/usr/include/stk/Shakers.h is in libstk0-dev 4.5.2+dfsg-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | #ifndef STK_SHAKERS_H
#define STK_SHAKERS_H
#include "Instrmnt.h"
#include <cmath>
#include <stdlib.h>
namespace stk {
/***************************************************/
/*! \class Shakers
\brief PhISEM and PhOLIES class.
PhISEM (Physically Informed Stochastic Event Modeling) is an
algorithmic approach for simulating collisions of multiple
independent sound producing objects. This class is a meta-model
that can simulate a Maraca, Sekere, Cabasa, Bamboo Wind Chimes,
Water Drops, Tambourine, Sleighbells, and a Guiro.
PhOLIES (Physically-Oriented Library of Imitated Environmental
Sounds) is a similar approach for the synthesis of environmental
sounds. This class implements simulations of breaking sticks,
crunchy snow (or not), a wrench, sandpaper, and more.
Control Change Numbers:
- Shake Energy = 2
- System Decay = 4
- Number Of Objects = 11
- Resonance Frequency = 1
- Shake Energy = 128
- Instrument Selection = 1071
- Maraca = 0
- Cabasa = 1
- Sekere = 2
- Tambourine = 3
- Sleigh Bells = 4
- Bamboo Chimes = 5
- Sand Paper = 6
- Coke Can = 7
- Sticks = 8
- Crunch = 9
- Big Rocks = 10
- Little Rocks = 11
- Next Mug = 12
- Penny + Mug = 13
- Nickle + Mug = 14
- Dime + Mug = 15
- Quarter + Mug = 16
- Franc + Mug = 17
- Peso + Mug = 18
- Guiro = 19
- Wrench = 20
- Water Drops = 21
- Tuned Bamboo Chimes = 22
by Perry R. Cook with updates by Gary Scavone, 1995--2014.
*/
/***************************************************/
class Shakers : public Instrmnt
{
public:
//! Class constructor taking instrument type argument.
Shakers( int type = 0 );
//! Start a note with the given instrument and amplitude.
/*!
Use the instrument numbers above, converted to frequency values
as if MIDI note numbers, to select a particular instrument.
*/
void noteOn( StkFloat instrument, StkFloat amplitude );
//! Stop a note with the given amplitude (speed of decay).
void noteOff( StkFloat amplitude );
//! Perform the control change specified by \e number and \e value (0.0 - 128.0).
void controlChange( int number, StkFloat value );
//! Compute and return one output sample.
StkFloat tick( unsigned int channel = 0 );
//! Fill a channel of the StkFrames object with computed outputs.
/*!
The \c channel argument must be less than the number of
channels in the StkFrames argument (the first channel is specified
by 0). However, range checking is only performed if _STK_DEBUG_
is defined during compilation, in which case an out-of-range value
will trigger an StkError exception.
*/
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
struct BiQuad {
StkFloat gain;
StkFloat b[3];
StkFloat a[3]; // a0 term assumed equal to 1.0
StkFloat inputs[3];
StkFloat outputs[3];
// Default constructor.
BiQuad()
{
gain = 0.0;
for ( int i=0; i<3; i++ ) {
b[i] = 0.0;
a[i] = 0.0;
inputs[i] = 0.0;
outputs[i] = 0.0;
}
}
};
protected:
void setType( int type );
void setResonance( BiQuad &filter, StkFloat frequency, StkFloat radius );
StkFloat tickResonance( BiQuad &filter, StkFloat input );
void setEqualization( StkFloat b0, StkFloat b1, StkFloat b2 );
StkFloat tickEqualize( StkFloat input );
int randomInt( int max );
StkFloat randomFloat( StkFloat max = 1.0 );
StkFloat noise( void );
void waterDrop( void );
int shakerType_;
unsigned int nResonances_;
StkFloat shakeEnergy_;
StkFloat soundDecay_;
StkFloat systemDecay_;
StkFloat nObjects_;
StkFloat sndLevel_;
StkFloat baseGain_;
StkFloat currentGain_;
StkFloat baseDecay_;
StkFloat baseObjects_;
StkFloat decayScale_;
BiQuad equalizer_;
StkFloat ratchetCount_;
StkFloat ratchetDelta_;
StkFloat baseRatchetDelta_;
int lastRatchetValue_;
std::vector< BiQuad > filters_;
std::vector< StkFloat > baseFrequencies_;
std::vector< StkFloat > baseRadii_;
std::vector< bool > doVaryFrequency_;
std::vector< StkFloat > tempFrequencies_;
StkFloat varyFactor_;
};
inline void Shakers :: setResonance( BiQuad &filter, StkFloat frequency, StkFloat radius )
{
filter.a[1] = -2.0 * radius * cos( TWO_PI * frequency / Stk::sampleRate());
filter.a[2] = radius * radius;
}
inline StkFloat Shakers :: tickResonance( BiQuad &filter, StkFloat input )
{
filter.outputs[0] = input * filter.gain * currentGain_;
filter.outputs[0] -= filter.a[1] * filter.outputs[1] + filter.a[2] * filter.outputs[2];
filter.outputs[2] = filter.outputs[1];
filter.outputs[1] = filter.outputs[0];
return filter.outputs[0];
}
inline void Shakers :: setEqualization( StkFloat b0, StkFloat b1, StkFloat b2 )
{
equalizer_.b[0] = b0;
equalizer_.b[1] = b1;
equalizer_.b[2] = b2;
}
inline StkFloat Shakers :: tickEqualize( StkFloat input )
{
equalizer_.inputs[0] = input;
equalizer_.outputs[0] = equalizer_.b[0] * equalizer_.inputs[0] + equalizer_.b[1] * equalizer_.inputs[1] + equalizer_.b[2] * equalizer_.inputs[2];
equalizer_.inputs[2] = equalizer_.inputs[1];
equalizer_.inputs[1] = equalizer_.inputs[0];
return equalizer_.outputs[0];
}
inline int Shakers :: randomInt( int max ) // Return random integer between 0 and max-1
{
return (int) ((float)max * rand() / (RAND_MAX + 1.0) );
}
inline StkFloat Shakers :: randomFloat( StkFloat max ) // Return random float between 0.0 and max
{
return (StkFloat) (max * rand() / (RAND_MAX + 1.0) );
}
inline StkFloat Shakers :: noise( void ) // Return random StkFloat float between -1.0 and 1.0
{
return ( (StkFloat) ( 2.0 * rand() / (RAND_MAX + 1.0) ) - 1.0 );
}
const StkFloat MIN_ENERGY = 0.001;
const StkFloat WATER_FREQ_SWEEP = 1.0001;
inline void Shakers :: waterDrop( void )
{
if ( randomInt( 32767 ) < nObjects_) {
sndLevel_ = shakeEnergy_;
unsigned int j = randomInt( 3 );
if ( j == 0 && filters_[0].gain == 0.0 ) { // don't change unless fully decayed
tempFrequencies_[0] = baseFrequencies_[1] * (0.75 + (0.25 * noise()));
filters_[0].gain = fabs( noise() );
}
else if (j == 1 && filters_[1].gain == 0.0) {
tempFrequencies_[1] = baseFrequencies_[1] * (1.0 + (0.25 * noise()));
filters_[1].gain = fabs( noise() );
}
else if ( filters_[2].gain == 0.0 ) {
tempFrequencies_[2] = baseFrequencies_[1] * (1.25 + (0.25 * noise()));
filters_[2].gain = fabs( noise() );
}
}
// Sweep center frequencies.
for ( unsigned int i=0; i<3; i++ ) { // WATER_RESONANCES = 3
filters_[i].gain *= baseRadii_[i];
if ( filters_[i].gain > 0.001 ) {
tempFrequencies_[i] *= WATER_FREQ_SWEEP;
filters_[i].a[1] = -2.0 * baseRadii_[i] * cos( TWO_PI * tempFrequencies_[i] / Stk::sampleRate() );
}
else
filters_[i].gain = 0.0;
}
}
inline StkFloat Shakers :: tick( unsigned int )
{
unsigned int iTube = 0;
StkFloat input = 0.0;
if ( shakerType_ == 19 || shakerType_ == 20 ) {
if ( ratchetCount_ <= 0 ) return lastFrame_[0] = 0.0;
shakeEnergy_ -= ( ratchetDelta_ + ( 0.002 * shakeEnergy_ ) );
if ( shakeEnergy_ < 0.0 ) {
shakeEnergy_ = 1.0;
ratchetCount_--;
}
if ( randomFloat( 1024 ) < nObjects_ )
sndLevel_ += shakeEnergy_ * shakeEnergy_;
// Sound is enveloped noise
input = sndLevel_ * noise() * shakeEnergy_;
}
else {
if ( shakeEnergy_ < MIN_ENERGY ) return lastFrame_[0] = 0.0;
// Exponential system decay
shakeEnergy_ *= systemDecay_;
// Random events
if ( shakerType_ == 21 ) {
waterDrop();
input = sndLevel_;
}
else {
if ( randomFloat( 1024.0 ) < nObjects_ ) {
sndLevel_ += shakeEnergy_;
input = sndLevel_;
// Vary resonance frequencies if specified.
for ( unsigned int i=0; i<nResonances_; i++ ) {
if ( doVaryFrequency_[i] ) {
StkFloat tempRand = baseFrequencies_[i] * ( 1.0 + ( varyFactor_ * noise() ) );
filters_[i].a[1] = -2.0 * baseRadii_[i] * cos( TWO_PI * tempRand / Stk::sampleRate() );
}
}
if ( shakerType_ == 22 ) iTube = randomInt( 7 ); // ANGKLUNG_RESONANCES
}
}
}
// Exponential sound decay
sndLevel_ *= soundDecay_;
// Do resonance filtering
lastFrame_[0] = 0.0;
if ( shakerType_ == 22 ) {
for ( unsigned int i=0; i<nResonances_; i++ ) {
if ( i == iTube )
lastFrame_[0] += tickResonance( filters_[i], input );
else
lastFrame_[0] += tickResonance( filters_[i], 0.0 );
}
}
else {
for ( unsigned int i=0; i<nResonances_; i++ )
lastFrame_[0] += tickResonance( filters_[i], input );
}
// Do final FIR filtering (lowpass or highpass)
lastFrame_[0] = tickEqualize( lastFrame_[0] );
//if ( std::abs(lastFrame_[0]) > 1.0 )
// std::cout << "lastOutput = " << lastFrame_[0] << std::endl;
return lastFrame_[0];
}
inline StkFrames& Shakers :: tick( StkFrames& frames, unsigned int channel )
{
unsigned int nChannels = lastFrame_.channels();
#if defined(_STK_DEBUG_)
if ( channel > frames.channels() - nChannels ) {
oStream_ << "Shakers::tick(): channel and StkFrames arguments are incompatible!";
handleError( StkError::FUNCTION_ARGUMENT );
}
#endif
StkFloat *samples = &frames[channel];
unsigned int j, hop = frames.channels() - nChannels;
if ( nChannels == 1 ) {
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop )
*samples++ = tick();
}
else {
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
*samples++ = tick();
for ( j=1; j<nChannels; j++ )
*samples++ = lastFrame_[j];
}
}
return frames;
}
} // stk namespace
#endif
|