/usr/include/io_lib/thread_pool.h is in libstaden-read-dev 1.14.9-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | /*
* Copyright (c) 2013 Genome Research Ltd.
* Author(s): James Bonfield
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* 3. Neither the names Genome Research Ltd and Wellcome Trust Sanger
* Institute nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENOME RESEARCH LTD AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENOME RESEARCH
* LTD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Author: James Bonfield, Wellcome Trust Sanger Institute. 2013
*
* This file implements a thread pool for multi-threading applications.
* It consists of two distinct interfaces: thread pools an results queues.
*
* The pool of threads is given a function pointer and void* data to pass in.
* This means the pool can run jobs of multiple types, albeit first come
* first served with no job scheduling.
*
* Upon completion, the return value from the function pointer is added to
* a results queue. We may have multiple queues in use for the one pool.
*
* An example: reading from BAM and writing to CRAM with 10 threads. We'll
* have a pool of 10 threads and two results queues holding decoded BAM blocks
* and encoded CRAM blocks respectively.
*/
#ifndef _THREAD_POOL_H_
#define _THREAD_POOL_H_
#include <pthread.h>
struct t_pool;
struct t_results_queue;
typedef struct t_pool_job {
void *(*func)(void *arg);
void *arg;
struct t_pool_job *next;
struct t_pool *p;
struct t_results_queue *q;
int serial;
} t_pool_job;
typedef struct t_res {
struct t_res *next;
int serial; // sequential number for ordering
void *data; // result itself
} t_pool_result;
struct t_pool;
typedef struct {
struct t_pool *p;
int idx;
pthread_t tid;
pthread_cond_t pending_c;
long long wait_time;
} t_pool_worker_t;
typedef struct t_pool {
int qsize; // size of queue
int njobs; // pending job count
int nwaiting; // how many workers waiting for new jobs
int shutdown; // true if pool is being destroyed
// queue of pending jobs
t_pool_job *head, *tail;
// threads
int tsize; // maximum number of jobs
t_pool_worker_t *t;
// Mutexes
pthread_mutex_t pool_m; // used when updating head/tail
pthread_cond_t empty_c;
pthread_cond_t pending_c; // not empty
pthread_cond_t full_c;
// array of worker IDs free
int *t_stack, t_stack_top;
// Debugging to check wait time
long long total_time, wait_time;
} t_pool;
typedef struct t_results_queue {
t_pool_result *result_head;
t_pool_result *result_tail;
int next_serial;
int curr_serial;
int queue_len; // number of items in queue
int pending; // number of pending items (in progress or in pool list)
pthread_mutex_t result_m;
pthread_cond_t result_avail_c;
} t_results_queue;
/*
* Creates a worker pool of length qsize with tsize worker threads.
*
* Returns pool pointer on success;
* NULL on failure
*/
t_pool *t_pool_init(int qsize, int tsize);
/*
* Adds an item to the work pool.
*
* FIXME: Maybe return 1,0,-1 and distinguish between job dispathed vs
* result returned. Ie rather than blocking on full queue we're permitted
* to return early on "result available" event too.
* Caller would then have a while loop around t_pool_dispatch.
* Or, return -1 and set errno to E_AGAIN to indicate job not yet submitted.
*
* Returns 0 on success
* -1 on failure
*/
int t_pool_dispatch(t_pool *p, t_results_queue *q,
void *(*func)(void *arg), void *arg);
int t_pool_dispatch2(t_pool *p, t_results_queue *q,
void *(*func)(void *arg), void *arg, int nonblock);
/*
* Flushes the pool, but doesn't exit. This simply drains the queue and
* ensures all worker threads have finished their current task.
*
* Returns 0 on success;
* -1 on failure
*/
int t_pool_flush(t_pool *p);
/*
* Destroys a thread pool. If 'kill' is true the threads are terminated now,
* otherwise they are joined into the main thread so they will finish their
* current work load.
*
* Use t_pool_destroy(p,0) after a t_pool_flush(p) on a normal shutdown or
* t_pool_destroy(p,1) to quickly exit after a fatal error.
*/
void t_pool_destroy(t_pool *p, int kill);
/*
* Pulls a result off the head of the result queue. Caller should
* free it (and any internals as appropriate) after use. This doesn't
* wait for a result to be present.
*
* Results will be returned in strict order.
*
* Returns t_pool_result pointer if a result is ready.
* NULL if not.
*/
t_pool_result *t_pool_next_result(t_results_queue *q);
t_pool_result *t_pool_next_result_wait(t_results_queue *q);
/*
* Frees a result 'r' and if free_data is true also frees
* the internal r->data result too.
*/
void t_pool_delete_result(t_pool_result *r, int free_data);
/*
* Initialises a results queue.
*
* Results queue pointer on success;
* NULL on failure
*/
t_results_queue *t_results_queue_init(void);
/* Deallocates memory for a results queue */
void t_results_queue_destroy(t_results_queue *q);
/*
* Returns true if there are no items on the finished results queue and
* also none still pending.
*/
int t_pool_results_queue_empty(t_results_queue *q);
/*
* Returns the number of completed jobs on the results queue.
*/
int t_pool_results_queue_len(t_results_queue *q);
/*
* Returns the number of completed jobs plus the number queued up to run.
*/
int t_pool_results_queue_sz(t_results_queue *q);
#endif /* _THREAD_POOL_H_ */
|