This file is indexed.

/usr/include/tesseract/genericvector.h is in libtesseract-dev 4.00~git2288-10f4998a-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
///////////////////////////////////////////////////////////////////////
// File:        genericvector.h
// Description: Generic vector class
// Author:      Daria Antonova
// Created:     Mon Jun 23 11:26:43 PDT 2008
//
// (C) Copyright 2007, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
//
#ifndef TESSERACT_CCUTIL_GENERICVECTOR_H_
#define TESSERACT_CCUTIL_GENERICVECTOR_H_

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#include "tesscallback.h"
#include "errcode.h"
#include "helpers.h"
#include "ndminx.h"
#include "serialis.h"
#include "strngs.h"

// Use PointerVector<T> below in preference to GenericVector<T*>, as that
// provides automatic deletion of pointers, [De]Serialize that works, and
// sort that works.
template <typename T>
class GenericVector {
 public:
  GenericVector() {
    init(kDefaultVectorSize);
  }
  GenericVector(int size, T init_val) {
    init(size);
    init_to_size(size, init_val);
  }

  // Copy
  GenericVector(const GenericVector& other) {
    this->init(other.size());
    this->operator+=(other);
  }
  GenericVector<T> &operator+=(const GenericVector& other);
  GenericVector<T> &operator=(const GenericVector& other);

  ~GenericVector();

  // Reserve some memory.
  void reserve(int size);
  // Double the size of the internal array.
  void double_the_size();

  // Resizes to size and sets all values to t.
  void init_to_size(int size, T t);
  // Resizes to size without any initialization.
  void resize_no_init(int size) {
    reserve(size);
    size_used_ = size;
  }

  // Return the size used.
  int size() const {
    return size_used_;
  }
  // Workaround to avoid g++ -Wsign-compare warnings.
  size_t unsigned_size() const {
    static_assert(sizeof(size_used_) <= sizeof(size_t),
                  "Wow! sizeof(size_t) < sizeof(int32_t)!!");
    assert(0 <= size_used_);
    return static_cast<size_t>(size_used_);
  }
  int size_reserved() const {
    return size_reserved_;
  }

  int length() const {
    return size_used_;
  }

  // Return true if empty.
  bool empty() const {
    return size_used_ == 0;
  }

  // Return the object from an index.
  T &get(int index) const;
  T &back() const;
  T &operator[](int index) const;
  // Returns the last object and removes it.
  T pop_back();

  // Return the index of the T object.
  // This method NEEDS a compare_callback to be passed to
  // set_compare_callback.
  int get_index(T object) const;

  // Return true if T is in the array
  bool contains(T object) const;

  // Return true if the index is valid
  T contains_index(int index) const;

  // Push an element in the end of the array
  int push_back(T object);
  void operator+=(T t);

  // Push an element in the end of the array if the same
  // element is not already contained in the array.
  int push_back_new(T object);

  // Push an element in the front of the array
  // Note: This function is O(n)
  int push_front(T object);

  // Set the value at the given index
  void set(T t, int index);

  // Insert t at the given index, push other elements to the right.
  void insert(T t, int index);

  // Removes an element at the given index and
  // shifts the remaining elements to the left.
  void remove(int index);

  // Truncates the array to the given size by removing the end.
  // If the current size is less, the array is not expanded.
  void truncate(int size) {
    if (size < size_used_)
      size_used_ = size;
  }

  // Add a callback to be called to delete the elements when the array took
  // their ownership.
  void set_clear_callback(TessCallback1<T>* cb);

  // Add a callback to be called to compare the elements when needed (contains,
  // get_id, ...)
  void set_compare_callback(TessResultCallback2<bool, T const &, T const &>* cb);

  // Clear the array, calling the clear callback function if any.
  // All the owned callbacks are also deleted.
  // If you don't want the callbacks to be deleted, before calling clear, set
  // the callback to NULL.
  void clear();

  // Delete objects pointed to by data_[i]
  void delete_data_pointers();

  // This method clears the current object, then, does a shallow copy of
  // its argument, and finally invalidates its argument.
  // Callbacks are moved to the current object;
  void move(GenericVector<T>* from);

  // Read/Write the array to a file. This does _NOT_ read/write the callbacks.
  // The callback given must be permanent since they will be called more than
  // once. The given callback will be deleted at the end.
  // If the callbacks are NULL, then the data is simply read/written using
  // fread (and swapping)/fwrite.
  // Returns false on error or if the callback returns false.
  // DEPRECATED. Use [De]Serialize[Classes] instead.
  bool write(FILE* f, TessResultCallback2<bool, FILE*, T const &>* cb) const;
  bool read(tesseract::TFile* f,
            TessResultCallback2<bool, tesseract::TFile*, T*>* cb);
  // Writes a vector of simple types to the given file. Assumes that bitwise
  // read/write of T will work. Returns false in case of error.
  // TODO(rays) Change all callers to use TFile and remove deprecated methods.
  bool Serialize(FILE* fp) const;
  bool Serialize(tesseract::TFile* fp) const;
  // Reads a vector of simple types from the given file. Assumes that bitwise
  // read/write will work with ReverseN according to sizeof(T).
  // Returns false in case of error.
  // If swap is true, assumes a big/little-endian swap is needed.
  // TFile is assumed to know about swapping.
  bool DeSerialize(bool swap, FILE* fp);
  bool DeSerialize(tesseract::TFile* fp);
  // Skips the deserialization of the vector.
  static bool SkipDeSerialize(tesseract::TFile* fp);
  // Writes a vector of classes to the given file. Assumes the existence of
  // bool T::Serialize(FILE* fp) const that returns false in case of error.
  // Returns false in case of error.
  bool SerializeClasses(FILE* fp) const;
  bool SerializeClasses(tesseract::TFile* fp) const;
  // Reads a vector of classes from the given file. Assumes the existence of
  // bool T::Deserialize(bool swap, FILE* fp) that returns false in case of
  // error. Also needs T::T() and T::T(constT&), as init_to_size is used in
  // this function. Returns false in case of error.
  // If swap is true, assumes a big/little-endian swap is needed.
  bool DeSerializeClasses(bool swap, FILE* fp);
  bool DeSerializeClasses(tesseract::TFile* fp);
  // Calls SkipDeSerialize on the elements of the vector.
  static bool SkipDeSerializeClasses(tesseract::TFile* fp);

  // Allocates a new array of double the current_size, copies over the
  // information from data to the new location, deletes data and returns
  // the pointed to the new larger array.
  // This function uses memcpy to copy the data, instead of invoking
  // operator=() for each element like double_the_size() does.
  static T *double_the_size_memcpy(int current_size, T *data) {
    T *data_new = new T[current_size * 2];
    memcpy(data_new, data, sizeof(T) * current_size);
    delete[] data;
    return data_new;
  }

  // Reverses the elements of the vector.
  void reverse() {
    for (int i = 0; i < size_used_ / 2; ++i)
      Swap(&data_[i], &data_[size_used_ - 1 - i]);
  }

  // Sorts the members of this vector using the less than comparator (cmp_lt),
  // which compares the values. Useful for GenericVectors to primitive types.
  // Will not work so great for pointers (unless you just want to sort some
  // pointers). You need to provide a specialization to sort_cmp to use
  // your type.
  void sort();

  // Sort the array into the order defined by the qsort function comparator.
  // The comparator function is as defined by qsort, ie. it receives pointers
  // to two Ts and returns negative if the first element is to appear earlier
  // in the result and positive if it is to appear later, with 0 for equal.
  void sort(int (*comparator)(const void*, const void*)) {
    qsort(data_, size_used_, sizeof(*data_), comparator);
  }

  // Searches the array (assuming sorted in ascending order, using sort()) for
  // an element equal to target and returns true if it is present.
  // Use binary_search to get the index of target, or its nearest candidate.
  bool bool_binary_search(const T& target) const {
    int index = binary_search(target);
    if (index >= size_used_)
      return false;
    return data_[index] == target;
  }
  // Searches the array (assuming sorted in ascending order, using sort()) for
  // an element equal to target and returns the index of the best candidate.
  // The return value is conceptually the largest index i such that
  // data_[i] <= target or 0 if target < the whole vector.
  // NOTE that this function uses operator> so really the return value is
  // the largest index i such that data_[i] > target is false.
  int binary_search(const T& target) const {
    int bottom = 0;
    int top = size_used_;
    while (top - bottom > 1) {
      int middle = (bottom + top) / 2;
      if (data_[middle] > target)
        top = middle;
      else
        bottom = middle;
    }
    return bottom;
  }

  // Compact the vector by deleting elements using operator!= on basic types.
  // The vector must be sorted.
  void compact_sorted() {
    if (size_used_ == 0)
      return;

    // First element is in no matter what, hence the i = 1.
    int last_write = 0;
    for (int i = 1; i < size_used_; ++i) {
      // Finds next unique item and writes it.
      if (data_[last_write] != data_[i])
        data_[++last_write] = data_[i];
    }
    // last_write is the index of a valid data cell, so add 1.
    size_used_ = last_write + 1;
  }

  // Compact the vector by deleting elements for which delete_cb returns
  // true. delete_cb is a permanent callback and will be deleted.
  void compact(TessResultCallback1<bool, int>* delete_cb) {
    int new_size = 0;
    int old_index = 0;
    // Until the callback returns true, the elements stay the same.
    while (old_index < size_used_ && !delete_cb->Run(old_index++))
      ++new_size;
    // Now just copy anything else that gets false from delete_cb.
    for (; old_index < size_used_; ++old_index) {
      if (!delete_cb->Run(old_index)) {
        data_[new_size++] = data_[old_index];
      }
    }
    size_used_ = new_size;
    delete delete_cb;
  }

  T dot_product(const GenericVector<T>& other) const {
    T result = static_cast<T>(0);
    for (int i = MIN(size_used_, other.size_used_) - 1; i >= 0; --i)
      result += data_[i] * other.data_[i];
    return result;
  }

  // Returns the index of what would be the target_index_th item in the array
  // if the members were sorted, without actually sorting. Members are
  // shuffled around, but it takes O(n) time.
  // NOTE: uses operator< and operator== on the members.
  int choose_nth_item(int target_index) {
    // Make sure target_index is legal.
    if (target_index < 0)
      target_index = 0;                   // ensure legal
    else if (target_index >= size_used_)
      target_index = size_used_ - 1;
    unsigned int seed = 1;
    return choose_nth_item(target_index, 0, size_used_, &seed);
  }

  // Swaps the elements with the given indices.
  void swap(int index1, int index2) {
    if (index1 != index2) {
      T tmp = data_[index1];
      data_[index1] = data_[index2];
      data_[index2] = tmp;
    }
  }
  // Returns true if all elements of *this are within the given range.
  // Only uses operator<
  bool WithinBounds(const T& rangemin, const T& rangemax) const {
    for (int i = 0; i < size_used_; ++i) {
      if (data_[i] < rangemin || rangemax < data_[i])
        return false;
    }
    return true;
  }

 protected:
  // Internal recursive version of choose_nth_item.
  int choose_nth_item(int target_index, int start, int end, unsigned int* seed);

  // Init the object, allocating size memory.
  void init(int size);

  // We are assuming that the object generally placed in thie
  // vector are small enough that for efficiency it makes sense
  // to start with a larger initial size.
  static const int kDefaultVectorSize = 4;
  int32_t   size_used_;
  int32_t   size_reserved_;
  T*    data_;
  TessCallback1<T>* clear_cb_;
  // Mutable because Run method is not const
  mutable TessResultCallback2<bool, T const &, T const &>* compare_cb_;
};

namespace tesseract {

// Function to read a GenericVector<char> from a whole file.
// Returns false on failure.
typedef bool (*FileReader)(const STRING& filename, GenericVector<char>* data);
// Function to write a GenericVector<char> to a whole file.
// Returns false on failure.
typedef bool (*FileWriter)(const GenericVector<char>& data,
                           const STRING& filename);
// The default FileReader loads the whole file into the vector of char,
// returning false on error.
inline bool LoadDataFromFile(const char* filename, GenericVector<char>* data) {
  bool result = false;
  FILE* fp = fopen(filename, "rb");
  if (fp != NULL) {
    fseek(fp, 0, SEEK_END);
    long size = ftell(fp);
    fseek(fp, 0, SEEK_SET);
    // Trying to open a directory on Linux sets size to LONG_MAX. Catch it here.
    if (size > 0 && size < LONG_MAX) {
      data->resize_no_init(size);
      result = static_cast<long>(fread(&(*data)[0], 1, size, fp)) == size;
    }
    fclose(fp);
  }
  return result;
}

inline bool LoadDataFromFile(const STRING& filename,
                             GenericVector<char>* data) {
  return LoadDataFromFile(filename.string(), data);
}

// The default FileWriter writes the vector of char to the filename file,
// returning false on error.
inline bool SaveDataToFile(const GenericVector<char>& data,
                           const STRING& filename) {
  FILE* fp = fopen(filename.string(), "wb");
  if (fp == NULL) return false;
  bool result =
      static_cast<int>(fwrite(&data[0], 1, data.size(), fp)) == data.size();
  fclose(fp);
  return result;
}
// Reads a file as a vector of STRING.
inline bool LoadFileLinesToStrings(const STRING& filename,
                                   GenericVector<STRING>* lines) {
  GenericVector<char> data;
  if (!LoadDataFromFile(filename.string(), &data)) {
    return false;
  }
  STRING lines_str(&data[0], data.size());
  lines_str.split('\n', lines);
  return true;
}

template <typename T>
bool cmp_eq(T const & t1, T const & t2) {
  return t1 == t2;
}

// Used by sort()
// return < 0 if t1 < t2
// return 0 if t1 == t2
// return > 0 if t1 > t2
template <typename T>
int sort_cmp(const void* t1, const void* t2) {
  const T* a = static_cast<const T *> (t1);
  const T* b = static_cast<const T *> (t2);
  if (*a < *b) {
    return -1;
  } else if (*b < *a) {
    return 1;
  } else {
    return 0;
  }
}

// Used by PointerVector::sort()
// return < 0 if t1 < t2
// return 0 if t1 == t2
// return > 0 if t1 > t2
template <typename T>
int sort_ptr_cmp(const void* t1, const void* t2) {
  const T* a = *static_cast<T* const*>(t1);
  const T* b = *static_cast<T* const*>(t2);
  if (*a < *b) {
    return -1;
  } else if (*b < *a) {
    return 1;
  } else {
    return 0;
  }
}

// Subclass for a vector of pointers. Use in preference to GenericVector<T*>
// as it provides automatic deletion and correct serialization, with the
// corollary that all copy operations are deep copies of the pointed-to objects.
template<typename T>
class PointerVector : public GenericVector<T*> {
 public:
  PointerVector() : GenericVector<T*>() { }
  explicit PointerVector(int size) : GenericVector<T*>(size) { }
  ~PointerVector() {
    // Clear must be called here, even though it is called again by the base,
    // as the base will call the wrong clear.
    clear();
  }
  // Copy must be deep, as the pointers will be automatically deleted on
  // destruction.
  PointerVector(const PointerVector& other) : GenericVector<T*>(other) {
    this->init(other.size());
    this->operator+=(other);
  }
  PointerVector<T>& operator+=(const PointerVector& other) {
    this->reserve(this->size_used_ + other.size_used_);
    for (int i = 0; i < other.size(); ++i) {
      this->push_back(new T(*other.data_[i]));
    }
    return *this;
  }

  PointerVector<T>& operator=(const PointerVector& other) {
    if (&other != this) {
      this->truncate(0);
      this->operator+=(other);
    }
    return *this;
  }

  // Removes an element at the given index and
  // shifts the remaining elements to the left.
  void remove(int index) {
    delete GenericVector<T*>::data_[index];
    GenericVector<T*>::remove(index);
  }

  // Truncates the array to the given size by removing the end.
  // If the current size is less, the array is not expanded.
  void truncate(int size) {
    for (int i = size; i < GenericVector<T*>::size_used_; ++i)
      delete GenericVector<T*>::data_[i];
    GenericVector<T*>::truncate(size);
  }

  // Compact the vector by deleting elements for which delete_cb returns
  // true. delete_cb is a permanent callback and will be deleted.
  void compact(TessResultCallback1<bool, const T*>* delete_cb) {
    int new_size = 0;
    int old_index = 0;
    // Until the callback returns true, the elements stay the same.
    while (old_index < GenericVector<T*>::size_used_ &&
           !delete_cb->Run(GenericVector<T*>::data_[old_index++]))
      ++new_size;
    // Now just copy anything else that gets false from delete_cb.
    for (; old_index < GenericVector<T*>::size_used_; ++old_index) {
      if (!delete_cb->Run(GenericVector<T*>::data_[old_index])) {
        GenericVector<T*>::data_[new_size++] =
            GenericVector<T*>::data_[old_index];
      } else {
        delete GenericVector<T*>::data_[old_index];
      }
    }
    GenericVector<T*>::size_used_ = new_size;
    delete delete_cb;
  }

  // Clear the array, calling the clear callback function if any.
  // All the owned callbacks are also deleted.
  // If you don't want the callbacks to be deleted, before calling clear, set
  // the callback to NULL.
  void clear() {
    GenericVector<T*>::delete_data_pointers();
    GenericVector<T*>::clear();
  }

  // Writes a vector of (pointers to) classes to the given file. Assumes the
  // existence of bool T::Serialize(FILE*) const that returns false in case of
  // error. There is no Serialize for simple types, as you would have a
  // normal GenericVector of those.
  // Returns false in case of error.
  bool Serialize(FILE* fp) const {
    int32_t used = GenericVector<T*>::size_used_;
    if (fwrite(&used, sizeof(used), 1, fp) != 1) return false;
    for (int i = 0; i < used; ++i) {
      int8_t non_null = GenericVector<T*>::data_[i] != NULL;
      if (fwrite(&non_null, sizeof(non_null), 1, fp) != 1) return false;
      if (non_null && !GenericVector<T*>::data_[i]->Serialize(fp)) return false;
    }
    return true;
  }
  bool Serialize(TFile* fp) const {
    int32_t used = GenericVector<T*>::size_used_;
    if (fp->FWrite(&used, sizeof(used), 1) != 1) return false;
    for (int i = 0; i < used; ++i) {
      int8_t non_null = GenericVector<T*>::data_[i] != NULL;
      if (fp->FWrite(&non_null, sizeof(non_null), 1) != 1) return false;
      if (non_null && !GenericVector<T*>::data_[i]->Serialize(fp)) return false;
    }
    return true;
  }
  // Reads a vector of (pointers to) classes to the given file. Assumes the
  // existence of bool T::DeSerialize(bool, Tfile*) const that returns false in
  // case of error. There is no Serialize for simple types, as you would have a
  // normal GenericVector of those.
  // If swap is true, assumes a big/little-endian swap is needed.
  // Also needs T::T(), as new T is used in this function.
  // Returns false in case of error.
  bool DeSerialize(bool swap, FILE* fp) {
    int32_t reserved;
    if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
    if (swap) Reverse32(&reserved);
    GenericVector<T*>::reserve(reserved);
    truncate(0);
    for (int i = 0; i < reserved; ++i) {
      int8_t non_null;
      if (fread(&non_null, sizeof(non_null), 1, fp) != 1) return false;
      T* item = NULL;
      if (non_null) {
        item = new T;
        if (!item->DeSerialize(swap, fp)) {
          delete item;
          return false;
        }
        this->push_back(item);
      } else {
        // Null elements should keep their place in the vector.
        this->push_back(NULL);
      }
    }
    return true;
  }
  bool DeSerialize(TFile* fp) {
    int32_t reserved;
    if (!DeSerializeSize(fp, &reserved)) return false;
    GenericVector<T*>::reserve(reserved);
    truncate(0);
    for (int i = 0; i < reserved; ++i) {
      if (!DeSerializeElement(fp)) return false;
    }
    return true;
  }
  // Enables deserialization of a selection of elements. Note that in order to
  // retain the integrity of the stream, the caller must call some combination
  // of DeSerializeElement and DeSerializeSkip of the exact number returned in
  // *size, assuming a true return.
  static bool DeSerializeSize(TFile* fp, int32_t* size) {
    return fp->FReadEndian(size, sizeof(*size), 1) == 1;
  }
  // Reads and appends to the vector the next element of the serialization.
  bool DeSerializeElement(TFile* fp) {
    int8_t non_null;
    if (fp->FRead(&non_null, sizeof(non_null), 1) != 1) return false;
    T* item = NULL;
    if (non_null) {
      item = new T;
      if (!item->DeSerialize(fp)) {
        delete item;
        return false;
      }
      this->push_back(item);
    } else {
      // Null elements should keep their place in the vector.
      this->push_back(NULL);
    }
    return true;
  }
  // Skips the next element of the serialization.
  static bool DeSerializeSkip(TFile* fp) {
    int8_t non_null;
    if (fp->FRead(&non_null, sizeof(non_null), 1) != 1) return false;
    if (non_null) {
      if (!T::SkipDeSerialize(fp)) return false;
    }
    return true;
  }

  // Sorts the items pointed to by the members of this vector using
  // t::operator<().
  void sort() { this->GenericVector<T*>::sort(&sort_ptr_cmp<T>); }
};

}  // namespace tesseract

// A useful vector that uses operator== to do comparisons.
template <typename T>
class GenericVectorEqEq : public GenericVector<T> {
 public:
  GenericVectorEqEq() {
    GenericVector<T>::set_compare_callback(
        NewPermanentTessCallback(tesseract::cmp_eq<T>));
  }
  GenericVectorEqEq(int size) : GenericVector<T>(size) {
    GenericVector<T>::set_compare_callback(
        NewPermanentTessCallback(tesseract::cmp_eq<T>));
  }
};

template <typename T>
void GenericVector<T>::init(int size) {
  size_used_ = 0;
  size_reserved_ = 0;
  data_ = 0;
  clear_cb_ = 0;
  compare_cb_ = 0;
  reserve(size);
}

template <typename T>
GenericVector<T>::~GenericVector() {
  clear();
}

// Reserve some memory. If the internal array contains elements, they are
// copied.
template <typename T>
void GenericVector<T>::reserve(int size) {
  if (size_reserved_ >= size || size <= 0)
    return;
  if (size < kDefaultVectorSize) size = kDefaultVectorSize;
  T* new_array = new T[size];
  for (int i = 0; i < size_used_; ++i)
    new_array[i] = data_[i];
  delete[] data_;
  data_ = new_array;
  size_reserved_ = size;
}

template <typename T>
void GenericVector<T>::double_the_size() {
  if (size_reserved_ == 0) {
    reserve(kDefaultVectorSize);
  }
  else {
    reserve(2 * size_reserved_);
  }
}

// Resizes to size and sets all values to t.
template <typename T>
void GenericVector<T>::init_to_size(int size, T t) {
  reserve(size);
  size_used_ = size;
  for (int i = 0; i < size; ++i)
    data_[i] = t;
}


// Return the object from an index.
template <typename T>
T &GenericVector<T>::get(int index) const {
  ASSERT_HOST(index >= 0 && index < size_used_);
  return data_[index];
}

template <typename T>
T &GenericVector<T>::operator[](int index) const {
  assert(index >= 0 && index < size_used_);
  return data_[index];
}

template <typename T>
T &GenericVector<T>::back() const {
  ASSERT_HOST(size_used_ > 0);
  return data_[size_used_ - 1];
}
// Returns the last object and removes it.
template <typename T>
T GenericVector<T>::pop_back() {
  ASSERT_HOST(size_used_ > 0);
  return data_[--size_used_];
}

// Return the object from an index.
template <typename T>
void GenericVector<T>::set(T t, int index) {
  ASSERT_HOST(index >= 0 && index < size_used_);
  data_[index] = t;
}

// Shifts the rest of the elements to the right to make
// space for the new elements and inserts the given element
// at the specified index.
template <typename T>
void GenericVector<T>::insert(T t, int index) {
  ASSERT_HOST(index >= 0 && index <= size_used_);
  if (size_reserved_ == size_used_)
    double_the_size();
  for (int i = size_used_; i > index; --i) {
    data_[i] = data_[i-1];
  }
  data_[index] = t;
  size_used_++;
}

// Removes an element at the given index and
// shifts the remaining elements to the left.
template <typename T>
void GenericVector<T>::remove(int index) {
  ASSERT_HOST(index >= 0 && index < size_used_);
  for (int i = index; i < size_used_ - 1; ++i) {
    data_[i] = data_[i+1];
  }
  size_used_--;
}

// Return true if the index is valindex
template <typename T>
T GenericVector<T>::contains_index(int index) const {
  return index >= 0 && index < size_used_;
}

// Return the index of the T object.
template <typename T>
int GenericVector<T>::get_index(T object) const {
  for (int i = 0; i < size_used_; ++i) {
    ASSERT_HOST(compare_cb_ != NULL);
    if (compare_cb_->Run(object, data_[i]))
      return i;
  }
  return -1;
}

// Return true if T is in the array
template <typename T>
bool GenericVector<T>::contains(T object) const {
  return get_index(object) != -1;
}

// Add an element in the array
template <typename T>
int GenericVector<T>::push_back(T object) {
  int index = 0;
  if (size_used_ == size_reserved_)
    double_the_size();
  index = size_used_++;
  data_[index] = object;
  return index;
}

template <typename T>
int GenericVector<T>::push_back_new(T object) {
  int index = get_index(object);
  if (index >= 0)
    return index;
  return push_back(object);
}

// Add an element in the array (front)
template <typename T>
int GenericVector<T>::push_front(T object) {
  if (size_used_ == size_reserved_)
    double_the_size();
  for (int i = size_used_; i > 0; --i)
    data_[i] = data_[i-1];
  data_[0] = object;
  ++size_used_;
  return 0;
}

template <typename T>
void GenericVector<T>::operator+=(T t) {
  push_back(t);
}

template <typename T>
GenericVector<T> &GenericVector<T>::operator+=(const GenericVector& other) {
  this->reserve(size_used_ + other.size_used_);
  for (int i = 0; i < other.size(); ++i) {
    this->operator+=(other.data_[i]);
  }
  return *this;
}

template <typename T>
GenericVector<T> &GenericVector<T>::operator=(const GenericVector& other) {
  if (&other != this) {
    this->truncate(0);
    this->operator+=(other);
  }
  return *this;
}

// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_clear_callback(TessCallback1<T>* cb) {
  clear_cb_ = cb;
}

// Add a callback to be called to delete the elements when the array took
// their ownership.
template <typename T>
void GenericVector<T>::set_compare_callback(
    TessResultCallback2<bool, T const &, T const &>* cb) {
  compare_cb_ = cb;
}

// Clear the array, calling the callback function if any.
template <typename T>
void GenericVector<T>::clear() {
  if (size_reserved_ > 0) {
    if (clear_cb_ != NULL)
      for (int i = 0; i < size_used_; ++i)
        clear_cb_->Run(data_[i]);
    delete[] data_;
    data_ = NULL;
    size_used_ = 0;
    size_reserved_ = 0;
  }
  if (clear_cb_ != NULL) {
    delete clear_cb_;
    clear_cb_ = NULL;
  }
  if (compare_cb_ != NULL) {
    delete compare_cb_;
    compare_cb_ = NULL;
  }
}

template <typename T>
void GenericVector<T>::delete_data_pointers() {
  for (int i = 0; i < size_used_; ++i)
    if (data_[i]) {
      delete data_[i];
    }
}


template <typename T>
bool GenericVector<T>::write(
    FILE* f, TessResultCallback2<bool, FILE*, T const &>* cb) const {
  if (fwrite(&size_reserved_, sizeof(size_reserved_), 1, f) != 1) return false;
  if (fwrite(&size_used_, sizeof(size_used_), 1, f) != 1) return false;
  if (cb != NULL) {
    for (int i = 0; i < size_used_; ++i) {
      if (!cb->Run(f, data_[i])) {
        delete cb;
        return false;
      }
    }
    delete cb;
  } else {
    if (fwrite(data_, sizeof(T), size_used_, f) != unsigned_size())
      return false;
  }
  return true;
}

template <typename T>
bool GenericVector<T>::read(
    tesseract::TFile* f, TessResultCallback2<bool, tesseract::TFile*, T*>* cb) {
  int32_t reserved;
  if (f->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
  reserve(reserved);
  if (f->FReadEndian(&size_used_, sizeof(size_used_), 1) != 1) return false;
  if (cb != NULL) {
    for (int i = 0; i < size_used_; ++i) {
      if (!cb->Run(f, data_ + i)) {
        delete cb;
        return false;
      }
    }
    delete cb;
  } else {
    if (f->FReadEndian(data_, sizeof(T), size_used_) != size_used_)
      return false;
  }
  return true;
}

// Writes a vector of simple types to the given file. Assumes that bitwise
// read/write of T will work. Returns false in case of error.
template <typename T>
bool GenericVector<T>::Serialize(FILE* fp) const {
  if (fwrite(&size_used_, sizeof(size_used_), 1, fp) != 1) return false;
  if (fwrite(data_, sizeof(*data_), size_used_, fp) != unsigned_size())
    return false;
  return true;
}
template <typename T>
bool GenericVector<T>::Serialize(tesseract::TFile* fp) const {
  if (fp->FWrite(&size_used_, sizeof(size_used_), 1) != 1) return false;
  if (fp->FWrite(data_, sizeof(*data_), size_used_) != size_used_) return false;
  return true;
}

// Reads a vector of simple types from the given file. Assumes that bitwise
// read/write will work with ReverseN according to sizeof(T).
// Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
template <typename T>
bool GenericVector<T>::DeSerialize(bool swap, FILE* fp) {
  int32_t reserved;
  if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
  if (swap) Reverse32(&reserved);
  reserve(reserved);
  size_used_ = reserved;
  if (fread(data_, sizeof(T), size_used_, fp) != unsigned_size()) return false;
  if (swap) {
    for (int i = 0; i < size_used_; ++i)
      ReverseN(&data_[i], sizeof(data_[i]));
  }
  return true;
}
template <typename T>
bool GenericVector<T>::DeSerialize(tesseract::TFile* fp) {
  int32_t reserved;
  if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
  reserve(reserved);
  size_used_ = reserved;
  return fp->FReadEndian(data_, sizeof(T), size_used_) == size_used_;
}
template <typename T>
bool GenericVector<T>::SkipDeSerialize(tesseract::TFile* fp) {
  int32_t reserved;
  if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
  return fp->FRead(NULL, sizeof(T), reserved) == reserved;
}

// Writes a vector of classes to the given file. Assumes the existence of
// bool T::Serialize(FILE* fp) const that returns false in case of error.
// Returns false in case of error.
template <typename T>
bool GenericVector<T>::SerializeClasses(FILE* fp) const {
  if (fwrite(&size_used_, sizeof(size_used_), 1, fp) != 1) return false;
  for (int i = 0; i < size_used_; ++i) {
    if (!data_[i].Serialize(fp)) return false;
  }
  return true;
}
template <typename T>
bool GenericVector<T>::SerializeClasses(tesseract::TFile* fp) const {
  if (fp->FWrite(&size_used_, sizeof(size_used_), 1) != 1) return false;
  for (int i = 0; i < size_used_; ++i) {
    if (!data_[i].Serialize(fp)) return false;
  }
  return true;
}

// Reads a vector of classes from the given file. Assumes the existence of
// bool T::Deserialize(bool swap, FILE* fp) that returns false in case of
// error. Also needs T::T() and T::T(constT&), as init_to_size is used in
// this function. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
template <typename T>
bool GenericVector<T>::DeSerializeClasses(bool swap, FILE* fp) {
  int32_t reserved;
  if (fread(&reserved, sizeof(reserved), 1, fp) != 1) return false;
  if (swap) Reverse32(&reserved);
  T empty;
  init_to_size(reserved, empty);
  for (int i = 0; i < reserved; ++i) {
    if (!data_[i].DeSerialize(swap, fp)) return false;
  }
  return true;
}
template <typename T>
bool GenericVector<T>::DeSerializeClasses(tesseract::TFile* fp) {
  int32_t reserved;
  if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
  T empty;
  init_to_size(reserved, empty);
  for (int i = 0; i < reserved; ++i) {
    if (!data_[i].DeSerialize(fp)) return false;
  }
  return true;
}
template <typename T>
bool GenericVector<T>::SkipDeSerializeClasses(tesseract::TFile* fp) {
  int32_t reserved;
  if (fp->FReadEndian(&reserved, sizeof(reserved), 1) != 1) return false;
  for (int i = 0; i < reserved; ++i) {
    if (!T::SkipDeSerialize(fp)) return false;
  }
  return true;
}

// This method clear the current object, then, does a shallow copy of
// its argument, and finally invalidates its argument.
template <typename T>
void GenericVector<T>::move(GenericVector<T>* from) {
  this->clear();
  this->data_ = from->data_;
  this->size_reserved_ = from->size_reserved_;
  this->size_used_ = from->size_used_;
  this->compare_cb_ = from->compare_cb_;
  this->clear_cb_ = from->clear_cb_;
  from->data_ = NULL;
  from->clear_cb_ = NULL;
  from->compare_cb_ = NULL;
  from->size_used_ = 0;
  from->size_reserved_ = 0;
}

template <typename T>
void GenericVector<T>::sort() {
  sort(&tesseract::sort_cmp<T>);
}

// Internal recursive version of choose_nth_item.
// The algorithm used comes from "Algorithms" by Sedgewick:
// http://books.google.com/books/about/Algorithms.html?id=idUdqdDXqnAC
// The principle is to choose a random pivot, and move everything less than
// the pivot to its left, and everything greater than the pivot to the end
// of the array, then recurse on the part that contains the desired index, or
// just return the answer if it is in the equal section in the middle.
// The random pivot guarantees average linear time for the same reason that
// n times vector::push_back takes linear time on average.
// target_index, start and and end are all indices into the full array.
// Seed is a seed for rand_r for thread safety purposes. Its value is
// unimportant as the random numbers do not affect the result except
// between equal answers.
template <typename T>
int GenericVector<T>::choose_nth_item(int target_index, int start, int end,
                                      unsigned int* seed) {
  // Number of elements to process.
  int num_elements = end - start;
  // Trivial cases.
  if (num_elements <= 1)
    return start;
  if (num_elements == 2) {
    if (data_[start] < data_[start + 1]) {
      return target_index > start ? start + 1 : start;
    } else {
      return target_index > start ? start : start + 1;
    }
  }
  // Place the pivot at start.
  #ifndef rand_r  // _MSC_VER, ANDROID
  srand(*seed);
  #define rand_r(seed) rand()
  #endif  // _MSC_VER
  int pivot = rand_r(seed) % num_elements + start;
  swap(pivot, start);
  // The invariant condition here is that items [start, next_lesser) are less
  // than the pivot (which is at index next_lesser) and items
  // [prev_greater, end) are greater than the pivot, with items
  // [next_lesser, prev_greater) being equal to the pivot.
  int next_lesser = start;
  int prev_greater = end;
  for (int next_sample = start + 1; next_sample < prev_greater;) {
    if (data_[next_sample] < data_[next_lesser]) {
      swap(next_lesser++, next_sample++);
    } else if (data_[next_sample] == data_[next_lesser]) {
      ++next_sample;
    } else {
      swap(--prev_greater, next_sample);
    }
  }
  // Now the invariant is set up, we recurse on just the section that contains
  // the desired index.
  if (target_index < next_lesser)
    return choose_nth_item(target_index, start, next_lesser, seed);
  else if (target_index < prev_greater)
    return next_lesser;          // In equal bracket.
  else
    return choose_nth_item(target_index, prev_greater, end, seed);
}


#endif  // TESSERACT_CCUTIL_GENERICVECTOR_H_