/usr/include/stk/ReedTable.h is in libstk0-dev 4.5.2+dfsg-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | #ifndef STK_REEDTABLE_H
#define STK_REEDTABLE_H
#include "Function.h"
namespace stk {
/***************************************************/
/*! \class ReedTable
\brief STK reed table class.
This class implements a simple one breakpoint,
non-linear reed function, as described by
Smith (1986). This function is based on a
memoryless non-linear spring model of the reed
(the reed mass is ignored) which saturates when
the reed collides with the mouthpiece facing.
See McIntyre, Schumacher, & Woodhouse (1983),
Smith (1986), Hirschman, Cook, Scavone, and
others for more information.
by Perry R. Cook and Gary P. Scavone, 1995--2014.
*/
/***************************************************/
class ReedTable : public Function
{
public:
//! Default constructor.
ReedTable( void ) : offset_(0.6), slope_(-0.8) {};
//! Set the table offset value.
/*!
The table offset roughly corresponds to the size
of the initial reed tip opening (a greater offset
represents a smaller opening).
*/
void setOffset( StkFloat offset ) { offset_ = offset; };
//! Set the table slope value.
/*!
The table slope roughly corresponds to the reed
stiffness (a greater slope represents a harder
reed).
*/
void setSlope( StkFloat slope ) { slope_ = slope; };
//! Take one sample input and map to one sample of output.
StkFloat tick( StkFloat input );
//! Take a channel of the StkFrames object as inputs to the table and replace with corresponding outputs.
/*!
The StkFrames argument reference is returned. The \c channel
argument must be less than the number of channels in the
StkFrames argument (the first channel is specified by 0).
However, range checking is only performed if _STK_DEBUG_ is
defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
//! Take a channel of the \c iFrames object as inputs to the table and write outputs to the \c oFrames object.
/*!
The \c iFrames object reference is returned. Each channel
argument must be less than the number of channels in the
corresponding StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
protected:
StkFloat offset_;
StkFloat slope_;
};
inline StkFloat ReedTable :: tick( StkFloat input )
{
// The input is differential pressure across the reed.
lastFrame_[0] = offset_ + (slope_ * input);
// If output is > 1, the reed has slammed shut and the
// reflection function value saturates at 1.0.
if ( lastFrame_[0] > 1.0) lastFrame_[0] = (StkFloat) 1.0;
// This is nearly impossible in a physical system, but
// a reflection function value of -1.0 corresponds to
// an open end (and no discontinuity in bore profile).
if ( lastFrame_[0] < -1.0) lastFrame_[0] = (StkFloat) -1.0;
return lastFrame_[0];
}
inline StkFrames& ReedTable :: tick( StkFrames& frames, unsigned int channel )
{
#if defined(_STK_DEBUG_)
if ( channel >= frames.channels() ) {
oStream_ << "ReedTable::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int hop = frames.channels();
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
*samples = offset_ + (slope_ * *samples);
if ( *samples > 1.0) *samples = 1.0;
if ( *samples < -1.0) *samples = -1.0;
}
lastFrame_[0] = *(samples-hop);
return frames;
}
inline StkFrames& ReedTable :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
{
#if defined(_STK_DEBUG_)
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
oStream_ << "ReedTable::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *iSamples = &iFrames[iChannel];
StkFloat *oSamples = &oFrames[oChannel];
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
*oSamples = offset_ + (slope_ * *iSamples);
if ( *oSamples > 1.0) *oSamples = 1.0;
if ( *oSamples < -1.0) *oSamples = -1.0;
}
lastFrame_[0] = *(oSamples-oHop);
return iFrames;
}
} // stk namespace
#endif
|