This file is indexed.

/usr/include/terralib/stat/TeKernelFunctions.h is in libterralib-dev 4.3.0+dfsg.2-11.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/************************************************************************************
Exploring and analysis of geographical data using TerraLib and TerraView
Copyright � 2003-2007 INPE and LESTE/UFMG.

Partially funded by CNPq - Project SAUDAVEL, under grant no. 552044/2002-4,
SENASP-MJ and INPE

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This program is distributed hoping it will be useful, however, WITHOUT ANY 
WARRANTIES; neither to the implicit warranty of MERCHANTABILITY OR SUITABILITY FOR
AN SPECIFIC FINALITY. Consult the GNU General Public License for more details.

You must have received a copy of the GNU General Public License with this program.
In negative case, write to the Free Software Foundation, Inc. in the following
address: 59 Temple Street, Suite 330, Boston, MA 02111-1307 USA.
***********************************************************************************/
/*! \file TeKernelFunctions.h
    \brief This file contains functions to spatial kernel estimation: basic, adaptive and ratio 
*/

#ifndef __TERRALIB_INTERNAL_KERNELFUNCTIONS_H
#define __TERRALIB_INTERNAL_KERNELFUNCTIONS_H

#include "TeException.h"
#include "TeKernelParams.h"
#include "TeStatDefines.h"
#include "TeGeometryAlgorithms.h"
#include "TeProgress.h"


#define   INVALID_KERNEL -TeMAXFLOAT

#define IDX_ATTR            0
#define IDX_KERNEL          0
#define IDX_NUMERATOR       1
#define IDX_KERNEL1         0
#define IDX_KERNEL2         1

enum TeKernelError {
 KERNEL_NO_CENTROID,
   KERNEL_ALL_NULL,
   KERNEL_INVALID_AREA,
   KERNEL_INVALID_VALUE,
   KERNEL_NO_VALUE
};

class STAT_DLL TeKernelException  {

  TeKernelError error_;

public:

  TeKernelException(TeKernelError e) {
    error_ = e;
  }

  TeKernelError getErrorCode() {
    return error_;
  }
};



/*! Kernel functions 

 * \param tau spatial threshold to define neighboorhood
 * \param distance distance between event and region centroid
 * \param intensity attribute value for event
*/
STAT_DLL double TeKernelQuartic(double tau, double distance, double intensity);
STAT_DLL double TeKernelNormal(double tau, double distance, double intensity);
STAT_DLL double TeKernelUniform(double tau, double distance, double intensity);
STAT_DLL double TeKernelTriangular(double tau, double distance, double intensity);
STAT_DLL double TeKernelNegExponential(double tau, double distance, double intensity);


/**
 * Calcula a media geometrica de um conjunto de valores atraves da 
 * utilizacao de logaritmos
 * Implementado pelo Andre
 **/
template <typename ItReg>
double TeKernelGeometricMean(ItReg& beginReg, ItReg& endReg, int idx)
{
   double mantissa, MediaE, MediaM;
   int expoente, Cont;
   int MediaETmp = 0;
   double MediaMTmp = 0;

   double log_two = log(2.0);
   Cont = 0;
   ItReg it = beginReg;
   double val;
   while (it != endReg) {  
         if ((*it).getDoubleProperty(idx, val) && (val > 0))
         {
            mantissa = frexp(val,&expoente);
            MediaMTmp = MediaMTmp+log(mantissa);
            MediaETmp = MediaETmp+expoente;
            Cont++;
         }
         ++it;
   }

   MediaE = MediaETmp;
   MediaM = (MediaMTmp+(MediaE*log_two))/Cont;
   MediaM = exp(MediaM);

   return MediaM;
}



/*! \brief Evaluates normalization factor for kernel
 * \param begin begin of event set iterator
 * \param end   end of event set iterator
 * \return sum of intensities
 **/
template <typename ItEvt>
double KernelNormalizationFactor(ItEvt itBegin, ItEvt itEnd) {

  double normFactor = 0;
  double intensity;

  ItEvt evtIter = itBegin;

   while (evtIter != itEnd) {

     (*evtIter).getDoubleProperty(IDX_ATTR, intensity);
     normFactor += intensity;
      ++evtIter;
    }

  return normFactor;

}


/*! \brief Evaluates kernel value of events with intensity (attribute)
 * for one support region, for a kernel function
 * \param center support region centroid
 * \param begin  begin of event set iterator
 * \param end    end of event set iterator
 * \param radius spatial threshold
 * \param kfunc  type of kernel function
 * This function assumes that intensity value of event is available on its first
 * property - if it does not exist, it is set to 1.0 (identity)
 **/
template <typename ItEvt>
double TeKernelValue (TeCoord2D& center, ItEvt& begin, ItEvt& end, 
					  double radius, TeKernelFunctionType kfunc)
{

  string    intstr;

	TeCoord2D location;		//Event spatial location
  double    intensity;	//Event intensity

  //Final kernel value
	double kernel = 0; 

  //Iterates through events, getting their location and intensity values
  //and updating kernel value
	ItEvt it = begin;
	while (it != end) 
	{
		(*it).centroid(location);

		//If there is no properties, assume intensity of one
	    if (!(*it).getDoubleProperty(IDX_ATTR, intensity)) {
				intensity = 1.0;
		}

		//Evaluates kernel value for one event
		double distance = TeDistance (location,center);
		double localK;

		switch(kfunc) {
		case TeKQuartic:
			localK = TeKernelQuartic(radius,distance,intensity);
			break;
		case TeKNormal:
			localK = TeKernelNormal(radius,distance,intensity);
			break;
		case TeKTriangular:
			localK = TeKernelTriangular(radius,distance,intensity);
			break;
		case TeKNegExponential:
			localK = TeKernelNegExponential(radius,distance,intensity);
			break;
		case TeKUniform:
			localK = TeKernelUniform(radius,distance,intensity);
			break;
		}
		kernel += localK; 
	    ++it;

	}
	return kernel;
}

/*! \brief Normalizes kernel values based on type of computation. 
 *  \brief Gets value from IDX_KERNEL and stores it at the same place 
 * \param events set of spatial events
 * \param regionsBegin begin of regions iterator
 * \param reginsEnd end of region iterator
 * \param kfunc type of kernel function
 * \param ktype type of computation (SMA, density or probability)
 * \param radius spatial threshold
 **/
template<typename EventSet, typename ItRegionSet>
bool TeKernelNormalize(EventSet& events, 
                   ItRegionSet& regionsBegin,
                   ItRegionSet& regionsEnd,
                   TeKernelComputeType  kType,
                   double totKernel,
                   int idxProp)
{

  double normKernel, kernel, area;
  try {

  //Evaluates sum of attributes for normalization
    double normFactor = 
      KernelNormalizationFactor(events.begin(), events.end());

    //Reiterates through regions defining normalized kernel value,
    //given the computation type
    ItRegionSet regIter = regionsBegin;
    while (regIter != regionsEnd) 
    {
      
      (*regIter).getDoubleProperty(idxProp, kernel);
      if (kernel < 0) {
         throw TeKernelException(KERNEL_INVALID_VALUE);
      }

      //Evaluates value based on computation type
      switch(kType) {
      case TeKMovingAverage:
        normKernel = (kernel * normFactor)/totKernel;
        break;
      case TeKDensity:
        //If region does not have an area, assumes one
        (*regIter).area(area); 
        if (area <= 0) {
          throw TeKernelException(KERNEL_INVALID_AREA);
        }
        normKernel = ((kernel * normFactor)/totKernel)/area;
        break;
      case TeKProbability:
        normKernel = kernel/totKernel;
        break;
      }

      //Store final value
      (*regIter).setDoubleProperty(idxProp, normKernel);
      ++regIter;
    }  
  } catch (TeKernelException /* e */) {
//    int a = e.getErrorCode();
    return false;
  }
  return true;
}


/*! \brief Evaluates kernel value for all support regions, 
 * storing values either on IDX_KERNEL or IDX_NUMERATOR.  
 * \param events set of spatial events
 * \param regionsBegin begin of regions iterator
 * \param reginsEnd end of region iterator
 * \param kfunc type of kernel function
 * \param ktype type of computation (SMA, density or probability)
 * \param radius spatial threshold
 * \param idxProp index of double property
 **/
template<typename EventSet, typename ItRegionSet>
bool TeStatIntKernel(EventSet& events, 
                   ItRegionSet& regionsBegin,
                   ItRegionSet& regionsEnd,
                   TeKernelFunctionType kfunc, 
                   TeKernelComputeType  kType,
                   double radius,  
                   int idxProp)
{


  //Support region attributes
  TeCoord2D location;
  double    kernel;
  
  //Regions iterator
  ItRegionSet regIter = regionsBegin;
  // Sum of kernels
  double totKernel = 0;

  //Treats unexpected expections returning false
  try {

	int dt = CLOCKS_PER_SEC/4;
	int dt2 = CLOCKS_PER_SEC * 5;
	clock_t	t0, t1, t2;
	t2 = clock();
	t0 = t1 = t2;
	int nsteps = 0;
    //Iterates through regions
    while (regIter != regionsEnd) 
    {
      (*regIter).centroid(location); 
      
      //Define iterators for event sets -- may optimize
      typename EventSet::iterator subSetBegin = events.begin(location,radius);
      typename EventSet::iterator subSetEnd = events.end(location,radius);
      if (kfunc == TeKNormal) {
        subSetBegin = events.begin();
        subSetEnd = events.end();
      }

      //Evaluates kernel value for region
      kernel = TeKernelValue(location, subSetBegin, subSetEnd, 
        radius, kfunc);
      
      totKernel += kernel;

      (*regIter).setDoubleProperty(idxProp, kernel);
      ++regIter; 
	  t2 = clock();
	  ++nsteps;
	  if (TeProgress::instance())
	  {
		 if (int(t2-t1) > dt)
		 {
			t1 = t2;
			if (TeProgress::instance()->wasCancelled())
				break;
			if((int)(t2-t0) > dt2)
				TeProgress::instance()->setProgress(nsteps);
		 }
	  }
	}
	if (TeProgress::instance())
		TeProgress::instance()->reset();

    if (totKernel <= 0) {
      throw TeKernelException(KERNEL_ALL_NULL);
    }

    return TeKernelNormalize(events, regionsBegin, regionsEnd, kType, totKernel,
      idxProp);

  } catch (TeKernelException /* e */) {
//    int a = e.getErrorCode();
    return false;
  }
  
  return true;
}


/*! \brief Evaluates adaptive kernel value for all support regions, 
 * storing values (intermediary and final) in double property idxProp  
 * \param events set of spatial events
 * \param regionsBegin begin of regions iterator
 * \param reginsEnd end of region iterator
 * \param kfunc type of kernel function
 * \param ktype type of computation (SMA, density or probability)
 * \param numReg number of support regions -- need to evaluate initial radius
 * \param totalArea total area of support regions -- need to evaluate initial radius
 * \param idxProp index of double property
 **/
template<typename EventSet, typename ItRegionSet>
bool TeStatAdaptiveGeoMeanIntKernel(EventSet& events, 
                                    ItRegionSet& regionsBegin,
                                    ItRegionSet& regionsEnd,
                                    TeKernelFunctionType kfunc,
                                    TeKernelComputeType ktype,
                                    int /* numReg */,
                                    double totalArea,
                                    int idxProp) 
{

  try {

    //Evaluate kernel with a fixed radius, based on formula, storing in vecValues
    double radius = 0.68*pow((double)events.numObjects(),-0.2)*sqrt(totalArea);
    double sqArea = sqrt(totalArea);
    if (!TeStatIntKernel(events, regionsBegin, regionsEnd,
      kfunc, ktype, radius, idxProp))
      return false;
    
    //Evaluate geometric mean of kernel values, to adjust radius
    double meanKernel = TeKernelGeometricMean(regionsBegin, regionsEnd, idxProp);
    
    if (meanKernel <= 0) {
      throw TeKernelException(TeKernelException(KERNEL_ALL_NULL));
    }
    
    //Now, reassign radius, evaluating final value for kernel
    
    ItRegionSet regIter = regionsBegin;
    double    prevKernel;
    double    newKernel;
    double    newRadius;
    double    totKernel = 0;
    TeCoord2D location;
    
	int dt = CLOCKS_PER_SEC/4;
	int dt2 = CLOCKS_PER_SEC * 5;
	clock_t	t0, t1, t2;
	t2 = clock();
	t0 = t1 = t2;
	int nsteps = 0;

    //Iterates through regions
    while (regIter != regionsEnd) 
    {
      (*regIter).centroid(location); 
      
      //Define iterators for event sets -- may optimize
      typename EventSet::iterator subSetBegin = events.begin(location,radius);
      typename EventSet::iterator subSetEnd = events.end(location,radius);
      if (kfunc == TeKNormal) {
        subSetBegin = events.begin();
        subSetEnd = events.end();
      }

      if (!((*regIter).getDoubleProperty(idxProp, prevKernel)) || (prevKernel < 0)) {
         throw TeKernelException(KERNEL_INVALID_VALUE);
      }
  
      if (prevKernel > 0) {
        newRadius = radius*pow((meanKernel/prevKernel),0.5);
        if (newRadius > sqArea/4.0)
          newRadius = sqArea/4.0; //Para funcionar quando o valor eh muito pequeno
        newKernel = TeKernelValue(location, subSetBegin, subSetEnd,  newRadius, kfunc);
      }
      else {
        newKernel = 0.0;
      }
      
      totKernel += newKernel;
      (*regIter).setDoubleProperty(idxProp, newKernel);
      ++regIter; 
	  t2 = clock();
	  ++nsteps;
	  if (TeProgress::instance())
	  {
		 if (int(t2-t1) > dt)
		 {
			t1 = t2;
			if (TeProgress::instance()->wasCancelled())
				break;
			if((int)(t2-t0) > dt2)
				TeProgress::instance()->setProgress(nsteps);
		 }
	  }
    }
	if (TeProgress::instance())
		TeProgress::instance()->reset();

    if (totKernel <= 0) {
      throw TeKernelException(KERNEL_ALL_NULL);
    }

    return TeKernelNormalize(events, regionsBegin, regionsEnd, ktype, totKernel,
      idxProp);
  } catch (TeKernelException /* e */) { 
//      int a = e.getErrorCode();
      return false;
  }
    
  return true;
}



/*! Class to apply kernel method
*
*/
class STAT_DLL TeStatKernel {

public:

  //! type of kernel function
  TeKernelFunctionType kfunc_;
  //! type of computation
  TeKernelComputeType  ktype_;
  //! spatial threshold
  double               radius_;
  //! sum of support region areas
  double               totalArea_;
  //! number of support regions
  int                  numReg_;
  
  TeStatKernel() {
    kfunc_ = TeKQuartic;
    ktype_ = TeKDensity;
    radius_ = 0;
    totalArea_ = 0;
    numReg_ = 0;
  }

  /*! \brief Apply kernel method to a specif set of support regions
   * and events, storing results in resName_.
   * \param events set of point events
   * \param regionsBegin iterator for support regions
   * \param regionsEnd   iterator for support regions
   * If radius_ is 0, then applies adaptive kernel.
   */
  template<typename EventSet, typename ItRegionSet>
  bool apply(EventSet& events, 
    ItRegionSet regionsBegin,
    ItRegionSet regionsEnd) {
    if (totalArea_ <= 0) {
      return false;
    }

    if (numReg_ <= 0) {
      return false;
    }

    bool result;
    //Radius defined, kernel with a fixed radius
    if (radius_ > 0) {
      result = TeStatIntKernel(events,regionsBegin, regionsEnd, 
        kfunc_,ktype_, radius_, IDX_KERNEL);
      
    }
    //Radius undefined, adaptive kernel
    else {
      result = TeStatAdaptiveGeoMeanIntKernel(events,  regionsBegin, regionsEnd, 
        kfunc_, ktype_, numReg_, totalArea_, IDX_KERNEL); 

    }
    return result;
  }

};



class STAT_DLL TeStatKernelRatio
{
  public:
  int						numReg_;
  
  public:

  TeKernelCombinationType	kComb_;
  TeKernelComputeType		  ktype_;
  TeKernelFunctionType		kfunc1_;
  double					        radius1_;
  TeKernelFunctionType		kfunc2_;
  double				        	radius2_;
  double				        	totalArea_;

  
  TeStatKernelRatio() {
    kComb_ = TeKRatio;
    kfunc1_ =  kfunc2_ = TeKQuartic;
    ktype_ = TeKDensity;
    radius1_ = radius2_ = 0;
    totalArea_ = 0;
    numReg_ = 0;
  }
   
  template <typename EventSet1, typename EventSet2, typename ItRegionSet>
  bool apply (EventSet1& ev1, 
    EventSet2& ev2, 
    ItRegionSet regBegin, 
    ItRegionSet regEnd) {
   
    
    if (totalArea_ <= 0)
      return false;
    
    if (numReg_ <= 0) 
      return false;
    
    //Calcula kernel para primeiro conjunto

    bool result;
    //Radius defined, kernel with a fixed radius
    if (radius1_ > 0) {
      result = TeStatIntKernel(ev1,regBegin, regEnd, 
        kfunc1_,ktype_, radius1_, IDX_KERNEL1);
      
    }
    //Radius undefined, adaptive kernel
    else {
      result = TeStatAdaptiveGeoMeanIntKernel(ev1,  regBegin, regEnd, 
        kfunc1_, ktype_, numReg_, totalArea_, IDX_KERNEL1); 

    }
    
    if (!result)
      return result;

  
    //Calcula kernel para segundo conjunto
     //Radius defined, kernel with a fixed radius
    if (radius2_ > 0) {
      result = TeStatIntKernel(ev2,regBegin, regEnd, 
        kfunc2_,ktype_, radius2_, IDX_KERNEL2);
      
    }
    //Radius undefined, adaptive kernel
    else {
      result = TeStatAdaptiveGeoMeanIntKernel(ev2,  regBegin, regEnd, 
        kfunc2_, ktype_, numReg_, totalArea_, IDX_KERNEL2); 

    }

    if (!result)
      return result;
    
    //Itera calculando o tipo de combinacao e armazenando no valor da regiao
    //Percorre todas as regioes
//    int Cont = 0;
    double kernel;
    double k1;
    double k2;
    double area;
    
    ItRegionSet regIter = regBegin;
 
    while (regIter != regEnd) 
    {
  
      (*regIter).area(area);
      
      (*regIter).getDoubleProperty(IDX_KERNEL1, k1);
      (*regIter).getDoubleProperty(IDX_KERNEL2, k2);
      
      switch(kComb_) 
      {
      case TeKRatio:
        if (k2 == 0.0)
          kernel = 0.0;//INVALID_KERNEL;
        else
          kernel = k1/k2;
        break;
      case TeKLogRatio:
        if (k2 == 0.0)
          kernel = INVALID_KERNEL;
        else
          kernel = log(k1/k2);
        break;
      case TeAbsDifference:
        kernel = k1 - k2;
        break;
      case TeRelDifference:
        kernel = (k1 - k2) * area;
        break;
      case TeAbsSum:
        kernel = k1+k2;
        break;
      case TeRelSum:
        kernel = (k1 + k2) * area;
        break;
      }
	  (*regIter).setDoubleProperty(IDX_KERNEL, kernel);
	  ++regIter; 
    }
    
    return true;
  }
                       
};


#endif