/usr/include/stk/Iir.h is in libstk0-dev 4.5.2+dfsg-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | #ifndef STK_IIR_H
#define STK_IIR_H
#include "Filter.h"
namespace stk {
/***************************************************/
/*! \class Iir
\brief STK general infinite impulse response filter class.
This class provides a generic digital filter structure that can be
used to implement IIR filters. For filters containing only
feedforward terms, the Fir class is slightly more efficient.
In particular, this class implements the standard difference
equation:
a[0]*y[n] = b[0]*x[n] + ... + b[nb]*x[n-nb] -
a[1]*y[n-1] - ... - a[na]*y[n-na]
If a[0] is not equal to 1, the filter coeffcients are normalized
by a[0].
The \e gain parameter is applied at the filter input and does not
affect the coefficient values. The default gain value is 1.0.
This structure results in one extra multiply per computed sample,
but allows easy control of the overall filter gain.
by Perry R. Cook and Gary P. Scavone, 1995--2014.
*/
/***************************************************/
class Iir : public Filter
{
public:
//! Default constructor creates a zero-order pass-through "filter".
Iir( void );
//! Overloaded constructor which takes filter coefficients.
/*!
An StkError can be thrown if either of the coefficient vector
sizes is zero, or if the a[0] coefficient is equal to zero.
*/
Iir( std::vector<StkFloat> &bCoefficients, std::vector<StkFloat> &aCoefficients );
//! Class destructor.
~Iir( void );
//! Set filter coefficients.
/*!
An StkError can be thrown if either of the coefficient vector
sizes is zero, or if the a[0] coefficient is equal to zero. If
a[0] is not equal to 1, the filter coeffcients are normalized by
a[0]. The internal state of the filter is not cleared unless the
\e clearState flag is \c true.
*/
void setCoefficients( std::vector<StkFloat> &bCoefficients, std::vector<StkFloat> &aCoefficients, bool clearState = false );
//! Set numerator coefficients.
/*!
An StkError can be thrown if coefficient vector is empty. Any
previously set denominator coefficients are left unaffected. Note
that the default constructor sets the single denominator
coefficient a[0] to 1.0. The internal state of the filter is not
cleared unless the \e clearState flag is \c true.
*/
void setNumerator( std::vector<StkFloat> &bCoefficients, bool clearState = false );
//! Set denominator coefficients.
/*!
An StkError can be thrown if the coefficient vector is empty or
if the a[0] coefficient is equal to zero. Previously set
numerator coefficients are unaffected unless a[0] is not equal to
1, in which case all coeffcients are normalized by a[0]. Note
that the default constructor sets the single numerator coefficient
b[0] to 1.0. The internal state of the filter is not cleared
unless the \e clearState flag is \c true.
*/
void setDenominator( std::vector<StkFloat> &aCoefficients, bool clearState = false );
//! Return the last computed output value.
StkFloat lastOut( void ) const { return lastFrame_[0]; };
//! Input one sample to the filter and return one output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
};
inline StkFloat Iir :: tick( StkFloat input )
{
size_t i;
outputs_[0] = 0.0;
inputs_[0] = gain_ * input;
for ( i=b_.size()-1; i>0; i-- ) {
outputs_[0] += b_[i] * inputs_[i];
inputs_[i] = inputs_[i-1];
}
outputs_[0] += b_[0] * inputs_[0];
for ( i=a_.size()-1; i>0; i-- ) {
outputs_[0] += -a_[i] * outputs_[i];
outputs_[i] = outputs_[i-1];
}
lastFrame_[0] = outputs_[0];
return lastFrame_[0];
}
inline StkFrames& Iir :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "Iir::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
size_t i;
unsigned int hop = frames.channels();
for ( unsigned int j=0; j<frames.frames(); j++, samples += hop ) {
outputs_[0] = 0.0;
inputs_[0] = gain_ * *samples;
for ( i=b_.size()-1; i>0; i-- ) {
outputs_[0] += b_[i] * inputs_[i];
inputs_[i] = inputs_[i-1];
}
outputs_[0] += b_[0] * inputs_[0];
for ( i=a_.size()-1; i>0; i-- ) {
outputs_[0] += -a_[i] * outputs_[i];
outputs_[i] = outputs_[i-1];
}
*samples = outputs_[0];
}
lastFrame_[0] = *(samples-hop);
return frames;
}
inline StkFrames& Iir :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "Iir::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
size_t i;
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int j=0; j<iFrames.frames(); j++, iSamples += iHop, oSamples += oHop ) {
outputs_[0] = 0.0;
inputs_[0] = gain_ * *iSamples;
for ( i=b_.size()-1; i>0; i-- ) {
outputs_[0] += b_[i] * inputs_[i];
inputs_[i] = inputs_[i-1];
}
outputs_[0] += b_[0] * inputs_[0];
for ( i=a_.size()-1; i>0; i-- ) {
outputs_[0] += -a_[i] * outputs_[i];
outputs_[i] = outputs_[i-1];
}
*oSamples = outputs_[0];
}
lastFrame_[0] = *(oSamples-oHop);
return iFrames;
}
} // stk namespace
#endif
|