acquire()
     * on a stream without making subsequent calls to release().
     * A return value of 0 means that direct access is not supported.
     *
     * \param stream the opaque pointer to a stream handle
     * \return the number of direct access buffers or 0
     */
    virtual size_t getNumDirectAccessBuffers(Stream *stream);

    /*!
     * Get the buffer addresses for a scatter/gather table entry.
     * When the underlying DMA implementation uses scatter/gather
     * then this call provides the user addresses for that table.
     *
     * Example: The caller may query the DMA memory addresses once
     * after stream creation to pre-allocate a re-usable ring-buffer.
     *
     * \param stream the opaque pointer to a stream handle
     * \param handle an index value between 0 and num direct buffers - 1
     * \param buffs an array of void* buffers num chans in size
     * \return 0 for success or error code when not supported
     */
    virtual int getDirectAccessBufferAddrs(Stream *stream, const size_t handle, void **buffs);

    /*!
     * Acquire direct buffers from a receive stream.
     * This call is part of the direct buffer access API.
     *
     * The buffs array will be filled with a stream pointer for each channel.
     * Each pointer can be read up to the number of return value elements.
     *
     * The handle will be set by the implementation so that the caller
     * may later release access to the buffers with releaseReadBuffer().
     * Handle represents an index into the internal scatter/gather table
     * such that handle is between 0 and num direct buffers - 1.
     *
     * \param stream the opaque pointer to a stream handle
     * \param handle an index value used in the release() call
     * \param buffs an array of void* buffers num chans in size
     * \param flags optional flag indicators about the result
     * \param timeNs the buffer's timestamp in nanoseconds
     * \param timeoutUs the timeout in microseconds
     * \return the number of elements read per buffer or error code
     */
    virtual int acquireReadBuffer(
        Stream *stream,
        size_t &handle,
        const void **buffs,
        int &flags,
        long long &timeNs,
        const long timeoutUs = 100000);

    /*!
     * Release an acquired buffer back to the receive stream.
     * This call is part of the direct buffer access API.
     *
     * \param stream the opaque pointer to a stream handle
     * \param handle the opaque handle from the acquire() call
     */
    virtual void releaseReadBuffer(
        Stream *stream,
        const size_t handle);

    /*!
     * Acquire direct buffers from a transmit stream.
     * This call is part of the direct buffer access API.
     *
     * The buffs array will be filled with a stream pointer for each channel.
     * Each pointer can be written up to the number of return value elements.
     *
     * The handle will be set by the implementation so that the caller
     * may later release access to the buffers with releaseWriteBuffer().
     * Handle represents an index into the internal scatter/gather table
     * such that handle is between 0 and num direct buffers - 1.
     *
     * \param stream the opaque pointer to a stream handle
     * \param handle an index value used in the release() call
     * \param buffs an array of void* buffers num chans in size
     * \param timeoutUs the timeout in microseconds
     * \return the number of available elements per buffer or error
     */
    virtual int acquireWriteBuffer(
        Stream *stream,
        size_t &handle,
        void **buffs,
        const long timeoutUs = 100000);

    /*!
     * Release an acquired buffer back to the transmit stream.
     * This call is part of the direct buffer access API.
     *
     * Stream meta-data is provided as part of the release call,
     * and not the acquire call so that the caller may acquire
     * buffers without committing to the contents of the meta-data,
     * which can be determined by the user as the buffers are filled.
     *
     * \param stream the opaque pointer to a stream handle
     * \param handle the opaque handle from the acquire() call
     * \param numElems the number of elements written to each buffer
     * \param flags optional input flags and output flags
     * \param timeNs the buffer's timestamp in nanoseconds
     */
    virtual void releaseWriteBuffer(
        Stream *stream,
        const size_t handle,
        const size_t numElems,
        int &flags,
        const long long timeNs = 0);

    /*******************************************************************
     * Antenna API
     ******************************************************************/

    /*!
     * Get a list of available antennas to select on a given chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of available antenna names
     */
    virtual std::vector<std::string> listAntennas(const int direction, const size_t channel) const;

    /*!
     * Set the selected antenna on a chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of an available antenna
     */
    virtual void setAntenna(const int direction, const size_t channel, const std::string &name);

    /*!
     * Get the selected antenna on a chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the name of an available antenna
     */
    virtual std::string getAntenna(const int direction, const size_t channel) const;

    /*******************************************************************
     * Frontend corrections API
     ******************************************************************/

    /*!
     * Does the device support automatic DC offset corrections?
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true if automatic corrections are supported
     */
    virtual bool hasDCOffsetMode(const int direction, const size_t channel) const;

    /*!
     * Set the automatic DC offset corrections mode.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param automatic true for automatic offset correction
     */
    virtual void setDCOffsetMode(const int direction, const size_t channel, const bool automatic);

    /*!
     * Get the automatic DC offset corrections mode.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true for automatic offset correction
     */
    virtual bool getDCOffsetMode(const int direction, const size_t channel) const;

    /*!
     * Does the device support frontend DC offset correction?
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true if DC offset corrections are supported
     */
    virtual bool hasDCOffset(const int direction, const size_t channel) const;

    /*!
     * Set the frontend DC offset correction.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param offset the relative correction (1.0 max)
     */
    virtual void setDCOffset(const int direction, const size_t channel, const std::complex<double> &offset);

    /*!
     * Get the frontend DC offset correction.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the relative correction (1.0 max)
     */
    virtual std::complex<double> getDCOffset(const int direction, const size_t channel) const;

    /*!
     * Does the device support frontend IQ balance correction?
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true if IQ balance corrections are supported
     */
    virtual bool hasIQBalance(const int direction, const size_t channel) const;

    /*!
     * Set the frontend IQ balance correction.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param balance the relative correction (1.0 max)
     */
    virtual void setIQBalance(const int direction, const size_t channel, const std::complex<double> &balance);

    /*!
     * Get the frontend IQ balance correction.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the relative correction (1.0 max)
     */
    virtual std::complex<double> getIQBalance(const int direction, const size_t channel) const;

    /*!
     * Does the device support frontend frequency correction?
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true if frequency corrections are supported
     */
    virtual bool hasFrequencyCorrection(const int direction, const size_t channel) const;

    /*!
     * Fine tune the frontend frequency correction.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param value the correction in PPM
     */
    virtual void setFrequencyCorrection(const int direction, const size_t channel, const double value);

    /*!
     * Get the frontend frequency correction value.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the correction value in PPM
     */
    virtual double getFrequencyCorrection(const int direction, const size_t channel) const;

    /*******************************************************************
     * Gain API
     ******************************************************************/

    /*!
     * List available amplification elements.
     * Elements should be in order RF to baseband.
     * \param direction the channel direction RX or TX
     * \param channel an available channel
     * \return a list of gain string names
     */
    virtual std::vector<std::string> listGains(const int direction, const size_t channel) const;

    /*!
     * Does the device support automatic gain control?
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true for automatic gain control
     */
    virtual bool hasGainMode(const int direction, const size_t channel) const;

    /*!
     * Set the automatic gain mode on the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param automatic true for automatic gain setting
     */
    virtual void setGainMode(const int direction, const size_t channel, const bool automatic);

    /*!
     * Get the automatic gain mode on the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return true for automatic gain setting
     */
    virtual bool getGainMode(const int direction, const size_t channel) const;

    /*!
     * Set the overall amplification in a chain.
     * The gain will be distributed automatically across available element.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param value the new amplification value in dB
     */
    virtual void setGain(const int direction, const size_t channel, const double value);

    /*!
     * Set the value of a amplification element in a chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of an amplification element
     * \param value the new amplification value in dB
     */
    virtual void setGain(const int direction, const size_t channel, const std::string &name, const double value);

    /*!
     * Get the overall value of the gain elements in a chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the value of the gain in dB
     */
    virtual double getGain(const int direction, const size_t channel) const;

    /*!
     * Get the value of an individual amplification element in a chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of an amplification element
     * \return the value of the gain in dB
     */
    virtual double getGain(const int direction, const size_t channel, const std::string &name) const;

    /*!
     * Get the overall range of possible gain values.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of gain ranges in dB
     */
    virtual Range getGainRange(const int direction, const size_t channel) const;

    /*!
     * Get the range of possible gain values for a specific element.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of an amplification element
     * \return a list of gain ranges in dB
     */
    virtual Range getGainRange(const int direction, const size_t channel, const std::string &name) const;

    /*******************************************************************
     * Frequency API
     ******************************************************************/

    /*!
     * Set the center frequency of the chain.
     *  - For RX, this specifies the down-conversion frequency.
     *  - For TX, this specifies the up-conversion frequency.
     *
     * The default implementation of setFrequency() will tune the "RF"
     * component as close as possible to the requested center frequency.
     * Tuning inaccuracies will be compensated for with the "BB" component.
     *
     * The args can be used to augment the tuning algorithm.
     *  - Use "OFFSET" to specify an "RF" tuning offset,
     *    usually with the intention of moving the LO out of the passband.
     *    The offset will be compensated for using the "BB" component.
     *  - Use the name of a component for the key and a frequency in Hz
     *    as the value (any format) to enforce a specific frequency.
     *    The other components will be tuned with compensation
     *    to achieve the specified overall frequency.
     *  - Use the name of a component for the key and the value "IGNORE"
     *    so that the tuning algorithm will avoid altering the component.
     *  - Vendor specific implementations can also use the same args to augment
     *    tuning in other ways such as specifying fractional vs integer N tuning.
     *
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param frequency the center frequency in Hz
     * \param args optional tuner arguments
     */
    virtual void setFrequency(const int direction, const size_t channel, const double frequency, const Kwargs &args = Kwargs());

    /*!
     * Tune the center frequency of the specified element.
     *  - For RX, this specifies the down-conversion frequency.
     *  - For TX, this specifies the up-conversion frequency.
     *
     * Recommended names used to represent tunable components:
     *  - "CORR" - freq error correction in PPM
     *  - "RF" - frequency of the RF frontend
     *  - "BB" - frequency of the baseband DSP
     *
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of a tunable element
     * \param frequency the center frequency in Hz
     * \param args optional tuner arguments
     */
    virtual void setFrequency(const int direction, const size_t channel, const std::string &name, const double frequency, const Kwargs &args = Kwargs());

    /*!
     * Get the overall center frequency of the chain.
     *  - For RX, this specifies the down-conversion frequency.
     *  - For TX, this specifies the up-conversion frequency.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the center frequency in Hz
     */
    virtual double getFrequency(const int direction, const size_t channel) const;

    /*!
     * Get the frequency of a tunable element in the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of a tunable element
     * \return the tunable element's frequency in Hz
     */
    virtual double getFrequency(const int direction, const size_t channel, const std::string &name) const;

    /*!
     * List available tunable elements in the chain.
     * Elements should be in order RF to baseband.
     * \param direction the channel direction RX or TX
     * \param channel an available channel
     * \return a list of tunable elements by name
     */
    virtual std::vector<std::string> listFrequencies(const int direction, const size_t channel) const;

    /*!
     * Get the range of overall frequency values.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of frequency ranges in Hz
     */
    virtual RangeList getFrequencyRange(const int direction, const size_t channel) const;

    /*!
     * Get the range of tunable values for the specified element.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param name the name of a tunable element
     * \return a list of frequency ranges in Hz
     */
    virtual RangeList getFrequencyRange(const int direction, const size_t channel, const std::string &name) const;

    /*!
     * Query the argument info description for tune args.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of argument info structures
     */
    virtual ArgInfoList getFrequencyArgsInfo(const int direction, const size_t channel) const;

    /*******************************************************************
     * Sample Rate API
     ******************************************************************/

    /*!
     * Set the baseband sample rate of the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param rate the sample rate in samples per second
     */
    virtual void setSampleRate(const int direction, const size_t channel, const double rate);

    /*!
     * Get the baseband sample rate of the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the sample rate in samples per second
     */
    virtual double getSampleRate(const int direction, const size_t channel) const;

    /*!
     * Get the range of possible baseband sample rates.
     * \deprecated replaced by getSampleRateRange()
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of possible rates in samples per second
     */
    virtual std::vector<double> listSampleRates(const int direction, const size_t channel) const;

    /*!
     * Get the range of possible baseband sample rates.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of sample rate ranges in samples per second
     */
    virtual RangeList getSampleRateRange(const int direction, const size_t channel) const;

    /*******************************************************************
     * Bandwidth API
     ******************************************************************/

    /*!
     * Set the baseband filter width of the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param bw the baseband filter width in Hz
     */
    virtual void setBandwidth(const int direction, const size_t channel, const double bw);

    /*!
     * Get the baseband filter width of the chain.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return the baseband filter width in Hz
     */
    virtual double getBandwidth(const int direction, const size_t channel) const;

    /*!
     * Get the range of possible baseband filter widths.
     * \deprecated replaced by getBandwidthRange()
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of possible bandwidths in Hz
     */
    virtual std::vector<double> listBandwidths(const int direction, const size_t channel) const;

    /*!
     * Get the range of possible baseband filter widths.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of bandwidth ranges in Hz
     */
    virtual RangeList getBandwidthRange(const int direction, const size_t channel) const;

    /*******************************************************************
     * Clocking API
     ******************************************************************/

    /*!
     * Set the master clock rate of the device.
     * \param rate the clock rate in Hz
     */
    virtual void setMasterClockRate(const double rate);

    /*!
     * Get the master clock rate of the device.
     * \return the clock rate in Hz
     */
    virtual double getMasterClockRate(void) const;

    /*!
     * Get the range of available master clock rates.
     * \return a list of clock rate ranges in Hz
     */
    virtual RangeList getMasterClockRates(void) const;

    /*!
     * Get the list of available clock sources.
     * \return a list of clock source names
     */
    virtual std::vector<std::string> listClockSources(void) const;

    /*!
     * Set the clock source on the device
     * \param source the name of a clock source
     */
    virtual void setClockSource(const std::string &source);

    /*!
     * Get the clock source of the device
     * \return the name of a clock source
     */
    virtual std::string getClockSource(void) const;

    /*******************************************************************
     * Time API
     ******************************************************************/

    /*!
     * Get the list of available time sources.
     * \return a list of time source names
     */
    virtual std::vector<std::string> listTimeSources(void) const;

    /*!
     * Set the time source on the device
     * \param source the name of a time source
     */
    virtual void setTimeSource(const std::string &source);

    /*!
     * Get the time source of the device
     * \return the name of a time source
     */
    virtual std::string getTimeSource(void) const;

    /*!
     * Does this device have a hardware clock?
     * \param what optional argument
     * \return true if the hardware clock exists
     */
    virtual bool hasHardwareTime(const std::string &what = "") const;

    /*!
     * Read the time from the hardware clock on the device.
     * The what argument can refer to a specific time counter.
     * \param what optional argument
     * \return the time in nanoseconds
     */
    virtual long long getHardwareTime(const std::string &what = "") const;

    /*!
     * Write the time to the hardware clock on the device.
     * The what argument can refer to a specific time counter.
     * \param timeNs time in nanoseconds
     * \param what optional argument
     */
    virtual void setHardwareTime(const long long timeNs, const std::string &what = "");

    /*!
     * Set the time of subsequent configuration calls.
     * The what argument can refer to a specific command queue.
     * Implementations may use a time of 0 to clear.
     * \deprecated replaced by setHardwareTime()
     * \param timeNs time in nanoseconds
     * \param what optional argument
     */
    virtual void setCommandTime(const long long timeNs, const std::string &what = "");

    /*******************************************************************
     * Sensor API
     ******************************************************************/

    /*!
     * List the available global readback sensors.
     * A sensor can represent a reference lock, RSSI, temperature.
     * \return a list of available sensor string names
     */
    virtual std::vector<std::string> listSensors(void) const;

    /*!
     * Get meta-information about a sensor.
     * Example: displayable name, type, range.
     * \param key the ID name of an available sensor
     * \return meta-information about a sensor
     */
    virtual ArgInfo getSensorInfo(const std::string &key) const;

    /*!
     * Readback a global sensor given the name.
     * The value returned is a string which can represent
     * a boolean ("true"/"false"), an integer, or float.
     * \param key the ID name of an available sensor
     * \return the current value of the sensor
     */
    virtual std::string readSensor(const std::string &key) const;

    /*!
     * List the available channel readback sensors.
     * A sensor can represent a reference lock, RSSI, temperature.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of available sensor string names
     */
    virtual std::vector<std::string> listSensors(const int direction, const size_t channel) const;

    /*!
     * Get meta-information about a channel sensor.
     * Example: displayable name, type, range.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param key the ID name of an available sensor
     * \return meta-information about a sensor
     */
    virtual ArgInfo getSensorInfo(const int direction, const size_t channel, const std::string &key) const;

    /*!
     * Readback a channel sensor given the name.
     * The value returned is a string which can represent
     * a boolean ("true"/"false"), an integer, or float.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param key the ID name of an available sensor
     * \return the current value of the sensor
     */
    virtual std::string readSensor(const int direction, const size_t channel, const std::string &key) const;

    /*******************************************************************
     * Register API
     ******************************************************************/

    /*!
     * Get a list of available register interfaces by name.
     * \return a list of available register interfaces
     */
    virtual std::vector<std::string> listRegisterInterfaces(void) const;

    /*!
     * Write a register on the device given the interface name.
     * This can represent a register on a soft CPU, FPGA, IC;
     * the interpretation is up the implementation to decide.
     * \param name the name of a available register interface
     * \param addr the register address
     * \param value the register value
     */
    virtual void writeRegister(const std::string &name, const unsigned addr, const unsigned value);

    /*!
     * Read a register on the device given the interface name.
     * \param name the name of a available register interface
     * \param addr the register address
     * \return the register value
     */
    virtual unsigned readRegister(const std::string &name, const unsigned addr) const;

    /*!
     * Write a register on the device.
     * This can represent a register on a soft CPU, FPGA, IC;
     * the interpretation is up the implementation to decide.
     * \deprecated replaced by writeRegister(name)
     * \param addr the register address
     * \param value the register value
     */
    virtual void writeRegister(const unsigned addr, const unsigned value);

    /*!
     * Read a register on the device.
     * \deprecated replaced by readRegister(name)
     * \param addr the register address
     * \return the register value
     */
    virtual unsigned readRegister(const unsigned addr) const;

    /*!
     * Write a memory block on the device given the interface name.
     * This can represent a memory block on a soft CPU, FPGA, IC;
     * the interpretation is up the implementation to decide.
     * \param name the name of a available memory block interface
     * \param addr the memory block start address
     * \param value the memory block content
     */
    virtual void writeRegisters(const std::string &name, const unsigned addr, const std::vector<unsigned> &value);

    /*!
     * Read a memory block on the device given the interface name.
     * \param name the name of a available memory block interface
     * \param addr the memory block start address
     * \param length number of words to be read from memory block
     * \return the memory block content
     */
    virtual std::vector<unsigned> readRegisters(const std::string &name, const unsigned addr, const size_t length) const;

    /*******************************************************************
     * Settings API
     ******************************************************************/

    /*!
     * Describe the allowed keys and values used for settings.
     * \return a list of argument info structures
     */
    virtual ArgInfoList getSettingInfo(void) const;

    /*!
     * Write an arbitrary setting on the device.
     * The interpretation is up the implementation.
     * \param key the setting identifier
     * \param value the setting value
     */
    virtual void writeSetting(const std::string &key, const std::string &value);

    /*!
     * Read an arbitrary setting on the device.
     * \param key the setting identifier
     * \return the setting value
     */
    virtual std::string readSetting(const std::string &key) const;

    /*!
     * Describe the allowed keys and values used for channel settings.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \return a list of argument info structures
     */
    virtual ArgInfoList getSettingInfo(const int direction, const size_t channel) const;

    /*!
     * Write an arbitrary channel setting on the device.
     * The interpretation is up the implementation.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param key the setting identifier
     * \param value the setting value
     */
    virtual void writeSetting(const int direction, const size_t channel, const std::string &key, const std::string &value);

    /*!
     * Read an arbitrary channel setting on the device.
     * \param direction the channel direction RX or TX
     * \param channel an available channel on the device
     * \param key the setting identifier
     * \return the setting value
     */
    virtual std::string readSetting(const int direction, const size_t channel, const std::string &key) const;

    /*******************************************************************
     * GPIO API
     ******************************************************************/

    /*!
     * Get a list of available GPIO banks by name.
     */
    virtual std::vector<std::string> listGPIOBanks(void) const;

    /*!
     * Write the value of a GPIO bank.
     * \param bank the name of an available bank
     * \param value an integer representing GPIO bits
     */
    virtual void writeGPIO(const std::string &bank, const unsigned value);

    /*!
     * Write the value of a GPIO bank with modification mask.
     * \param bank the name of an available bank
     * \param value an integer representing GPIO bits
     * \param mask a modification mask where 1 = modify
     */
    virtual void writeGPIO(const std::string &bank, const unsigned value, const unsigned mask);

    /*!
     * Readback the value of a GPIO bank.
     * \param bank the name of an available bank
     * \return an integer representing GPIO bits
     */
    virtual unsigned readGPIO(const std::string &bank) const;

    /*!
     * Write the data direction of a GPIO bank.
     * 1 bits represent outputs, 0 bits represent inputs.
     * \param bank the name of an available bank
     * \param dir an integer representing data direction bits
     */
    virtual void writeGPIODir(const std::string &bank, const unsigned dir);

    /*!
     * Write the data direction of a GPIO bank with modification mask.
     * 1 bits represent outputs, 0 bits represent inputs.
     * \param bank the name of an available bank
     * \param dir an integer representing data direction bits
     * \param mask a modification mask where 1 = modify
     */
    virtual void writeGPIODir(const std::string &bank, const unsigned dir, const unsigned mask);

    /*!
     * Read the data direction of a GPIO bank.
     * 1 bits represent outputs, 0 bits represent inputs.
     * \param bank the name of an available bank
     * \return an integer representing data direction bits
     */
    virtual unsigned readGPIODir(const std::string &bank) const;

    /*******************************************************************
     * I2C API
     ******************************************************************/

    /*!
     * Write to an available I2C slave.
     * If the device contains multiple I2C masters,
     * the address bits can encode which master.
     * \param addr the address of the slave
     * \param data an array of bytes write out
     */
    virtual void writeI2C(const int addr, const std::string &data);

    /*!
     * Read from an available I2C slave.
     * If the device contains multiple I2C masters,
     * the address bits can encode which master.
     * \param addr the address of the slave
     * \param numBytes the number of bytes to read
     * \return an array of bytes read from the slave
     */
    virtual std::string readI2C(const int addr, const size_t numBytes);

    /*******************************************************************
     * SPI API
     ******************************************************************/

    /*!
     * Perform a SPI transaction and return the result.
     * Its up to the implementation to set the clock rate,
     * and read edge, and the write edge of the SPI core.
     * SPI slaves without a readback pin will return 0.
     *
     * If the device contains multiple SPI masters,
     * the address bits can encode which master.
     *
     * \param addr an address of an available SPI slave
     * \param data the SPI data, numBits-1 is first out
     * \param numBits the number of bits to clock out
     * \return the readback data, numBits-1 is first in
     */
    virtual unsigned transactSPI(const int addr, const unsigned data, const size_t numBits);

    /*******************************************************************
     * UART API
     ******************************************************************/

    /*!
     * Enumerate the available UART devices.
     * \return a list of names of available UARTs
     */
    virtual std::vector<std::string> listUARTs(void) const;

    /*!
     * Write data to a UART device.
     * Its up to the implementation to set the baud rate,
     * carriage return settings, flushing on newline.
     * \param which the name of an available UART
     * \param data an array of bytes to write out
     */
    virtual void writeUART(const std::string &which, const std::string &data);

    /*!
     * Read bytes from a UART until timeout or newline.
     * Its up to the implementation to set the baud rate,
     * carriage return settings, flushing on newline.
     * \param which the name of an available UART
     * \param timeoutUs a timeout in microseconds
     * \return an array of bytes read from the UART
     */
    virtual std::string readUART(const std::string &which, const long timeoutUs = 100000) const;

};

};