/usr/include/trilinos/klu2_ext.hpp is in libtrilinos-amesos2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 | /* ========================================================================== */
/* === klu include file ===================================================== */
/* ========================================================================== */
// @HEADER
// ***********************************************************************
//
// KLU2: A Direct Linear Solver package
// Copyright 2011 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, with Sandia Corporation, the
// U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Mike A. Heroux (maherou@sandia.gov)
//
// KLU2 is derived work from KLU, licensed under LGPL, and copyrighted by
// University of Florida. The Authors of KLU are Timothy A. Davis and
// Eka Palamadai. See Doc/KLU_README.txt for the licensing and copyright
// information for KLU.
//
// ***********************************************************************
// @HEADER
/* Include file for user programs that call klu_* routines */
#ifndef _TKLU_H
#define _TKLU_H
#include "trilinos_amd.h"
#include "trilinos_colamd.h"
#include "trilinos_btf_decl.h"
/* -------------------------------------------------------------------------- */
/* Symbolic object - contains the pre-ordering computed by klu_analyze */
/* -------------------------------------------------------------------------- */
/* TODO : Entry is not needed in symbolic, numeric and common. Remove TODO */
template <typename Entry, typename Int> struct klu_symbolic
{
/* A (P,Q) is in upper block triangular form. The kth block goes from
* row/col index R [k] to R [k+1]-1. The estimated number of nonzeros
* in the L factor of the kth block is Lnz [k].
*/
/* only computed if the AMD ordering is chosen: */
double symmetry ; /* symmetry of largest block */
double est_flops ; /* est. factorization flop count */
double lnz, unz ; /* estimated nz in L and U, including diagonals */
double *Lnz ; /* size n, but only Lnz [0..nblocks-1] is used */
/* computed for all orderings: */
Int
n, /* input matrix A is n-by-n */
nz, /* # entries in input matrix */
*P, /* size n */
*Q, /* size n */
*R, /* size n+1, but only R [0..nblocks] is used */
nzoff, /* nz in off-diagonal blocks */
nblocks, /* number of blocks */
maxblock, /* size of largest block */
ordering, /* ordering used (AMD, COLAMD, or GIVEN) */
do_btf ; /* whether or not BTF preordering was requested */
/* only computed if BTF preordering requested */
Int structural_rank ; /* 0 to n-1 if the matrix is structurally rank
* deficient. -1 if not computed. n if the matrix has
* full structural rank */
} ;
/* -------------------------------------------------------------------------- */
/* Numeric object - contains the factors computed by klu_factor */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int> struct klu_numeric
{
/* LU factors of each block, the pivot row permutation, and the
* entries in the off-diagonal blocks */
Int n ; /* A is n-by-n */
Int nblocks ; /* number of diagonal blocks */
Int lnz ; /* actual nz in L, including diagonal */
Int unz ; /* actual nz in U, including diagonal */
Int max_lnz_block ; /* max actual nz in L in any one block, incl. diag */
Int max_unz_block ; /* max actual nz in U in any one block, incl. diag */
Int *Pnum ; /* size n. final pivot permutation */
Int *Pinv ; /* size n. inverse of final pivot permutation */
/* LU factors of each block */
Int *Lip ; /* size n. pointers into LUbx[block] for L */
Int *Uip ; /* size n. pointers into LUbx[block] for U */
Int *Llen ; /* size n. Llen [k] = # of entries in kth column of L */
Int *Ulen ; /* size n. Ulen [k] = # of entries in kth column of U */
void **LUbx ; /* L and U indices and entries (excl. diagonal of U) */
size_t *LUsize ; /* size of each LUbx [block], in sizeof (Unit) */
void *Udiag ; /* diagonal of U */
/* scale factors; can be NULL if no scaling */
double *Rs ; /* size n. Rs [i] is scale factor for row i */
/* permanent workspace for factorization and solve */
size_t worksize ; /* size (in bytes) of Work */
void *Work ; /* workspace */
void *Xwork ; /* alias into Numeric->Work */
Int *Iwork ; /* alias into Numeric->Work */
/* off-diagonal entries in a conventional compressed-column sparse matrix */
Int *Offp ; /* size n+1, column pointers */
Int *Offi ; /* size nzoff, row indices */
void *Offx ; /* size nzoff, numerical values */
Int nzoff ;
} ;
/* -------------------------------------------------------------------------- */
/* KLU control parameters and statistics */
/* -------------------------------------------------------------------------- */
/* Common->status values */
#define KLU_OK 0
#define KLU_SINGULAR (1) /* status > 0 is a warning, not an error */
#define KLU_OUT_OF_MEMORY (-2)
#define KLU_INVALID (-3)
#define KLU_TOO_LARGE (-4) /* integer overflow has occured */
template <typename Entry, typename Int> struct klu_common
{
/* --------------------------------------------------------------------- */
/* parameters */
/* --------------------------------------------------------------------- */
double tol ; /* pivot tolerance for diagonal preference */
double memgrow ; /* realloc memory growth size for LU factors */
double initmem_amd ; /* init. memory size with AMD: c*nnz(L) + n */
double initmem ; /* init. memory size: c*nnz(A) + n */
double maxwork ; /* maxwork for BTF, <= 0 if no limit */
Int btf ; /* use BTF pre-ordering, or not */
Int ordering ; /* 0: AMD, 1: COLAMD, 2: user P and Q,
* 3: user function */
Int scale ; /* row scaling: -1: none (and no error check),
* 0: none, 1: sum, 2: max */
/* memory management routines */
void *(*malloc_memory) (size_t) ; /* pointer to malloc */
void *(*realloc_memory) (void *, size_t) ; /* pointer to realloc */
void (*free_memory) (void *) ; /* pointer to free */
void *(*calloc_memory) (size_t, size_t) ; /* pointer to calloc */
/* pointer to user ordering function */
int (*user_order) (Int, Int *, Int *, Int *, struct klu_common<Entry, Int> *) ;
/* pointer to user data, passed unchanged as the last parameter to the
* user ordering function (optional, the user function need not use this
* information). */
void *user_data ;
Int halt_if_singular ; /* how to handle a singular matrix:
* FALSE: keep going. Return a Numeric object with a zero U(k,k). A
* divide-by-zero may occur when computing L(:,k). The Numeric object
* can be passed to klu_solve (a divide-by-zero will occur). It can
* also be safely passed to klu_refactor.
* TRUE: stop quickly. klu_factor will free the partially-constructed
* Numeric object. klu_refactor will not free it, but will leave the
* numerical values only partially defined. This is the default. */
/* ---------------------------------------------------------------------- */
/* statistics */
/* ---------------------------------------------------------------------- */
Int status ; /* KLU_OK if OK, < 0 if error */
Int nrealloc ; /* # of reallocations of L and U */
Int structural_rank ; /* 0 to n-1 if the matrix is structurally rank
* deficient (as determined by maxtrans). -1 if not computed. n if the
* matrix has full structural rank. This is computed by klu_analyze
* if a BTF preordering is requested. */
Int numerical_rank ; /* First k for which a zero U(k,k) was found,
* if the matrix was singular (in the range 0 to n-1). n if the matrix
* has full rank. This is not a true rank-estimation. It just reports
* where the first zero pivot was found. -1 if not computed.
* Computed by klu_factor and klu_refactor. */
Int singular_col ; /* n if the matrix is not singular. If in the
* range 0 to n-1, this is the column index of the original matrix A that
* corresponds to the column of U that contains a zero diagonal entry.
* -1 if not computed. Computed by klu_factor and klu_refactor. */
Int noffdiag ; /* # of off-diagonal pivots, -1 if not computed */
double flops ; /* actual factorization flop count, from klu_flops */
double rcond ; /* crude reciprocal condition est., from klu_rcond */
double condest ; /* accurate condition est., from klu_condest */
double rgrowth ; /* reciprocal pivot rgrowth, from klu_rgrowth */
double work ; /* actual work done in BTF, in klu_analyze */
size_t memusage ; /* current memory usage, in bytes */
size_t mempeak ; /* peak memory usage, in bytes */
} ;
/* -------------------------------------------------------------------------- */
/* klu_defaults: sets default control parameters */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_defaults
(
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_analyze: orders and analyzes a matrix */
/* -------------------------------------------------------------------------- */
/* Order the matrix with BTF (or not), then order each block with AMD, COLAMD,
* a natural ordering, or with a user-provided ordering function */
template <typename Entry, typename Int>
klu_symbolic<Entry, Int> *klu_analyze
(
/* inputs, not modified */
Int n, /* A is n-by-n */
Int Ap [ ], /* size n+1, column pointers */
Int Ai [ ], /* size nz, row indices */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_analyze_given: analyzes a matrix using given P and Q */
/* -------------------------------------------------------------------------- */
/* Order the matrix with BTF (or not), then use natural or given ordering
* P and Q on the blocks. P and Q are interpretted as identity
* if NULL. */
template <typename Entry, typename Int>
klu_symbolic<Entry, Int> *klu_analyze_given
(
/* inputs, not modified */
Int n, /* A is n-by-n */
Int Ap [ ], /* size n+1, column pointers */
Int Ai [ ], /* size nz, row indices */
Int P [ ], /* size n, user's row permutation (may be NULL) */
Int Q [ ], /* size n, user's column permutation (may be NULL) */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_factor: factors a matrix using the klu_analyze results */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
klu_numeric<Entry, Int> *klu_factor /* returns KLU_OK if OK, < 0 if error */
(
/* inputs, not modified */
Int Ap [ ], /* size n+1, column pointers */
Int Ai [ ], /* size nz, row indices */
Entry Ax [ ], /* size nz, numerical values */
klu_symbolic<Entry, Int> *Symbolic,
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_solve: solves Ax=b using the Symbolic and Numeric objects */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_solve
(
/* inputs, not modified */
klu_symbolic<Entry, Int> *Symbolic,
klu_numeric<Entry, Int> *Numeric,
Int ldim, /* leading dimension of B */
Int nrhs, /* number of right-hand-sides */
/* right-hand-side on input, overwritten with solution to Ax=b on output */
Entry B [ ], /* size ldim*nrhs */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_tsolve: solves A'x=b using the Symbolic and Numeric objects */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_tsolve
(
/* inputs, not modified */
klu_symbolic<Entry, Int> *Symbolic,
klu_numeric<Entry, Int> *Numeric,
Int ldim, /* leading dimension of B */
Int nrhs, /* number of right-hand-sides */
/* right-hand-side on input, overwritten with solution to Ax=b on output */
Entry B [ ], /* size ldim*nrhs */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_refactor: refactorizes matrix with same ordering as klu_factor */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_refactor /* return TRUE if successful, FALSE otherwise */
(
/* inputs, not modified */
Int Ap [ ], /* size n+1, column pointers */
Int Ai [ ], /* size nz, row indices */
Entry Ax [ ], /* size nz, numerical values */
klu_symbolic<Entry, Int> *Symbolic,
/* input, and numerical values modified on output */
klu_numeric<Entry, Int> *Numeric,
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_free_symbolic: destroys the Symbolic object */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_free_symbolic
(
klu_symbolic<Entry, Int> **Symbolic,
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_free_numeric: destroys the Numeric object */
/* -------------------------------------------------------------------------- */
/* Note that klu_free_numeric and klu_z_free_numeric are identical; each can
* free both kinds of Numeric objects (real and complex) */
template <typename Entry, typename Int>
Int klu_free_numeric
(
klu_numeric<Entry, Int> **Numeric,
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_sort: sorts the columns of the LU factorization */
/* -------------------------------------------------------------------------- */
/* this is not needed except for the MATLAB interface */
template <typename Entry, typename Int>
Int klu_sort
(
/* inputs, not modified */
klu_symbolic<Entry, Int> *Symbolic,
/* input/output */
klu_numeric<Entry, Int> *Numeric,
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_flops: determines # of flops performed in numeric factorzation */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_flops
(
/* inputs, not modified */
klu_symbolic<Entry, Int> *Symbolic,
klu_numeric<Entry, Int> *Numeric,
/* input/output */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_rgrowth : compute the reciprocal pivot growth */
/* -------------------------------------------------------------------------- */
/* Pivot growth is computed after the input matrix is permuted, scaled, and
* off-diagonal entries pruned. This is because the LU factorization of each
* block takes as input the scaled diagonal blocks of the BTF form. The
* reciprocal pivot growth in column j of an LU factorization of a matrix C
* is the largest entry in C divided by the largest entry in U; then the overall
* reciprocal pivot growth is the smallest such value for all columns j. Note
* that the off-diagonal entries are not scaled, since they do not take part in
* the LU factorization of the diagonal blocks.
*
* In MATLAB notation:
*
* rgrowth = min (max (abs ((R \ A(p,q)) - F)) ./ max (abs (U))) */
template <typename Entry, typename Int>
Int klu_rgrowth
(
Int Ap [ ],
Int Ai [ ],
Entry Ax [ ],
klu_symbolic<Entry, Int> *Symbolic,
klu_numeric<Entry, Int> *Numeric,
klu_common<Entry, Int> *Common /* Common->rgrowth = reciprocal pivot growth */
) ;
/* -------------------------------------------------------------------------- */
/* klu_condest */
/* -------------------------------------------------------------------------- */
/* Computes a reasonably accurate estimate of the 1-norm condition number, using
* Hager's method, as modified by Higham and Tisseur (same method as used in
* MATLAB's condest */
template <typename Entry, typename Int>
Int klu_condest
(
Int Ap [ ], /* size n+1, column pointers, not modified */
Entry Ax [ ], /* size nz = Ap[n], numerical values, not modified*/
klu_symbolic<Entry, Int> *Symbolic, /* symbolic analysis, not modified */
klu_numeric<Entry, Int> *Numeric, /* numeric factorization, not modified */
klu_common<Entry, Int> *Common /* result returned in Common->condest */
) ;
/* -------------------------------------------------------------------------- */
/* klu_rcond: compute min(abs(diag(U))) / max(abs(diag(U))) */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_rcond
(
klu_symbolic<Entry, Int> *Symbolic, /* input, not modified */
klu_numeric<Entry, Int> *Numeric, /* input, not modified */
klu_common<Entry, Int> *Common /* result in Common->rcond */
) ;
/* -------------------------------------------------------------------------- */
/* klu_scale */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_scale /* return TRUE if successful, FALSE otherwise */
(
/* inputs, not modified */
Int scale, /* <0: none, no error check; 0: none, 1: sum, 2: max */
Int n,
Int Ap [ ], /* size n+1, column pointers */
Int Ai [ ], /* size nz, row indices */
Entry Ax [ ],
/* outputs, not defined on input */
double Rs [ ],
/* workspace, not defined on input or output */
Int W [ ], /* size n, can be NULL */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* klu_extract */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
Int klu_extract /* returns TRUE if successful, FALSE otherwise */
(
/* inputs: */
klu_numeric<Entry, Int> *Numeric,
klu_symbolic<Entry, Int> *Symbolic,
/* outputs, either allocated on input, or ignored otherwise */
/* L */
Int *Lp, /* size n+1 */
Int *Li, /* size Numeric->lnz */
Entry *Lx, /* size Numeric->lnz */
/* U */
Int *Up, /* size n+1 */
Int *Ui, /* size Numeric->unz */
Entry *Ux, /* size Numeric->unz */
/* F */
Int *Fp, /* size n+1 */
Int *Fi, /* size Numeric->nzoff */
Entry *Fx, /* size Numeric->nzoff */
/* P, row permutation */
Int *P, /* size n */
/* Q, column permutation */
Int *Q, /* size n */
/* Rs, scale factors */
Entry *Rs, /* size n */
/* R, block boundaries */
Int *R, /* size Symbolic->nblocks+1 (nblocks is at most n) */
klu_common<Entry, Int> *Common
) ;
/* -------------------------------------------------------------------------- */
/* KLU memory management routines */
/* -------------------------------------------------------------------------- */
template <typename Entry, typename Int>
void *klu_malloc /* returns pointer to the newly malloc'd block */
(
/* ---- input ---- */
size_t n, /* number of items */
size_t size, /* size of each item */
/* --------------- */
klu_common<Entry, Int> *Common
) ;
template <typename Entry, typename Int>
void *klu_free /* always returns NULL */
(
/* ---- in/out --- */
void *p, /* block of memory to free */
size_t n, /* number of items */
size_t size, /* size of each item */
/* --------------- */
klu_common<Entry, Int> *Common
) ;
template <typename Entry, typename Int>
void *klu_realloc /* returns pointer to reallocated block */
(
/* ---- input ---- */
size_t nnew, /* requested # of items in reallocated block */
size_t nold, /* current size of block, in # of items */
size_t size, /* size of each item */
/* ---- in/out --- */
void *p, /* block of memory to realloc */
/* --------------- */
klu_common<Entry, Int> *Common
) ;
/* ========================================================================== */
/* === KLU version ========================================================== */
/* ========================================================================== */
/* All versions of KLU include these definitions.
* As an example, to test if the version you are using is 1.2 or later:
*
* if (KLU_VERSION >= KLU_VERSION_CODE (1,2)) ...
*
* This also works during compile-time:
*
* #if (KLU >= KLU_VERSION_CODE (1,2))
* printf ("This is version 1.2 or later\n") ;
* #else
* printf ("This is an early version\n") ;
* #endif
*/
#define KLU_DATE "Mar 24, 2009"
#define KLU_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
#define KLU_MAIN_VERSION 1
#define KLU_SUB_VERSION 1
#define KLU_SUBSUB_VERSION 0
#define KLU_VERSION KLU_VERSION_CODE(KLU_MAIN_VERSION,KLU_SUB_VERSION)
#endif
|