/usr/include/tf/LinearMath/Quaternion.h is in libtf-dev 1.11.9-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | /*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef TF_QUATERNION_H_
#define TF_QUATERNION_H_
#include "Vector3.h"
#include "QuadWord.h"
namespace tf
{
/**@brief The Quaternion implements quaternion to perform linear algebra rotations in combination with Matrix3x3, Vector3 and Transform. */
class Quaternion : public QuadWord {
public:
/**@brief No initialization constructor */
Quaternion() {}
// template <typename tfScalar>
// explicit Quaternion(const tfScalar *v) : Tuple4<tfScalar>(v) {}
/**@brief Constructor from scalars */
Quaternion(const tfScalar& x, const tfScalar& y, const tfScalar& z, const tfScalar& w)
: QuadWord(x, y, z, w)
{}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
Quaternion(const Vector3& axis, const tfScalar& angle)
{
setRotation(axis, angle);
}
/**@brief Constructor from Euler angles
* @param yaw Angle around Y unless TF_EULER_DEFAULT_ZYX defined then Z
* @param pitch Angle around X unless TF_EULER_DEFAULT_ZYX defined then Y
* @param roll Angle around Z unless TF_EULER_DEFAULT_ZYX defined then X */
Quaternion(const tfScalar& yaw, const tfScalar& pitch, const tfScalar& roll) __attribute__((deprecated))
{
#ifndef TF_EULER_DEFAULT_ZYX
setEuler(yaw, pitch, roll);
#else
setRPY(roll, pitch, yaw);
#endif
}
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const Vector3& axis, const tfScalar& angle)
{
tfScalar d = axis.length();
tfAssert(d != tfScalar(0.0));
tfScalar s = tfSin(angle * tfScalar(0.5)) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
tfCos(angle * tfScalar(0.5)));
}
/**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
* @param pitch Angle around X
* @param roll Angle around Z */
void setEuler(const tfScalar& yaw, const tfScalar& pitch, const tfScalar& roll)
{
tfScalar halfYaw = tfScalar(yaw) * tfScalar(0.5);
tfScalar halfPitch = tfScalar(pitch) * tfScalar(0.5);
tfScalar halfRoll = tfScalar(roll) * tfScalar(0.5);
tfScalar cosYaw = tfCos(halfYaw);
tfScalar sinYaw = tfSin(halfYaw);
tfScalar cosPitch = tfCos(halfPitch);
tfScalar sinPitch = tfSin(halfPitch);
tfScalar cosRoll = tfCos(halfRoll);
tfScalar sinRoll = tfSin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
/**@brief Set the quaternion using fixed axis RPY
* @param roll Angle around X
* @param pitch Angle around Y
* @param yaw Angle around Z*/
void setRPY(const tfScalar& roll, const tfScalar& pitch, const tfScalar& yaw)
{
tfScalar halfYaw = tfScalar(yaw) * tfScalar(0.5);
tfScalar halfPitch = tfScalar(pitch) * tfScalar(0.5);
tfScalar halfRoll = tfScalar(roll) * tfScalar(0.5);
tfScalar cosYaw = tfCos(halfYaw);
tfScalar sinYaw = tfSin(halfYaw);
tfScalar cosPitch = tfCos(halfPitch);
tfScalar sinPitch = tfSin(halfPitch);
tfScalar cosRoll = tfCos(halfRoll);
tfScalar sinRoll = tfSin(halfRoll);
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
}
/**@brief Set the quaternion using euler angles
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void setEulerZYX(const tfScalar& yaw, const tfScalar& pitch, const tfScalar& roll) __attribute__((deprecated))
{
setRPY(roll, pitch, yaw);
}
/**@brief Add two quaternions
* @param q The quaternion to add to this one */
TFSIMD_FORCE_INLINE Quaternion& operator+=(const Quaternion& q)
{
m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3];
return *this;
}
/**@brief Sutfract out a quaternion
* @param q The quaternion to sutfract from this one */
Quaternion& operator-=(const Quaternion& q)
{
m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3];
return *this;
}
/**@brief Scale this quaternion
* @param s The scalar to scale by */
Quaternion& operator*=(const tfScalar& s)
{
m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s;
return *this;
}
/**@brief Multiply this quaternion by q on the right
* @param q The other quaternion
* Equivilant to this = this * q */
Quaternion& operator*=(const Quaternion& q)
{
setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
return *this;
}
/**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
tfScalar dot(const Quaternion& q) const
{
return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3];
}
/**@brief Return the length squared of the quaternion */
tfScalar length2() const
{
return dot(*this);
}
/**@brief Return the length of the quaternion */
tfScalar length() const
{
return tfSqrt(length2());
}
/**@brief Normalize the quaternion
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
Quaternion& normalize()
{
return *this /= length();
}
/**@brief Return a scaled version of this quaternion
* @param s The scale factor */
TFSIMD_FORCE_INLINE Quaternion
operator*(const tfScalar& s) const
{
return Quaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
}
/**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
Quaternion operator/(const tfScalar& s) const
{
tfAssert(s != tfScalar(0.0));
return *this * (tfScalar(1.0) / s);
}
/**@brief Inversely scale this quaternion
* @param s The scale factor */
Quaternion& operator/=(const tfScalar& s)
{
tfAssert(s != tfScalar(0.0));
return *this *= tfScalar(1.0) / s;
}
/**@brief Return a normalized version of this quaternion */
Quaternion normalized() const
{
return *this / length();
}
/**@brief Return the ***half*** angle between this quaternion and the other
* @param q The other quaternion */
tfScalar angle(const Quaternion& q) const
{
tfScalar s = tfSqrt(length2() * q.length2());
tfAssert(s != tfScalar(0.0));
return tfAcos(dot(q) / s);
}
/**@brief Return the angle between this quaternion and the other along the shortest path
* @param q The other quaternion */
tfScalar angleShortestPath(const Quaternion& q) const
{
tfScalar s = tfSqrt(length2() * q.length2());
tfAssert(s != tfScalar(0.0));
if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
return tfAcos(dot(-q) / s) * tfScalar(2.0);
else
return tfAcos(dot(q) / s) * tfScalar(2.0);
}
/**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */
tfScalar getAngle() const
{
tfScalar s = tfScalar(2.) * tfAcos(m_floats[3]);
return s;
}
/**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path*/
tfScalar getAngleShortestPath() const
{
tfScalar s;
if (m_floats[3] < 0)
s = tfScalar(2.) * tfAcos(-m_floats[3]);
else
s = tfScalar(2.) * tfAcos(m_floats[3]);
return s;
}
/**@brief Return the axis of the rotation represented by this quaternion */
Vector3 getAxis() const
{
tfScalar s_squared = tfScalar(1.) - tfPow(m_floats[3], tfScalar(2.));
if (s_squared < tfScalar(10.) * TFSIMD_EPSILON) //Check for divide by zero
return Vector3(1.0, 0.0, 0.0); // Arbitrary
tfScalar s = tfSqrt(s_squared);
return Vector3(m_floats[0] / s, m_floats[1] / s, m_floats[2] / s);
}
/**@brief Return the inverse of this quaternion */
Quaternion inverse() const
{
return Quaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
}
/**@brief Return the sum of this quaternion and the other
* @param q2 The other quaternion */
TFSIMD_FORCE_INLINE Quaternion
operator+(const Quaternion& q2) const
{
const Quaternion& q1 = *this;
return Quaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
}
/**@brief Return the difference between this quaternion and the other
* @param q2 The other quaternion */
TFSIMD_FORCE_INLINE Quaternion
operator-(const Quaternion& q2) const
{
const Quaternion& q1 = *this;
return Quaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
}
/**@brief Return the negative of this quaternion
* This simply negates each element */
TFSIMD_FORCE_INLINE Quaternion operator-() const
{
const Quaternion& q2 = *this;
return Quaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
}
/**@todo document this and it's use */
TFSIMD_FORCE_INLINE Quaternion farthest( const Quaternion& qd) const
{
Quaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) > sum.dot(sum) )
return qd;
return (-qd);
}
/**@todo document this and it's use */
TFSIMD_FORCE_INLINE Quaternion nearest( const Quaternion& qd) const
{
Quaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) < sum.dot(sum) )
return qd;
return (-qd);
}
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
* @param q The other quaternion to interpolate with
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
* Slerp interpolates assuming constant velocity. */
Quaternion slerp(const Quaternion& q, const tfScalar& t) const
{
tfScalar theta = angleShortestPath(q) / tfScalar(2.0);
if (theta != tfScalar(0.0))
{
tfScalar d = tfScalar(1.0) / tfSin(theta);
tfScalar s0 = tfSin((tfScalar(1.0) - t) * theta);
tfScalar s1 = tfSin(t * theta);
if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
return Quaternion((m_floats[0] * s0 + -q.x() * s1) * d,
(m_floats[1] * s0 + -q.y() * s1) * d,
(m_floats[2] * s0 + -q.z() * s1) * d,
(m_floats[3] * s0 + -q.m_floats[3] * s1) * d);
else
return Quaternion((m_floats[0] * s0 + q.x() * s1) * d,
(m_floats[1] * s0 + q.y() * s1) * d,
(m_floats[2] * s0 + q.z() * s1) * d,
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
}
else
{
return *this;
}
}
static const Quaternion& getIdentity()
{
static const Quaternion identityQuat(tfScalar(0.),tfScalar(0.),tfScalar(0.),tfScalar(1.));
return identityQuat;
}
TFSIMD_FORCE_INLINE const tfScalar& getW() const { return m_floats[3]; }
};
/**@brief Return the negative of a quaternion */
TFSIMD_FORCE_INLINE Quaternion
operator-(const Quaternion& q)
{
return Quaternion(-q.x(), -q.y(), -q.z(), -q.w());
}
/**@brief Return the product of two quaternions */
TFSIMD_FORCE_INLINE Quaternion
operator*(const Quaternion& q1, const Quaternion& q2) {
return Quaternion(q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
}
TFSIMD_FORCE_INLINE Quaternion
operator*(const Quaternion& q, const Vector3& w)
{
return Quaternion( q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
}
TFSIMD_FORCE_INLINE Quaternion
operator*(const Vector3& w, const Quaternion& q)
{
return Quaternion( w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
}
/**@brief Calculate the dot product between two quaternions */
TFSIMD_FORCE_INLINE tfScalar
dot(const Quaternion& q1, const Quaternion& q2)
{
return q1.dot(q2);
}
/**@brief Return the length of a quaternion */
TFSIMD_FORCE_INLINE tfScalar
length(const Quaternion& q)
{
return q.length();
}
/**@brief Return the ***half*** angle between two quaternions*/
TFSIMD_FORCE_INLINE tfScalar
angle(const Quaternion& q1, const Quaternion& q2)
{
return q1.angle(q2);
}
/**@brief Return the shortest angle between two quaternions*/
TFSIMD_FORCE_INLINE tfScalar
angleShortestPath(const Quaternion& q1, const Quaternion& q2)
{
return q1.angleShortestPath(q2);
}
/**@brief Return the inverse of a quaternion*/
TFSIMD_FORCE_INLINE Quaternion
inverse(const Quaternion& q)
{
return q.inverse();
}
/**@brief Return the result of spherical linear interpolation betwen two quaternions
* @param q1 The first quaternion
* @param q2 The second quaternion
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
* Slerp assumes constant velocity between positions. */
TFSIMD_FORCE_INLINE Quaternion
slerp(const Quaternion& q1, const Quaternion& q2, const tfScalar& t)
{
return q1.slerp(q2, t);
}
TFSIMD_FORCE_INLINE Vector3
quatRotate(const Quaternion& rotation, const Vector3& v)
{
Quaternion q = rotation * v;
q *= rotation.inverse();
return Vector3(q.getX(),q.getY(),q.getZ());
}
TFSIMD_FORCE_INLINE Quaternion
shortestArcQuat(const Vector3& v0, const Vector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
Vector3 c = v0.cross(v1);
tfScalar d = v0.dot(v1);
if (d < -1.0 + TFSIMD_EPSILON)
{
Vector3 n,unused;
tfPlaneSpace1(v0,n,unused);
return Quaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
}
tfScalar s = tfSqrt((1.0f + d) * 2.0f);
tfScalar rs = 1.0f / s;
return Quaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
}
TFSIMD_FORCE_INLINE Quaternion
shortestArcQuatNormalize2(Vector3& v0,Vector3& v1)
{
v0.normalize();
v1.normalize();
return shortestArcQuat(v0,v1);
}
}
#endif
|