This file is indexed.

/usr/include/sopt/reweighted.h is in libsopt-dev 2.0.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#ifndef SOPT_REWEIGHTED_H
#define SOPT_REWEIGHTED_H

#include "sopt/linear_transform.h"
#include "sopt/types.h"

namespace sopt {
namespace algorithm {
template <class ALGORITHM> class Reweighted;

//! Factory function to create an l0-approximation by reweighting an l1 norm
template <class ALGORITHM>
Reweighted<ALGORITHM>
reweighted(ALGORITHM const &algo, typename Reweighted<ALGORITHM>::t_SetWeights const &set_weights,
           typename Reweighted<ALGORITHM>::t_Reweightee const &reweightee);

//! \brief L0-approximation algorithm, through reweighting
//! \details This algorithm approximates \f$min_x ||Ψ^Tx||_0 + f(x)\f$ by solving the set of
//! problems \f$j\f$, \f$min_x ||W_jΨ^Tx||_1 + f(x)\f$ where the *diagonal* matrix \f$W_j\f$ is set
//! using the results from \f$j-1\f$: \f$ δ_j W_j^{-1} = δ_j + ||W_{j-1}Ψ^T||_1\f$. \f$δ_j\f$
//! prevents division by zero. It is a series which converges to zero. By default,
//! \f$δ_{j+1}=0.1δ_j\f$.
//!
//! The algorithm proceeds needs three forms of input:
//! - the inner algorithm, e.g. ImagingProximalADMM
//! - a function returning Ψ^Tx given x
//! - a function to modify the inner algorithm with new weights
template <class ALGORITHM> class Reweighted {
public:
  //! Inner-loop algorithm
  typedef ALGORITHM Algorithm;
  //! Scalar type
  typedef typename Algorithm::Scalar Scalar;
  //! Real type
  typedef typename real_type<Scalar>::type Real;
  //! Weight vector type
  typedef Vector<Real> WeightVector;
  //! Type of then underlying vectors
  typedef typename Algorithm::t_Vector XVector;
  //! Type of the convergence function
  typedef typename Algorithm::t_IsConverged t_IsConverged;
  //! \brief Type of the function that is subject to reweighting
  //! \details E.g. \f$Ψ^Tx\f$. Note that l1-norm is not applied here.
  typedef std::function<XVector(Algorithm const &, XVector const &)> t_Reweightee;
  //! Type of the function to set weights
  typedef std::function<void(Algorithm &, WeightVector const &)> t_SetWeights;
  //! Function to update delta at each turn
  typedef std::function<Real(Real)> t_DeltaUpdate;

  //! output from running reweighting scheme
  struct ReweightedResult {
    //! Number of iterations (outer loop)
    t_uint niters;
    //! Wether convergence was achieved
    bool good;
    //! Weights at last iteration
    WeightVector weights;
    //! Result from last inner loop
    typename Algorithm::DiagnosticAndResult algo;
    //! Default construction
    ReweightedResult() : niters(0), good(false), weights(WeightVector::Ones(1)), algo() {}
  };

  Reweighted(Algorithm const &algo, t_SetWeights const &setweights, t_Reweightee const &reweightee)
      : algo_(algo), setweights_(setweights), reweightee_(reweightee),
        itermax_(std::numeric_limits<t_uint>::max()), min_delta_(0e0), is_converged_(),
        update_delta_([](Real delta) { return 1e-1 * delta; }) {}

  //! Underlying "inner-loop" algorithm
  Algorithm &algorithm() { return algo_; }
  //! Underlying "inner-loop" algorithm
  Algorithm const &algorithm() const { return algo_; }
  //! Sets the underlying "inner-loop" algorithm
  Reweighted<Algorithm> &algorithm(Algorithm const &algo) {
    algo_ = algo;
    return *this;
  }
  //! Sets the underlying "inner-loop" algorithm
  Reweighted<Algorithm> &algorithm(Algorithm &&algo) {
    algo_ = std::move(algo);
    return *this;
  }

  //! Function to reset the weights in the algorithm
  t_SetWeights const &set_weights() const { return setweights_; }
  //! Function to reset the weights in the algorithm
  Reweighted<Algorithm> &set_weights(t_SetWeights const &setweights) const {
    setweights_ = setweights;
    return *this;
  }
  //! Sets the weights on the underlying algorithm
  void set_weights(Algorithm &algo, WeightVector const &weights) const {
    return set_weights()(algo, weights);
  }

  //! Function that needs to be reweighted
  //! \details E.g. \f$Ψ^Tx\f$. Note that l1-norm is not applied here.
  Reweighted<Algorithm> &reweightee(t_Reweightee const &rw) {
    reweightee_ = rw;
    return *this;
  }
  //! Function that needs to be reweighted
  t_Reweightee const &reweightee() const { return reweightee_; }
  //! Forwards to the reweightee function
  XVector reweightee(XVector const &x) const { return reweightee()(algorithm(), x); }

  //! Maximum number of reweighted iterations
  t_uint itermax() const { return itermax_; }
  Reweighted &itermax(t_uint i) {
    itermax_ = i;
    return *this;
  }
  //! Lower limit for delta
  Real min_delta() const { return min_delta_; }
  Reweighted &min_delta(Real min_delta) {
    min_delta_ = min_delta;
    return *this;
  }
  //! Checks convergence of the reweighting scheme
  t_IsConverged const &is_converged() const { return is_converged_; }
  Reweighted &is_converged(t_IsConverged const &convergence) {
    is_converged_ = convergence;
    return *this;
  }
  bool is_converged(XVector const &x) const { return is_converged() ? is_converged()(x) : false; }

  //! \brief Performs reweighting
  //! \details This overload will compute an initial result without initial weights set to one.
  template <class INPUT>
  typename std::enable_if<not(std::is_same<INPUT, typename Algorithm::DiagnosticAndResult>::value
                              or std::is_same<INPUT, ReweightedResult>::value),
                          ReweightedResult>::type
  operator()(INPUT const &input) const;
  //! \brief Performs reweighting
  //! \details This overload will compute an initial result without initial weights set to one.
  ReweightedResult operator()() const;
  //! Reweighted algorithm, from prior call to inner-algorithm
  ReweightedResult operator()(typename Algorithm::DiagnosticAndResult const &warm) const;
  //! Reweighted algorithm, from prior call to reweighting algorithm
  ReweightedResult operator()(ReweightedResult const &warm) const;

  //! Updates delta
  Real update_delta(Real delta) const { return update_delta()(delta); }
  //! Updates delta
  t_DeltaUpdate const &update_delta() const { return update_delta_; }
  //! Updates delta
  Reweighted<Algorithm> update_delta(t_DeltaUpdate const &ud) const { return update_delta_ = ud; }

protected:
  //! Inner loop algorithm
  Algorithm algo_;
  //! Function to set weights
  t_SetWeights setweights_;
  //! \brief Function that is subject to reweighting
  //! \details E.g. \f$Ψ^Tx\f$. Note that l1-norm is not applied here.
  t_Reweightee reweightee_;
  //! Maximum number of reweighted iterations
  t_uint itermax_;
  //! \brief Lower limit for delta
  Real min_delta_;
  //! Checks convergence
  t_IsConverged is_converged_;
  //! Updates delta at each turn
  t_DeltaUpdate update_delta_;
};

template <class ALGORITHM>
template <class INPUT>
typename std::
    enable_if<not(std::is_same<INPUT, typename ALGORITHM::DiagnosticAndResult>::value
                  or std::is_same<INPUT, typename Reweighted<ALGORITHM>::ReweightedResult>::value),
              typename Reweighted<ALGORITHM>::ReweightedResult>::type
    Reweighted<ALGORITHM>::operator()(INPUT const &input) const {
  Algorithm algo = algorithm();
  set_weights(algo, WeightVector::Ones(1));
  return operator()(algo(input));
}

template <class ALGORITHM>
typename Reweighted<ALGORITHM>::ReweightedResult Reweighted<ALGORITHM>::operator()() const {
  Algorithm algo = algorithm();
  set_weights(algo, WeightVector::Ones(1));
  return operator()(algo());
}

template <class ALGORITHM>
typename Reweighted<ALGORITHM>::ReweightedResult Reweighted<ALGORITHM>::
operator()(typename Algorithm::DiagnosticAndResult const &warm) const {
  ReweightedResult result;
  result.algo = warm;
  result.weights = WeightVector::Ones(1);
  return operator()(result);
}

template <class ALGORITHM>
typename Reweighted<ALGORITHM>::ReweightedResult Reweighted<ALGORITHM>::
operator()(ReweightedResult const &warm) const {
  SOPT_HIGH_LOG("Starting reweighted scheme");
  // Copies inner algorithm, so that operator() can be constant
  Algorithm algo(algorithm());
  ReweightedResult result(warm);

  auto delta = std::max(standard_deviation(reweightee(warm.algo.x)), min_delta());
  SOPT_LOW_LOG("-   Initial delta: {}", delta);
  for(result.niters = 0; result.niters < itermax(); ++result.niters) {
    SOPT_LOW_LOG("Reweigting iteration {}/{} ", result.niters, itermax());
    SOPT_LOW_LOG("  - delta: {}", delta);
    result.weights = delta / (delta + reweightee(result.algo.x).array().abs());
    set_weights(algo, result.weights);
    result.algo = algo(result.algo);
    if(is_converged(result.algo.x)) {
      SOPT_MEDIUM_LOG("Reweighting scheme did converge in {} iterations", result.niters);
      result.good = true;
      break;
    }
    delta = std::max(min_delta(), update_delta(delta));
  }
  // result is always good if no convergence function is defined
  if(not is_converged())
    result.good = true;
  else if(not result.good)
    SOPT_ERROR("Reweighting scheme did *not* converge in {} iterations", itermax());
  return result;
}

//! Factory function to create an l0-approximation by reweighting an l1 norm
template <class ALGORITHM>
Reweighted<ALGORITHM>
reweighted(ALGORITHM const &algo, typename Reweighted<ALGORITHM>::t_SetWeights const &set_weights,
           typename Reweighted<ALGORITHM>::t_Reweightee const &reweightee) {
  return {algo, set_weights, reweightee};
}

template <class SCALAR> class ImagingProximalADMM;
template <class ALGORITHM> class PositiveQuadrant;
template <class T>
Eigen::CwiseUnaryOp<const details::ProjectPositiveQuadrant<typename T::Scalar>, const T>
positive_quadrant(Eigen::DenseBase<T> const &input);

template <class SCALAR>
Reweighted<PositiveQuadrant<ImagingProximalADMM<SCALAR>>>
reweighted(ImagingProximalADMM<SCALAR> const &algo) {

  auto const posq = positive_quadrant(algo);
  typedef typename std::remove_const<decltype(posq)>::type Algorithm;
  typedef Reweighted<Algorithm> RW;
  auto const reweightee
      = [](Algorithm const &posq, typename RW::XVector const &x) -> typename RW::XVector {
    return posq.algorithm().Psi().adjoint() * x;
  };
  auto const set_weights = [](Algorithm &posq, typename RW::WeightVector const &weights) -> void {
    posq.algorithm().l1_proximal_weights(weights);
  };
  return {posq, set_weights, reweightee};
}
} // namespace algorithm
} // namespace sopt
#endif