This file is indexed.

/usr/include/trilinos/BelosGmresPolySolMgr.hpp is in libtrilinos-belos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_GMRES_POLY_SOLMGR_HPP
#define BELOS_GMRES_POLY_SOLMGR_HPP

/// \file BelosGmresPolySolMgr.hpp
/// \brief Declaration and definition of Belos::GmresPolySolMgr
///   (hybrid block GMRES linear solver).

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"

#include "BelosGmresPolyOp.hpp"
#include "BelosGmresIteration.hpp"
#include "BelosBlockGmresIter.hpp"
#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#include "BelosStatusTestMaxIters.hpp"
#include "BelosStatusTestGenResNorm.hpp"
#include "BelosStatusTestImpResNorm.hpp"
#include "BelosStatusTestCombo.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_as.hpp"
#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif


namespace Belos {

//! @name GmresPolySolMgr Exceptions
//@{

/** \brief GmresPolySolMgrLinearProblemFailure is thrown when the linear problem is
 * not setup (i.e. setProblem() was not called) when solve() is called.
 *
 * This std::exception is thrown from the GmresPolySolMgr::solve() method.
 *
 */
class GmresPolySolMgrLinearProblemFailure : public BelosError {public:
  GmresPolySolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

/** \brief GmresPolySolMgrPolynomialFailure is thrown when their is a problem generating
 * the GMRES polynomial for this linear problem.
 *
 * This std::exception is thrown from the GmresPolySolMgr::solve() method.
 *
 */
class GmresPolySolMgrPolynomialFailure : public BelosError {public:
  GmresPolySolMgrPolynomialFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

/** \brief GmresPolySolMgrOrthoFailure is thrown when the orthogonalization manager is
 * unable to generate orthonormal columns from the initial basis vectors.
 *
 * This std::exception is thrown from the GmresPolySolMgr::solve() method.
 *
 */
class GmresPolySolMgrOrthoFailure : public BelosError {public:
  GmresPolySolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

/// \class Belos::GmresPolySolMgr
/// \brief Hybrid block GMRES iterative linear solver.
/// \author Heidi Thornquist
/// \ingroup belos_solver_framework
/// \example BlockGmres/BlockGmresPolyEpetraExFile.cpp
///
/// "Hybrid block GMRES" means that the solver first runs block GMRES.
/// It stores the resulting coefficients, which form a matrix
/// polynomial.  It then can reuse this polynomial for subsequent
/// solves.  This avoids the cost of the inner products and norms in
/// GMRES.  However, the resulting polynomial is not necessarily as
/// effective as the equivalent number of GMRES iterations.
///
/// We call solvers that take this approach "seed solvers."  Belos
/// implements both a Block GMRES seed solver (this class) and a
/// CG-based seed solver (Belos::PCPGSolMgr).
///
/// Here is a list of all the parameters that this solver accepts:
///   - "Convergence Tolerance" (\c MagnitudeType): The level that
///     residual norms must reach to decide convergence. Default:
///     1e-8.
///   - "Block Size" (\c int): The block size to be used by the
///     underlying block GMRES solver. Default: 1 (which means don't
///     use blocks).
///   - "Num Blocks" (\c int): The restart length; that is, the number
///     of blocks allocated for the Krylov basis. Default: 300.
///   - "Maximum Iterations" (\c int): The maximum number of
///     iterations GMRES is allowed to perform, across all restarts.
///     Default: 1000.
///   - "Maximum Restarts" (\c int): The maximum number of restarts
///     the underlying solver is allowed to perform.  This does
///     <i>not</i> include the first restart cycle.  Default: 20.
///   - "Orthogonalization" (\c std::string): The desired
///     orthogonalization method.  Default: "DGKS".
///   - "Verbosity" (Belos::MsgType): A sum of Belos::MsgType values
///     specifying what kinds of messages to print.  Default:
///     Belos::Errors.
///   - "Output Style" (Belos::OutputType): The output style.
///     Default: Belos::General.
///
/// Like all Belos solvers, parameters have relative or "delta"
/// semantics.  This means the following:
///   - Any parameter that was <i>never</i> set has its default value
///   - Any parameter not explicitly set in the input ParameterList
///     retains its current value
template<class ScalarType, class MV, class OP>
class GmresPolySolMgr : public SolverManager<ScalarType,MV,OP> {
private:
  typedef MultiVecTraits<ScalarType,MV> MVT;
  typedef OperatorTraits<ScalarType,MV,OP> OPT;
  typedef Teuchos::ScalarTraits<ScalarType> STS;
  typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
  typedef Teuchos::ScalarTraits<MagnitudeType> MT;

public:

  //! @name Constructors/Destructor
  //@{

  /*! \brief Empty constructor for GmresPolySolMgr.
   * This constructor takes no arguments and sets the default values for the solver.
   * The linear problem must be passed in using setProblem() before solve() is called on this object.
   * The solver values can be changed using setParameters().
   */
  GmresPolySolMgr();

  /*! \brief Basic constructor for GmresPolySolMgr.
   *
   * This constructor accepts the LinearProblem to be solved in addition
   * to a parameter list of options for the solver manager. These options include the following:
   *   - "Block Size" - a \c int specifying the block size to be used by the underlying block GMRES solver. Default: 1
   *   - "Num Blocks" - a \c int specifying the number of blocks allocated for the Krylov basis. Default: 300
   *   - "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform. Default: 1000
   *   - "Maximum Restarts" - a \c int specifying the maximum number of restarts the underlying solver is allowed to perform. Default: 20
   *   - "Orthogonalization" - a \c std::string specifying the desired orthogonalization:  DGKS, ICGS, and IMGS. Default: "DGKS"
   *   - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Belos::Errors
   *   - "Output Style" - a OutputType specifying the style of output. Default: Belos::General
   *   - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: 1e-8
   */
  GmresPolySolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
    const Teuchos::RCP<Teuchos::ParameterList> &pl );

  //! Destructor.
  virtual ~GmresPolySolMgr() {};
  //@}

  //! @name Accessor methods
  //@{

  /*! \brief Get current linear problem being solved for in this object.
   */
  const LinearProblem<ScalarType,MV,OP>& getProblem() const {
    return *problem_;
  }

  /*! \brief Get a parameter list containing the valid parameters for this object.
   */
  Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

  /*! \brief Get a parameter list containing the current parameters for this object.
   */
  Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }

  /*! \brief Return the timers for this object.
   *
   * The timers are ordered as follows:
   *   - time spent in solve() routine
   */
  Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
    return Teuchos::tuple(timerSolve_, timerPoly_);
  }

  //! Get the iteration count for the most recent call to \c solve().
  int getNumIters() const {
    return numIters_;
  }

  /*! \brief Return whether a loss of accuracy was detected by this solver during the most current solve.
      \note This flag will be reset the next time solve() is called.
   */
  bool isLOADetected() const { return loaDetected_; }

  //@}

  //! @name Set methods
  //@{

  //! Set the linear problem that needs to be solved.
  void setProblem( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem ) { problem_ = problem; isSTSet_ = false; }

  //! Set the parameters the solver manager should use to solve the linear problem.
  void setParameters( const Teuchos::RCP<Teuchos::ParameterList> &params );

  //@}
  //! @name Reset methods
  //@{

  /// \brief Reset the solver.
  ///
  /// \param type [in] How to reset the solver.
  ///
  /// If type includes Belos::Problem, then reset the solver's state.
  /// This clears out the stored coefficients, so that the next call
  /// to solve() actually computes a full block GMRES solve, instead
  /// of just reusing the coefficients from the first solve.
  void reset( const ResetType type ) {
    if ((type & Belos::Problem) && ! problem_.is_null ()) {
      problem_->setProblem ();
      isPolyBuilt_ = false;  // Rebuild the GMRES polynomial
    }
  }

  //@}
  //! @name Solver application methods
  //@{

  /*! \brief This method performs possibly repeated calls to the underlying linear solver's iterate() routine
   * until the problem has been solved (as decided by the solver manager) or the solver manager decides to
   * quit.
   *
   * This method calls BlockGmresIter::iterate(), which will return either because a specially constructed status test evaluates to
   * ::Passed or an std::exception is thrown.
   *
   * A return from BlockGmresIter::iterate() signifies one of the following scenarios:
   *    - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
   *      will be placed in the linear problem and return ::Unconverged.
   *    - global convergence has been met. In this case, the current solutions to the linear system will be placed in the linear
   *      problem and the solver manager will return ::Converged
   *
   * \returns ::ReturnType specifying:
   *     - ::Converged: the linear problem was solved to the specification required by the solver manager.
   *     - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
   */
  ReturnType solve();

  //@}

  /** \name Overridden from Teuchos::Describable */
  //@{

  /** \brief Method to return description of the hybrid block GMRES solver manager */
  std::string description() const;

  //@}

private:

  // Method for checking current status test against defined linear problem.
  bool checkStatusTest();

  // Method for generating GMRES polynomial.
  bool generatePoly();

  // Linear problem.
  Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;

  // Output manager.
  Teuchos::RCP<OutputManager<ScalarType> > printer_;
  Teuchos::RCP<std::ostream> outputStream_;

  // Status test.
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
  Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convTest_;
  Teuchos::RCP<StatusTestResNorm<ScalarType,MV,OP> > expConvTest_, impConvTest_;
  Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;

  // Orthogonalization manager.
  Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;

  // Current parameter list.
  Teuchos::RCP<Teuchos::ParameterList> params_;

  // Default solver values.
  static const MagnitudeType polytol_default_;
  static const MagnitudeType convtol_default_;
  static const MagnitudeType orthoKappa_default_;
  static const int maxDegree_default_;
  static const int maxRestarts_default_;
  static const int maxIters_default_;
  static const bool strictConvTol_default_;
  static const bool showMaxResNormOnly_default_;
  static const int blockSize_default_;
  static const int numBlocks_default_;
  static const int verbosity_default_;
  static const int outputStyle_default_;
  static const int outputFreq_default_;
  static const std::string impResScale_default_;
  static const std::string expResScale_default_;
  static const std::string label_default_;
  static const std::string orthoType_default_;
  static const Teuchos::RCP<std::ostream> outputStream_default_;

  // Current solver values.
  MagnitudeType polytol_, convtol_, orthoKappa_;
  int maxDegree_, maxRestarts_, maxIters_, numIters_;
  int blockSize_, numBlocks_, verbosity_, outputStyle_, outputFreq_;
  bool strictConvTol_, showMaxResNormOnly_;
  std::string orthoType_;
  std::string impResScale_, expResScale_;

  // Polynomial storage
  int poly_dim_;
  Teuchos::RCP<Teuchos::SerialDenseMatrix<int, ScalarType> > poly_H_, poly_y_;
  Teuchos::RCP<Teuchos::SerialDenseVector<int, ScalarType> > poly_r0_;
  Teuchos::RCP<Belos::GmresPolyOp<ScalarType, MV, OP> > poly_Op_;

  // Timers.
  std::string label_;
  Teuchos::RCP<Teuchos::Time> timerSolve_, timerPoly_;

  // Internal state variables.
  bool isPolyBuilt_;
  bool isSet_, isSTSet_, expResTest_;
  bool loaDetected_;

  //! Cached default (valid) parameters.
  mutable Teuchos::RCP<const Teuchos::ParameterList> validPL_;
};


// Default solver values.
template<class ScalarType, class MV, class OP>
const typename GmresPolySolMgr<ScalarType,MV,OP>::MagnitudeType
GmresPolySolMgr<ScalarType,MV,OP>::polytol_default_ = 1e-12;

template<class ScalarType, class MV, class OP>
const typename GmresPolySolMgr<ScalarType,MV,OP>::MagnitudeType
GmresPolySolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;

template<class ScalarType, class MV, class OP>
const typename GmresPolySolMgr<ScalarType,MV,OP>::MagnitudeType
GmresPolySolMgr<ScalarType,MV,OP>::orthoKappa_default_ =
  -Teuchos::ScalarTraits<MagnitudeType>::one();

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::maxDegree_default_ = 25;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::maxRestarts_default_ = 20;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;

template<class ScalarType, class MV, class OP>
const bool GmresPolySolMgr<ScalarType,MV,OP>::strictConvTol_default_ = false;

template<class ScalarType, class MV, class OP>
const bool GmresPolySolMgr<ScalarType,MV,OP>::showMaxResNormOnly_default_ = false;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::blockSize_default_ = 1;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::numBlocks_default_ = 300;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;

template<class ScalarType, class MV, class OP>
const int GmresPolySolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;

template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::impResScale_default_ = "Norm of RHS";

template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::expResScale_default_ = "Norm of RHS";

template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::label_default_ = "Belos";

template<class ScalarType, class MV, class OP>
const std::string GmresPolySolMgr<ScalarType,MV,OP>::orthoType_default_ = "DGKS";

template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream>
GmresPolySolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcpFromRef (std::cout);


template<class ScalarType, class MV, class OP>
GmresPolySolMgr<ScalarType,MV,OP>::GmresPolySolMgr () :
  outputStream_ (outputStream_default_),
  polytol_ (polytol_default_),
  convtol_ (convtol_default_),
  orthoKappa_ (orthoKappa_default_),
  maxDegree_ (maxDegree_default_),
  maxRestarts_ (maxRestarts_default_),
  maxIters_ (maxIters_default_),
  numIters_ (0),
  blockSize_ (blockSize_default_),
  numBlocks_ (numBlocks_default_),
  verbosity_ (verbosity_default_),
  outputStyle_ (outputStyle_default_),
  outputFreq_ (outputFreq_default_),
  strictConvTol_ (strictConvTol_default_),
  showMaxResNormOnly_ (showMaxResNormOnly_default_),
  orthoType_ (orthoType_default_),
  impResScale_ (impResScale_default_),
  expResScale_ (expResScale_default_),
  poly_dim_ (0),
  label_ (label_default_),
  isPolyBuilt_ (false),
  isSet_ (false),
  isSTSet_ (false),
  expResTest_ (false),
  loaDetected_ (false)
{}


template<class ScalarType, class MV, class OP>
GmresPolySolMgr<ScalarType,MV,OP>::
GmresPolySolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
                 const Teuchos::RCP<Teuchos::ParameterList> &pl) :
  problem_ (problem),
  outputStream_ (outputStream_default_),
  polytol_ (polytol_default_),
  convtol_ (convtol_default_),
  orthoKappa_ (orthoKappa_default_),
  maxDegree_ (maxDegree_default_),
  maxRestarts_ (maxRestarts_default_),
  maxIters_ (maxIters_default_),
  numIters_ (0),
  blockSize_ (blockSize_default_),
  numBlocks_ (numBlocks_default_),
  verbosity_ (verbosity_default_),
  outputStyle_ (outputStyle_default_),
  outputFreq_ (outputFreq_default_),
  strictConvTol_ (strictConvTol_default_),
  showMaxResNormOnly_ (showMaxResNormOnly_default_),
  orthoType_ (orthoType_default_),
  impResScale_ (impResScale_default_),
  expResScale_ (expResScale_default_),
  poly_dim_ (0),
  label_ (label_default_),
  isPolyBuilt_ (false),
  isSet_ (false),
  isSTSet_ (false),
  expResTest_ (false),
  loaDetected_ (false)
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    problem_.is_null (), std::invalid_argument,
    "Belos::GmresPolySolMgr: The given linear problem is null.  "
    "Please call this constructor with a nonnull LinearProblem argument, "
    "or call the constructor that does not take a LinearProblem.");

  // If the input parameter list is null, then the parameters take
  // default values.
  if (! pl.is_null ()) {
    setParameters (pl);
  }
}


template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
GmresPolySolMgr<ScalarType,MV,OP>::getValidParameters() const
{
  if (validPL_.is_null ()) {
    Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList ();
    pl->set("Polynomial Tolerance", polytol_default_,
      "The relative residual tolerance that used to construct the GMRES polynomial.");
    pl->set("Maximum Degree", maxDegree_default_,
      "The maximum degree allowed for any GMRES polynomial.");
    pl->set("Convergence Tolerance", convtol_default_,
      "The relative residual tolerance that needs to be achieved by the\n"
      "iterative solver in order for the linear system to be declared converged." );
    pl->set("Maximum Restarts", maxRestarts_default_,
      "The maximum number of restarts allowed for each\n"
      "set of RHS solved.");
    pl->set("Maximum Iterations", maxIters_default_,
      "The maximum number of block iterations allowed for each\n"
      "set of RHS solved.");
    pl->set("Num Blocks", numBlocks_default_,
      "The maximum number of blocks allowed in the Krylov subspace\n"
      "for each set of RHS solved.");
    pl->set("Block Size", blockSize_default_,
      "The number of vectors in each block.  This number times the\n"
      "number of blocks is the total Krylov subspace dimension.");
    pl->set("Verbosity", verbosity_default_,
      "What type(s) of solver information should be outputted\n"
      "to the output stream.");
    pl->set("Output Style", outputStyle_default_,
      "What style is used for the solver information outputted\n"
      "to the output stream.");
    pl->set("Output Frequency", outputFreq_default_,
      "How often convergence information should be outputted\n"
      "to the output stream.");
    pl->set("Output Stream", outputStream_default_,
      "A reference-counted pointer to the output stream where all\n"
      "solver output is sent.");
    pl->set("Strict Convergence", strictConvTol_default_,
      "After polynomial is applied, whether solver should try to achieve\n"
      "the relative residual tolerance.");
    pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
      "When convergence information is printed, only show the maximum\n"
      "relative residual norm when the block size is greater than one.");
    pl->set("Implicit Residual Scaling", impResScale_default_,
      "The type of scaling used in the implicit residual convergence test.");
    pl->set("Explicit Residual Scaling", expResScale_default_,
      "The type of scaling used in the explicit residual convergence test.");
    pl->set("Timer Label", label_default_,
      "The string to use as a prefix for the timer labels.");
    pl->set("Orthogonalization", orthoType_default_,
      "The type of orthogonalization to use: DGKS, ICGS, or IMGS.");
    pl->set("Orthogonalization Constant",orthoKappa_default_,
      "The constant used by DGKS orthogonalization to determine\n"
      "whether another step of classical Gram-Schmidt is necessary.");
    validPL_ = pl;
  }
  return validPL_;
}


template<class ScalarType, class MV, class OP>
void GmresPolySolMgr<ScalarType,MV,OP>::
setParameters (const Teuchos::RCP<Teuchos::ParameterList>& params)
{
  // Create the internal parameter list if ones doesn't already exist.
  if (params_.is_null ()) {
    params_ = Teuchos::parameterList (*getValidParameters ());
  }
  else {
    params->validateParameters (*getValidParameters ());
  }

  // Check for maximum polynomial degree
  if (params->isParameter("Maximum Degree")) {
    maxDegree_ = params->get("Maximum Degree",maxDegree_default_);

    // Update parameter in our list.
    params_->set("Maximum Degree", maxDegree_);
  }

  // Check for maximum number of restarts
  if (params->isParameter("Maximum Restarts")) {
    maxRestarts_ = params->get("Maximum Restarts",maxRestarts_default_);

    // Update parameter in our list.
    params_->set("Maximum Restarts", maxRestarts_);
  }

  // Check for maximum number of iterations
  if (params->isParameter("Maximum Iterations")) {
    maxIters_ = params->get("Maximum Iterations",maxIters_default_);

    // Update parameter in our list and in status test.
    params_->set("Maximum Iterations", maxIters_);
    if (maxIterTest_!=Teuchos::null)
      maxIterTest_->setMaxIters( maxIters_ );
  }

  // Check for blocksize
  if (params->isParameter("Block Size")) {
    blockSize_ = params->get("Block Size",blockSize_default_);
    TEUCHOS_TEST_FOR_EXCEPTION(blockSize_ <= 0, std::invalid_argument,
      "Belos::GmresPolySolMgr: \"Block Size\" must be strictly positive.");

    // Update parameter in our list.
    params_->set("Block Size", blockSize_);
  }

  // Check for the maximum number of blocks.
  if (params->isParameter("Num Blocks")) {
    numBlocks_ = params->get("Num Blocks",numBlocks_default_);
    TEUCHOS_TEST_FOR_EXCEPTION(numBlocks_ <= 0, std::invalid_argument,
      "Belos::GmresPolySolMgr: \"Num Blocks\" must be strictly positive.");

    // Update parameter in our list.
    params_->set("Num Blocks", numBlocks_);
  }

  // Check to see if the timer label changed.
  if (params->isParameter("Timer Label")) {
    std::string tempLabel = params->get("Timer Label", label_default_);

    // Update parameter in our list and solver timer
    if (tempLabel != label_) {
      label_ = tempLabel;
      params_->set("Timer Label", label_);
      std::string solveLabel = label_ + ": GmresPolySolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
      std::string polyLabel = label_ + ": GmresPolySolMgr polynomial creation time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      timerPoly_ = Teuchos::TimeMonitor::getNewCounter(polyLabel);
#endif
      if (ortho_ != Teuchos::null) {
        ortho_->setLabel( label_ );
      }
    }
  }

  // Check if the orthogonalization changed.
  if (params->isParameter("Orthogonalization")) {
    std::string tempOrthoType = params->get("Orthogonalization",orthoType_default_);
    TEUCHOS_TEST_FOR_EXCEPTION( tempOrthoType != "DGKS" && tempOrthoType != "ICGS" && tempOrthoType != "IMGS",
                        std::invalid_argument,
                        "Belos::GmresPolySolMgr: \"Orthogonalization\" must be either \"DGKS\", \"ICGS\", or \"IMGS\".");
    if (tempOrthoType != orthoType_) {
      params_->set("Orthogonalization", orthoType_);
      orthoType_ = tempOrthoType;
      // Create orthogonalization manager
      if (orthoType_=="DGKS") {
        if (orthoKappa_ <= 0) {
          ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
        }
        else {
          ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
          Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
        }
      }
      else if (orthoType_=="ICGS") {
        ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
      }
      else if (orthoType_=="IMGS") {
        ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
      }
    }
  }

  // Check which orthogonalization constant to use.
  if (params->isParameter("Orthogonalization Constant")) {
    orthoKappa_ = params->get("Orthogonalization Constant",orthoKappa_default_);

    // Update parameter in our list.
    params_->set("Orthogonalization Constant",orthoKappa_);
    if (orthoType_=="DGKS") {
      if (orthoKappa_ > 0 && ortho_ != Teuchos::null) {
        Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
      }
    }
  }

  // Check for a change in verbosity level
  if (params->isParameter("Verbosity")) {
    if (Teuchos::isParameterType<int>(*params,"Verbosity")) {
      verbosity_ = params->get("Verbosity", verbosity_default_);
    } else {
      verbosity_ = (int)Teuchos::getParameter<Belos::MsgType>(*params,"Verbosity");
    }

    // Update parameter in our list.
    params_->set("Verbosity", verbosity_);
    if (printer_ != Teuchos::null)
      printer_->setVerbosity(verbosity_);
  }

  // Check for a change in output style
  if (params->isParameter("Output Style")) {
    if (Teuchos::isParameterType<int>(*params,"Output Style")) {
      outputStyle_ = params->get("Output Style", outputStyle_default_);
    } else {
      outputStyle_ = (int)Teuchos::getParameter<Belos::OutputType>(*params,"Output Style");
    }

    // Reconstruct the convergence test if the explicit residual test is not being used.
    params_->set("Output Style", outputStyle_);
    if (outputTest_ != Teuchos::null) {
      isSTSet_ = false;
    }
  }

  // output stream
  if (params->isParameter("Output Stream")) {
    outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> >(*params,"Output Stream");

    // Update parameter in our list.
    params_->set("Output Stream", outputStream_);
    if (printer_ != Teuchos::null)
      printer_->setOStream( outputStream_ );
  }

  // frequency level
  if (verbosity_ & Belos::StatusTestDetails) {
    if (params->isParameter("Output Frequency")) {
      outputFreq_ = params->get("Output Frequency", outputFreq_default_);
    }

    // Update parameter in out list and output status test.
    params_->set("Output Frequency", outputFreq_);
    if (outputTest_ != Teuchos::null)
      outputTest_->setOutputFrequency( outputFreq_ );
  }

  // Create output manager if we need to.
  if (printer_ == Teuchos::null) {
    printer_ = Teuchos::rcp( new OutputManager<ScalarType>(verbosity_, outputStream_) );
  }

  // Convergence
  //typedef Belos::StatusTestCombo<ScalarType,MV,OP>  StatusTestCombo_t; // unused
  //typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP>  StatusTestResNorm_t; // unused

  // Check for polynomial convergence tolerance
  if (params->isParameter("Polynomial Tolerance")) {
    polytol_ = params->get("Polynomial Tolerance",polytol_default_);

    // Update parameter in our list and residual tests.
    params_->set("Polynomial Tolerance", polytol_);
  }

  // Check for convergence tolerance
  if (params->isParameter("Convergence Tolerance")) {
    convtol_ = params->get("Convergence Tolerance",convtol_default_);

    // Update parameter in our list and residual tests.
    params_->set("Convergence Tolerance", convtol_);
    if (impConvTest_ != Teuchos::null)
      impConvTest_->setTolerance( convtol_ );
    if (expConvTest_ != Teuchos::null)
      expConvTest_->setTolerance( convtol_ );
  }

  // Check if user requires solver to reach convergence tolerance
  if (params->isParameter("Strict Convergence")) {
    strictConvTol_ = params->get("Strict Convergence",strictConvTol_default_);

    // Update parameter in our list and residual tests
    params_->set("Strict Convergence", strictConvTol_);
  }

  // Check for a change in scaling, if so we need to build new residual tests.
  if (params->isParameter("Implicit Residual Scaling")) {
    std::string tempImpResScale = Teuchos::getParameter<std::string>( *params, "Implicit Residual Scaling" );

    // Only update the scaling if it's different.
    if (impResScale_ != tempImpResScale) {
      Belos::ScaleType impResScaleType = convertStringToScaleType( tempImpResScale );
      impResScale_ = tempImpResScale;

      // Update parameter in our list and residual tests
      params_->set("Implicit Residual Scaling", impResScale_);
      if (impConvTest_ != Teuchos::null) {
        try {
          impConvTest_->defineScaleForm( impResScaleType, Belos::TwoNorm );
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
  }

  if (params->isParameter("Explicit Residual Scaling")) {
    std::string tempExpResScale = Teuchos::getParameter<std::string>( *params, "Explicit Residual Scaling" );

    // Only update the scaling if it's different.
    if (expResScale_ != tempExpResScale) {
      Belos::ScaleType expResScaleType = convertStringToScaleType( tempExpResScale );
      expResScale_ = tempExpResScale;

      // Update parameter in our list and residual tests
      params_->set("Explicit Residual Scaling", expResScale_);
      if (expConvTest_ != Teuchos::null) {
        try {
          expConvTest_->defineScaleForm( expResScaleType, Belos::TwoNorm );
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
  }


  if (params->isParameter("Show Maximum Residual Norm Only")) {
    showMaxResNormOnly_ = Teuchos::getParameter<bool>(*params,"Show Maximum Residual Norm Only");

    // Update parameter in our list and residual tests
    params_->set("Show Maximum Residual Norm Only", showMaxResNormOnly_);
    if (impConvTest_ != Teuchos::null)
      impConvTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
    if (expConvTest_ != Teuchos::null)
      expConvTest_->setShowMaxResNormOnly( showMaxResNormOnly_ );
  }

  // Create orthogonalization manager if we need to.
  if (ortho_ == Teuchos::null) {
    params_->set("Orthogonalization", orthoType_);
    if (orthoType_=="DGKS") {
      if (orthoKappa_ <= 0) {
        ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
      }
      else {
        ortho_ = Teuchos::rcp( new DGKSOrthoManager<ScalarType,MV,OP>( label_ ) );
        Teuchos::rcp_dynamic_cast<DGKSOrthoManager<ScalarType,MV,OP> >(ortho_)->setDepTol( orthoKappa_ );
      }
    }
    else if (orthoType_=="ICGS") {
      ortho_ = Teuchos::rcp( new ICGSOrthoManager<ScalarType,MV,OP>( label_ ) );
    }
    else if (orthoType_=="IMGS") {
      ortho_ = Teuchos::rcp( new IMGSOrthoManager<ScalarType,MV,OP>( label_ ) );
    }
    else {
      TEUCHOS_TEST_FOR_EXCEPTION(orthoType_!="ICGS"&&orthoType_!="DGKS"&&orthoType_!="IMGS",std::logic_error,
        "Belos::GmresPolySolMgr(): Invalid orthogonalization type.");
    }
  }

  // Create the timers if we need to.
  if (timerSolve_ == Teuchos::null) {
    std::string solveLabel = label_ + ": GmresPolySolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    timerSolve_ = Teuchos::TimeMonitor::getNewCounter(solveLabel);
#endif
  }

  if (timerPoly_ == Teuchos::null) {
    std::string polyLabel = label_ + ": GmresPolySolMgr polynomial creation time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    timerPoly_ = Teuchos::TimeMonitor::getNewCounter(polyLabel);
#endif
  }

  // Inform the solver manager that the current parameters were set.
  isSet_ = true;
}

// Check the status test versus the defined linear problem
template<class ScalarType, class MV, class OP>
bool GmresPolySolMgr<ScalarType,MV,OP>::checkStatusTest() {

  typedef Belos::StatusTestCombo<ScalarType,MV,OP>  StatusTestCombo_t;
  typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP>  StatusTestGenResNorm_t;
  typedef Belos::StatusTestImpResNorm<ScalarType,MV,OP>  StatusTestImpResNorm_t;

  // Basic test checks maximum iterations and native residual.
  maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );

  // If there is a left preconditioner, we create a combined status test that checks the implicit
  // and then explicit residual norm to see if we have convergence.
  if (!Teuchos::is_null(problem_->getLeftPrec())) {
    expResTest_ = true;
  }

  if (expResTest_) {

    // Implicit residual test, using the native residual to determine if convergence was achieved.
    Teuchos::RCP<StatusTestGenResNorm_t> tmpImpConvTest =
      Teuchos::rcp( new StatusTestGenResNorm_t( convtol_ ) );
    tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
    tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
    impConvTest_ = tmpImpConvTest;

    // Explicit residual test once the native residual is below the tolerance
    Teuchos::RCP<StatusTestGenResNorm_t> tmpExpConvTest =
      Teuchos::rcp( new StatusTestGenResNorm_t( convtol_ ) );
    tmpExpConvTest->defineResForm( StatusTestGenResNorm_t::Explicit, Belos::TwoNorm );
    tmpExpConvTest->defineScaleForm( convertStringToScaleType(expResScale_), Belos::TwoNorm );
    tmpExpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
    expConvTest_ = tmpExpConvTest;

    // The convergence test is a combination of the "cheap" implicit test and explicit test.
    convTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::SEQ, impConvTest_, expConvTest_ ) );
  }
  else {

    // Implicit residual test, using the native residual to determine if convergence was achieved.
    // Use test that checks for loss of accuracy.
    Teuchos::RCP<StatusTestImpResNorm_t> tmpImpConvTest =
      Teuchos::rcp( new StatusTestImpResNorm_t( convtol_ ) );
    tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
    tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
    impConvTest_ = tmpImpConvTest;

    // Set the explicit and total convergence test to this implicit test that checks for accuracy loss.
    expConvTest_ = impConvTest_;
    convTest_ = impConvTest_;
  }

  sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );

  // Create the status test output class.
  // This class manages and formats the output from the status test.
  StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_ );
  outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );

  // Set the solver string for the output test
  std::string solverDesc = " Gmres Polynomial ";
  outputTest_->setSolverDesc( solverDesc );


  // The status test is now set.
  isSTSet_ = true;

  return false;
}

template<class ScalarType, class MV, class OP>
bool GmresPolySolMgr<ScalarType,MV,OP>::generatePoly()
{
  // Create a copy of the linear problem that has a zero initial guess and random RHS.
  Teuchos::RCP<MV> newX  = MVT::Clone( *(problem_->getLHS()), 1 );
  Teuchos::RCP<MV> newB  = MVT::Clone( *(problem_->getRHS()), 1 );
  MVT::MvInit( *newX, STS::zero() );
  MVT::MvRandom( *newB );
  Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > newProblem =
    Teuchos::rcp( new LinearProblem<ScalarType,MV,OP>( problem_->getOperator(), newX, newB ) );
  newProblem->setLeftPrec( problem_->getLeftPrec() );
  newProblem->setRightPrec( problem_->getRightPrec() );
  newProblem->setLabel("Belos GMRES Poly Generation");
  newProblem->setProblem();
  std::vector<int> idx(1,0);       // Must set the index to be the first vector (0)!
  newProblem->setLSIndex( idx );

  // Create a parameter list for the GMRES iteration.
  Teuchos::ParameterList polyList;

  // Tell the block solver that the block size is one.
  polyList.set("Num Blocks",maxDegree_);
  polyList.set("Block Size",1);
  polyList.set("Keep Hessenberg", true);

  // Create a simple status test that either reaches the relative residual tolerance or maximum polynomial size.
  Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxItrTst =
    Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxDegree_ ) );

  // Implicit residual test, using the native residual to determine if convergence was achieved.
  Teuchos::RCP<StatusTestGenResNorm<ScalarType,MV,OP> > convTst =
    Teuchos::rcp( new StatusTestGenResNorm<ScalarType,MV,OP>( polytol_ ) );
  convTst->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );

  // Convergence test that stops the iteration when either are satisfied.
  Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > polyTest =
    Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>( StatusTestCombo<ScalarType,MV,OP>::OR, maxItrTst, convTst ) );

  // Create Gmres iteration object to perform one cycle of Gmres.
  Teuchos::RCP<BlockGmresIter<ScalarType,MV,OP> > gmres_iter;
  gmres_iter = Teuchos::rcp( new BlockGmresIter<ScalarType,MV,OP>(newProblem,printer_,polyTest,ortho_,polyList) );

  // Create the first block in the current Krylov basis (residual).
  Teuchos::RCP<MV> V_0 = MVT::Clone( *(newProblem->getRHS()), 1 );
  newProblem->computeCurrPrecResVec( &*V_0 );

  // Get a matrix to hold the orthonormalization coefficients.
  poly_r0_ = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>(1) );

  // Orthonormalize the new V_0
  int rank = ortho_->normalize( *V_0, poly_r0_ );
  TEUCHOS_TEST_FOR_EXCEPTION(rank != 1,GmresPolySolMgrOrthoFailure,
    "Belos::GmresPolySolMgr::generatePoly(): Failed to compute initial block of orthonormal vectors for polynomial generation.");

  // Set the new state and initialize the solver.
  GmresIterationState<ScalarType,MV> newstate;
  newstate.V = V_0;
  newstate.z = poly_r0_;
  newstate.curDim = 0;
  gmres_iter->initializeGmres(newstate);

  // Perform Gmres iteration
  bool polyConverged = false;
  try {
    gmres_iter->iterate();

    // Check convergence first
    if ( convTst->getStatus() == Passed ) {
      // we have convergence
      polyConverged = true;
    }
  }
  catch (GmresIterationOrthoFailure e) {
    // Try to recover the most recent least-squares solution
    gmres_iter->updateLSQR( gmres_iter->getCurSubspaceDim() );

    // Check to see if the most recent least-squares solution yielded convergence.
    polyTest->checkStatus( &*gmres_iter );
    if (convTst->getStatus() == Passed)
      polyConverged = true;
    }
    catch (std::exception e) {
    printer_->stream(Errors) << "Error! Caught exception in BlockGmresIter::iterate() at iteration "
                             << gmres_iter->getNumIters() << std::endl
                             << e.what() << std::endl;
    throw;
  }

  // FIXME (mfh 27 Apr 2013) Why aren't we using polyConverged after
  // setting it?  I'm tired of the compile warning so I'll silence it
  // here, but I'm curious why we aren't using the variable.
  (void) polyConverged;

  // Get the solution for this polynomial, use in comparison below
  Teuchos::RCP<MV> currX = gmres_iter->getCurrentUpdate();

  // Record polynomial info, get current GMRES state
  GmresIterationState<ScalarType,MV> gmresState = gmres_iter->getState();

  // If the polynomial has no dimension, the tolerance is too low, return false
  poly_dim_ = gmresState.curDim;
  if (poly_dim_ == 0) {
    return false;
  }
  //
  //  Make a view and then copy the RHS of the least squares problem.
  //
  poly_y_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( Teuchos::Copy, *gmresState.z, poly_dim_, 1 ) );
  poly_H_ = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>( *gmresState.H ) );
  //
  // Solve the least squares problem.
  //
  const ScalarType one = STS::one ();
  Teuchos::BLAS<int,ScalarType> blas;
  blas.TRSM( Teuchos::LEFT_SIDE, Teuchos::UPPER_TRI, Teuchos::NO_TRANS,
             Teuchos::NON_UNIT_DIAG, poly_dim_, 1, one,
             gmresState.R->values(), gmresState.R->stride(),
             poly_y_->values(), poly_y_->stride() );
  //
  // Generate the polynomial operator
  //
  poly_Op_ = Teuchos::rcp(
               new Belos::GmresPolyOp<ScalarType,MV,OP>( problem_, poly_H_, poly_y_, poly_r0_ ) );

  return true;
}


template<class ScalarType, class MV, class OP>
ReturnType GmresPolySolMgr<ScalarType,MV,OP>::solve ()
{
  using Teuchos::RCP;
  using Teuchos::rcp;
  typedef Teuchos::SerialDenseMatrix<int, ScalarType> SDM;

  // Set the current parameters if they were not set before.  NOTE:
  // This may occur if the user generated the solver manager with the
  // default constructor and then didn't set any parameters using
  // setParameters().
  if (! isSet_) {
    setParameters (Teuchos::parameterList (*getValidParameters ()));
  }

  TEUCHOS_TEST_FOR_EXCEPTION(
    problem_.is_null (), GmresPolySolMgrLinearProblemFailure,
    "Belos::GmresPolySolMgr::solve: The linear problem has not been set yet, "
    "or was set to null.  Please call setProblem() with a nonnull input before "
    "calling solve().");

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! problem_->isProblemSet (), GmresPolySolMgrLinearProblemFailure,
    "Belos::GmresPolySolMgr::solve: The linear problem is not ready.  Please "
    "call setProblem() on the LinearProblem object before calling solve().");

  if (! isSTSet_ || (! expResTest_ && ! problem_->getLeftPrec ().is_null ())) {
    // checkStatusTest() shouldn't have side effects, but it's still
    // not such a good idea to put possibly side-effect-y function
    // calls in a macro invocation.  It could be expensive if the
    // macro evaluates the argument more than once, for example.
    const bool check = checkStatusTest ();
    TEUCHOS_TEST_FOR_EXCEPTION(
      check, GmresPolySolMgrLinearProblemFailure,
      "Belos::GmresPolySolMgr::solve: Linear problem and requested status "
      "tests are incompatible.");
  }

  // If the GMRES polynomial has not been constructed for this
  // (nmatrix, preconditioner) pair, generate it.
  if (! isPolyBuilt_) {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor slvtimer(*timerPoly_);
#endif
    isPolyBuilt_ = generatePoly();
    TEUCHOS_TEST_FOR_EXCEPTION( !isPolyBuilt_ && poly_dim_==0, GmresPolySolMgrPolynomialFailure,
      "Belos::GmresPolySolMgr::generatePoly(): Failed to generate a non-trivial polynomial, reduce polynomial tolerance.");
    TEUCHOS_TEST_FOR_EXCEPTION( !isPolyBuilt_, GmresPolySolMgrPolynomialFailure,
      "Belos::GmresPolySolMgr::generatePoly(): Failed to generate polynomial that satisfied requirements.");
  }

  // Assume convergence is achieved if user does not require strict convergence.
  bool isConverged = true;

  // Solve the linear system using the polynomial
  {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor slvtimer(*timerSolve_);
#endif

    // Apply the polynomial to the current linear system
    poly_Op_->Apply( *problem_->getRHS(), *problem_->getLHS() );

    // Reset the problem to acknowledge the updated solution
    problem_->setProblem ();

    // If we have to strictly adhere to the requested convergence tolerance, set up a standard GMRES solver.
    if (strictConvTol_) {

      // Create indices for the linear systems to be solved.
      int startPtr = 0;
      int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
      int numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;


      // If an adaptive block size is allowed then only the linear
      // systems that need to be solved are solved.  Otherwise, the
      // index set is generated that informs the linear problem that
      // some linear systems are augmented.

      std::vector<int> currIdx (blockSize_);
      for (int i = 0; i < numCurrRHS; ++i) {
        currIdx[i] = startPtr+i;
      }
      for (int i = numCurrRHS; i < blockSize_; ++i) {
        currIdx[i] = -1;
      }

      // Inform the linear problem of the current linear system to solve.
      problem_->setLSIndex (currIdx);

      //////////////////////////////////////////////////////////////////////////////////////
      // Parameter list
      Teuchos::ParameterList plist;
      plist.set ("Block Size", blockSize_);

      ptrdiff_t dim = MVT::GetGlobalLength( *(problem_->getRHS()) );
      if (blockSize_*static_cast<ptrdiff_t>(numBlocks_) > dim) {
        ptrdiff_t tmpNumBlocks = 0;
        if (blockSize_ == 1) {
          tmpNumBlocks = dim / blockSize_;  // Allow for a good breakdown.
        } else {
          tmpNumBlocks = ( dim - blockSize_) / blockSize_;  // Allow for restarting.
        }
        printer_->stream(Warnings)
          << "Warning! Requested Krylov subspace dimension is larger than "
          << "operator dimension!" << std::endl << "The maximum number of "
          << "blocks allowed for the Krylov subspace will be adjusted to "
          << tmpNumBlocks << std::endl;
        plist.set ("Num Blocks", Teuchos::asSafe<int> (tmpNumBlocks));
      }
      else {
        plist.set ("Num Blocks", numBlocks_);
      }

      // Reset the status test.
      outputTest_->reset ();
      loaDetected_ = false;

      // Assume convergence is achieved, then let any failed
      // convergence set this to false.
      isConverged = true;

      //
      // Solve using BlockGmres
      //

      RCP<GmresIteration<ScalarType,MV,OP> > block_gmres_iter =
        rcp (new BlockGmresIter<ScalarType,MV,OP> (problem_, printer_,
                                                   outputTest_, ortho_, plist));

      // Enter solve() iterations
      while (numRHS2Solve > 0) {
        // Set the current number of blocks and block size with the
        // Gmres iteration.
        if (blockSize_*numBlocks_ > dim) {
          int tmpNumBlocks = 0;
          if (blockSize_ == 1) {
            // Leave space for happy breakdown.
            tmpNumBlocks = dim / blockSize_;
          } else {
            // Leave space for restarting.
            tmpNumBlocks = (dim - blockSize_) / blockSize_;
          }
          block_gmres_iter->setSize (blockSize_, tmpNumBlocks);
        }
        else {
          block_gmres_iter->setSize (blockSize_, numBlocks_);
        }

        // Reset the number of iterations.
        block_gmres_iter->resetNumIters ();

        // Reset the number of calls that the status test output knows about.
        outputTest_->resetNumCalls ();

        // Create the first block in the current Krylov basis.
        RCP<MV> V_0 = MVT::CloneCopy (*(problem_->getInitPrecResVec ()), currIdx);

        // Get a matrix to hold the orthonormalization coefficients.
        RCP<SDM> z_0 = rcp (new SDM (blockSize_, blockSize_));

        // Orthonormalize the new V_0
        int rank = ortho_->normalize (*V_0, z_0);
        TEUCHOS_TEST_FOR_EXCEPTION(
          rank != blockSize_, GmresPolySolMgrOrthoFailure,
          "Belos::GmresPolySolMgr::solve: Failed to compute initial block of "
          "orthonormal vectors.");

        // Set the new state and initialize the solver.
        GmresIterationState<ScalarType,MV> newstate;
        newstate.V = V_0;
        newstate.z = z_0;
        newstate.curDim = 0;
        block_gmres_iter->initializeGmres(newstate);
        int numRestarts = 0;

        while(1) {
          try {
            block_gmres_iter->iterate();

            // check convergence first
            if ( convTest_->getStatus() == Passed ) {
              if ( expConvTest_->getLOADetected() ) {
              // we don't have convergence
                loaDetected_ = true;
                isConverged = false;
              }
              break;  // break from while(1){block_gmres_iter->iterate()}
            }

            // check for maximum iterations
            else if ( maxIterTest_->getStatus() == Passed ) {
              // we don't have convergence
              isConverged = false;
              break;  // break from while(1){block_gmres_iter->iterate()}
            }
            // check for restarting, i.e. the subspace is full
            else if (block_gmres_iter->getCurSubspaceDim () ==
                     block_gmres_iter->getMaxSubspaceDim ()) {
              if (numRestarts >= maxRestarts_) {
                isConverged = false;
                break; // break from while(1){block_gmres_iter->iterate()}
              }
              numRestarts++;

              printer_->stream(Debug)
                << " Performing restart number " << numRestarts << " of "
                << maxRestarts_ << std::endl << std::endl;

              // Update the linear problem.
              RCP<MV> update = block_gmres_iter->getCurrentUpdate();
              problem_->updateSolution (update, true);

              // Get the state.
              GmresIterationState<ScalarType,MV> oldState = block_gmres_iter->getState();

              // Compute the restart vector.
              // Get a view of the current Krylov basis.
              //
              // We call this VV_0 to avoid shadowing the previously
              // defined V_0 above.
              RCP<MV> VV_0  = MVT::Clone (*(oldState.V), blockSize_);
              problem_->computeCurrPrecResVec (&*VV_0);

              // Get a view of the first block of the Krylov basis.
              //
              // We call this zz_0 to avoid shadowing the previously
              // defined z_0 above.
              RCP<SDM> zz_0 = rcp (new SDM (blockSize_, blockSize_));

              // Orthonormalize the new VV_0
              const int theRank = ortho_->normalize( *VV_0, zz_0 );
              TEUCHOS_TEST_FOR_EXCEPTION(
                theRank != blockSize_, GmresPolySolMgrOrthoFailure,
                "Belos::GmresPolySolMgr::solve: Failed to compute initial "
                "block of orthonormal vectors after restart.");

              // Set the new state and initialize the solver.
              GmresIterationState<ScalarType,MV> theNewState;
              theNewState.V = VV_0;
              theNewState.z = zz_0;
              theNewState.curDim = 0;
              block_gmres_iter->initializeGmres (theNewState);
            } // end of restarting
            //
            // We returned from iterate(), but none of our status
            // tests Passed.  Something is wrong, and it is probably
            // our fault.
            //
            else {
              TEUCHOS_TEST_FOR_EXCEPTION(
                true, std::logic_error,
                "Belos::GmresPolySolMgr::solve: Invalid return from "
                "BlockGmresIter::iterate().  Please report this bug "
                "to the Belos developers.");
            }
          }
          catch (const GmresIterationOrthoFailure& e) {
            // If the block size is not one, it's not considered a lucky breakdown.
            if (blockSize_ != 1) {
              printer_->stream(Errors)
                << "Error! Caught std::exception in BlockGmresIter::iterate() "
                << "at iteration " << block_gmres_iter->getNumIters()
                << std::endl << e.what() << std::endl;
              if (convTest_->getStatus() != Passed) {
                isConverged = false;
              }
              break;
            }
            else {
              // If the block size is one, try to recover the most
              // recent least-squares solution
              block_gmres_iter->updateLSQR (block_gmres_iter->getCurSubspaceDim ());

              // Check to see if the most recent least-squares
              // solution yielded convergence.
              sTest_->checkStatus (&*block_gmres_iter);
              if (convTest_->getStatus() != Passed) {
                isConverged = false;
              }
              break;
            }
          }
          catch (const std::exception &e) {
            printer_->stream(Errors)
              << "Error! Caught std::exception in BlockGmresIter::iterate() "
              << "at iteration " << block_gmres_iter->getNumIters() << std::endl
              << e.what() << std::endl;
            throw;
          }
        }

        // Compute the current solution.  Update the linear problem.
        // Attempt to get the current solution from the residual
        // status test, if it has one.
        if (! Teuchos::is_null (expConvTest_->getSolution ()) ) {
          RCP<MV> newX = expConvTest_->getSolution ();
          RCP<MV> curX = problem_->getCurrLHSVec ();
          MVT::MvAddMv (STS::zero (), *newX, STS::one (), *newX, *curX);
        }
        else {
          RCP<MV> update = block_gmres_iter->getCurrentUpdate ();
          problem_->updateSolution (update, true);
        }

        // Inform the linear problem that we are finished with this block linear system.
        problem_->setCurrLS ();

        // Update indices for the linear systems to be solved.
        startPtr += numCurrRHS;
        numRHS2Solve -= numCurrRHS;
        if (numRHS2Solve > 0) {
          numCurrRHS = (numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;

          currIdx.resize (blockSize_);
          for (int i=0; i<numCurrRHS; ++i) {
            currIdx[i] = startPtr+i;
          }
          for (int i=numCurrRHS; i<blockSize_; ++i) {
            currIdx[i] = -1;
          }

          // Set the next indices.
          problem_->setLSIndex( currIdx );
        }
        else {
          currIdx.resize( numRHS2Solve );
        }

      }// while ( numRHS2Solve > 0 )

      // print final summary
      sTest_->print( printer_->stream(FinalSummary) );

    } // if (strictConvTol_)
  } // timing block

  // print timing information
#ifdef BELOS_TEUCHOS_TIME_MONITOR
  // Calling summarize() can be expensive, so don't call unless the
  // user wants to print out timing details.  summarize() will do all
  // the work even if it's passed a "black hole" output stream.
  if (verbosity_ & TimingDetails)
    Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
#endif

  if (!isConverged || loaDetected_) {
    return Unconverged; // return from GmresPolySolMgr::solve()
  }
  return Converged; // return from GmresPolySolMgr::solve()
}


template<class ScalarType, class MV, class OP>
std::string GmresPolySolMgr<ScalarType,MV,OP>::description () const
{
  std::ostringstream out;

  out << "\"Belos::GmresPolySolMgr\": {"
      << "ScalarType: " << Teuchos::TypeNameTraits<ScalarType>::name ()
      << ", Ortho Type: " << orthoType_
      << ", Block Size: " << blockSize_
      << ", Num Blocks: " << numBlocks_
      << ", Max Restarts: " << maxRestarts_;
  out << "}";
  return out.str ();
}

} // namespace Belos

#endif // BELOS_GMRES_POLY_SOLMGR_HPP