/usr/include/trilinos/Amesos_BaseSolver.h is in libtrilinos-amesos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | /*
// @HEADER
// ***********************************************************************
//
// Amesos: Direct Sparse Solver Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
*/
/*!
* \file Amesos_BaseSolver.h
*
* \class Amesos_BaseSolver
*
* \brief Pure virtual class for all Amesos concrete implementions
*
* \date Last updated on 24-May-05.
*/
#ifndef _AMESOS_BASESOLVER_H_
#define _AMESOS_BASESOLVER_H_
const int StructurallySingularMatrixError = -21;
const int NumericallySingularMatrixError = -22;
//#include "Amesos_ConfigDefs.h"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_ParameterListAcceptor.hpp"
#include "Epetra_LinearProblem.h"
class Epetra_LinearProblem;
class Epetra_MultiVector;
class Epetra_Map;
class Epetra_Comm;
//! Amesos_BaseSolver: A pure virtual class for direct solution of real-valued double-precision operators.
/*!
The Amesos_BaseSolver class is a pure virtual class (that is, it specifies
interface only) that enables the use of real-valued
double-precision direct sparse solvers. Every Amesos class named
Amesos_<i>SolverName</i> derives from Amesos_BaseSolver.
<H1>Usage Examples</H1>
<H2>Basic calling sequence</H2> The basic
calling sequence solves A x = b or A<SUP>T</SUP> x = b without
specifying how A has changed between each call to Solve().
\code
Epetra_LinearProblem Problem(A,X,B);
Amesos_SolverName Solver(Problem);
Problem.SetUseTranspose(false);
while( ... ) {
<Here code which may change A or B>
Solver.SymbolicFactorization();
Solver.NumericFactorization();
Solver.Solve();
}
\endcode
<H2>Re-using the symbolic factorization</H2> The following
calling sequence performs multiple solves of A x = b or A<SUP>T</SUP> x = b
in cases where the non-zero structure of A remains unchanged
between each call to Solve().
\code
Epetra_LinearProblem Problem(A,X,B);
Amesos_SolverName Solver(Problem);
Problem.SetUseTranspose(false);
Solver.SymbolicFactorization();
while( ... ) {
<Here code which may change B or the non-zero values
(but not the non-zero structure) of A>
Solver.NumericFactorization() ;
Solver.Solve() ;
}
\endcode
<H2>Re-using the numeric factorization</H2> The following
calling sequence performs multiple solves of A x = b or A<SUP>T</SUP> x = b
provided that A remains unchanged between each call to Solve().
\code
Epetra_LinearProblem Problem(A,X,B);
Amesos_SolverName Solver(Problem);
Problem.SetUseTranspose( false );
Solver.NumericFactorization();
while( ... ) {
<Here code which may change B but not A>
Solver.Solve();
}
\endcode
<H2>Constructor requirements</H2>
Every Amesos_SolverName class should accept an Epetra_LinearProblem
<H2>Mathematical methods</H2> Four mathematical methods are
defined in the base class Amesos_BaseSolver:
SymbolicFactorization(), NumericFactorization(),
and Solve().
<H2>Switching concrete classes</H2>
Different concrete
classes, each based on a different third party solver, will have
different performance characteristics and will accept different
parameters.
<H2>Changing the values of the underlying matrix operator.</H2>
<p>Any changes to the values of a matrix must be accompanied by a call to
NumericFactorization() before the next call to Solve() or the behavior
of Solve() is undefined. Any changes to the numerical structure of
the matrix must be followed by a call to SymbolicFactorization() and
NumericalFactorization() before the next call to Solve().
<p>Once SymbolicFactorization() has been called, classes implementing
this interface may assume that any change made to the non-zero
structure of the underlying matrix will be accompanied by a call
to SymbolicFactorization() prior to a subsequent call to
NumericFactorization or Solve().
<H2>Named Parameters</H2>
Parameters can be changed or added at any time by calling
SetParameters(ParamList) with the new parameters specified in ParamList.
It is left to the user to be sure that changes made to the
parameters are appropriate for the concrete class that they are
using.
Examples of appropriate changes in parameters include:
<ul>
<li><b>Changing iterative refinement rules between calls to Solve()</b>
<li><b>Changing drop tolerance rules between calls to NumericFactorization()</b>
</ul>
Examples of inappropriate changes in parameters include: <ul>
<li><b>Changing drop tolerance rules between solve steps.</b>
<pre> Solver.NumericFactorization();
Solver.getList()->set("DropTolerance",.001);
Solver.Solve(); </pre> </ul> Results of making inappropriate
changes in parameters is unpredictable and could include an error
return, a bogus result or ignoring the parameter change.
<H2>Transpose solve</H2> Any class implementing Amesos_BaseSolver
should handle calls to SetUseTranspose() at any point. However, the
result of a call to SetUseTranspose() which is not followed by a call
to SymbolicFactorization() and NumericFactorization() is
implementation dependent. Some third party libraries are able to
solve A<SUP>T</SUP> x = b and Ax = b using the same factorization.
Others will require a new factorization anytime that a call to
SetUseTranspose() changes the intended solve from A<SUP>T</SUP> x = b
to Ax = b or vice-versa.
<H1>Performance expectations</H1>
The following is a list of performance guidelines that classes
which implement the Amesos_BaseSolver class are expected to maintain.
<H1>Memory usage:</H1>
For serial codes, no more than one extra copy of the original matrix
should be required. Except that some codes require matrix transpostion
which requires additional copies of the input matrix.
For distributed memory codes, no serial copies of the original matrix
should be required.
<H1>Robustness requirements</H1>
<p>Failures should be caught by AMESOS_CHK_ERR().
The following error codes should be used:
- 1: Singular matrix
- 2: Non-symmetric matrix
- 3: Matrix is not positive definite
- 4: Insufficient memory
<p>Because we do not check to see if a matrix has changed
between the call to SymbolicFactorization() and the call to
NumericFactorization(), it is possible that a change to the
matrix will cause a potentially catastrophic error.
*/
class Amesos_BaseSolver
: public Teuchos::ParameterListAcceptor
{
#if 0
private:
Teuchos::RCP<Teuchos::ParameterList> paramList_ ;
#endif
public:
/** \brief . */
using Teuchos::ParameterListAcceptor::getParameterList;
//@{ \name Destructor
//! Destructor
virtual ~Amesos_BaseSolver() {};
//@}
//@{ \name Mathematical functions
//! Performs SymbolicFactorization on the matrix A.
/*!
In addition to performing symbolic factorization on the matrix A,
the call to SymbolicFactorization() implies that no change will
be made to the non-zero structure of the underlying matrix without
a subsequent call to SymbolicFactorization().
<br \>Preconditions:<ul>
<li>GetProblem().GetOperator() != 0 (return -1)
<li>MatrixShapeOk(GetProblem().GetOperator()) == true (return -6)
</ul>
<br \>Postconditions:<ul>
<li>Symbolic Factorization will be performed (or marked to be performed)
allowing NumericFactorization() and Solve() to be called.
</ul>
\return Integer error code, set to 0 if successful.
*/
virtual int SymbolicFactorization() = 0;
//! Performs NumericFactorization on the matrix A.
/*! In addition to performing numeric factorization on the
matrix A, the call to
NumericFactorization() implies that no change will be made to
the underlying matrix without a subsequent call to
NumericFactorization().
<br \>Preconditions:<ul>
<li>GetProblem().GetOperator() != 0 (return -1)
<li>MatrixShapeOk(GetProblem().GetOperator()) == true (return -6)
<li>The non-zero structure of the matrix should not have changed
since the last call to SymbolicFactorization().
(return -2 if the number of non-zeros changes)
Other changes can have arbitrary consequences.
<li>The distribution of the matrix should not have changed
since the last call to SymbolicFactorization()
<li>The matrix should be indexed from 0 to n-1, unless the parameter "Reindex"
was set to "true" prior to the call to SymbolicFactorization().
(return -3 - if caught)
<li>The paremeter "Reindex" should not be set to "true" except on CrsMatrices.
(return -4)
<li>The paremeter "Reindex" should not be set to "true" unless Amesos was built
with EpetraExt, i.e. with --enable-epetraext on the configure line.
(return -4)
<li>Internal errors retur -5.
</ul>
<br \>Postconditions:<ul>
<li>Numeric Factorization will be performed (or marked to be performed)
allowing Solve() to be performed correctly despite a potential change in
in the matrix values (though not in the non-zero structure).
</ul>
\return Integer error code, set to 0 if successful.
*/
virtual int NumericFactorization() = 0;
//! Solves A X = B (or A<SUP>T</SUP> x = B)
/*!
<br \>Preconditions:<ul>
<li>GetProblem().GetOperator() != 0 (return -1)
<li>MatrixShapeOk(GetProblem().GetOperator()) == true (return -6)
<li>GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for return values)
<li>The non-zero structure of the matrix should not have changed
since the last call to SymbolicFactorization().
<li>The distribution of the matrix should not have changed
since the last call to SymbolicFactorization()
<li>The matrix should not have changed
since the last call to NumericFactorization().
</ul>
<br \>Postconditions:<ul>
<li>X will be set such that A X = B (or
A<SUP>T</SUP> X = B), within the limits of the accuracy of the
underlying solver.
</ul>
\return Integer error code, set to 0 if successful.
*/
virtual int Solve() = 0;
//@}
//@{ \name Attribute set methods
//! If set true, X will be set to the solution of A<SUP>T</SUP> X = B (not A X = B)
/*! If the implementation of this interface does not support
transpose use, this method should return a value of -1.
<br \>Preconditions:<ul>
<li>SetUseTranspose() should be called prior to the call to SymbolicFactorization() If NumericFactorization() or Solve() is called after SetUseTranspose() without an intervening call to SymbolicFactorization() the result is implementation dependent. </li>
</ul>
<br \>Postconditions:<ul>
<li>The next factorization and solve will be performed with
the new value of UseTranspose. </li>
</ul>
\param
UseTranspose -- (In) If true, solve A<SUP>T</SUP> X = B, otherwise
solve A X = B.
\return Integer error code, set to 0 if successful. Set to -1 if
this implementation does not support transpose.
*/
virtual int SetUseTranspose(bool UseTranspose) = 0;
//! Returns the current UseTranspose setting.
virtual bool UseTranspose() const = 0;
//! Updates internal variables.
/*!
<br \>Preconditions:<ul>
<li>None.</li>
</ul>
<br \>Postconditions:<ul>
<li>Internal variables controlling the factorization and solve will
be updated and take effect on all subseuent calls to NumericFactorization()
and Solve().</li>
<li>All parameters whose value are to differ from the default values must
be included in ParameterList. Parameters not specified in ParameterList
revert to their default values.
</ul>
\return Integer error code, set to 0 if successful.
*/
virtual int SetParameters( Teuchos::ParameterList &ParameterList ) = 0 ;
/** \brief Returns the Epetra_LinearProblem.
*
* <b>Warning!</b> Do not call <tt>return->SetOperator(...)</tt> to attempt
* to change the <tt>Epetra_Operator</tt> object (even if the new matrix has
* the same structure). This new operator matrix will be ignored!
*/
virtual const Epetra_LinearProblem* GetProblem() const = 0;
//! Returns true if the solver can handle this matrix shape
/*! Returns true if the matrix shape is one that the underlying
sparse direct solver can handle. Classes that work only on square
matrices should return false for rectangular matrices. Classes
that work only on symmetric matrices whould return false for
non-symmetric matrices.
*/
virtual bool MatrixShapeOK() const = 0;
//! Returns a pointer to the Epetra_Comm communicator associated with this operator.
virtual const Epetra_Comm & Comm() const = 0;
//! Returns the number of symbolic factorizations performed by this object.
virtual int NumSymbolicFact() const = 0;
//! Returns the number of numeric factorizations performed by this object.
virtual int NumNumericFact() const = 0;
//! Returns the number of solves performed by this object.
virtual int NumSolve() const = 0;
//! Prints status information about the current solver.
virtual void PrintStatus() const = 0;
//! Prints timing information about the current solver.
virtual void PrintTiming() const = 0;
//! Redefined from Teuchos::ParameterListAcceptor (Does Not Work)
virtual void setParameterList(Teuchos::RCP<Teuchos::ParameterList> const& paramList)
{
Teuchos::RCP<Teuchos::ParameterList> temp = paramList;
// paramList_ = paramlist ;
// this->SetParameters( *paramList_ );
}
//! This is an empty stub
virtual Teuchos::RCP<Teuchos::ParameterList> getNonconstParameterList()
{
Teuchos::RCP<Teuchos::ParameterList> PL ;
return PL ;
}
//! This is an empty stub
virtual Teuchos::RCP<Teuchos::ParameterList> unsetParameterList()
{
Teuchos::RCP<Teuchos::ParameterList> PL ;
// this->SetParameters( *paramList_ );
return PL ;
}
//! Extracts timing information from the current solver and places it in the parameter list. (Does Not Work)
virtual void GetTiming( Teuchos::ParameterList &TimingParameterList ) const
{
Teuchos::ParameterList temp;
TimingParameterList = temp.setName("NULL");
}
//@}
};
#endif /* _AMESOS_BASESOLVER_H_ */
|