This file is indexed.

/usr/include/trilinos/BelosPseudoBlockGmresSolMgr.hpp is in libtrilinos-belos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP
#define BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP

/*! \file BelosPseudoBlockGmresSolMgr.hpp
 *  \brief The Belos::PseudoBlockGmresSolMgr provides a solver manager for the BlockGmres linear solver.
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosSolverManager.hpp"

#include "BelosPseudoBlockGmresIter.hpp"
#include "BelosDGKSOrthoManager.hpp"
#include "BelosICGSOrthoManager.hpp"
#include "BelosIMGSOrthoManager.hpp"
#ifdef HAVE_BELOS_TSQR
#  include "BelosTsqrOrthoManager.hpp"
#endif // HAVE_BELOS_TSQR
#include "BelosStatusTestFactory.hpp"
#include "BelosStatusTestOutputFactory.hpp"
#include "BelosOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#ifdef BELOS_TEUCHOS_TIME_MONITOR
#include "Teuchos_TimeMonitor.hpp"
#endif

/** \example BlockGmres/PseudoBlockGmresEpetraExFile.cpp
    This is an example of how to use the Belos::PseudoBlockGmresSolMgr solver manager.
*/
/** \example BlockGmres/PseudoBlockPrecGmresEpetraExFile.cpp
    This is an example of how to use the Belos::PseudoBlockGmresSolMgr solver manager with an Ifpack preconditioner.
*/

namespace Belos {

  //! @name PseudoBlockGmresSolMgr Exceptions
  //@{

  /** \brief PseudoBlockGmresSolMgrLinearProblemFailure is thrown when the linear problem is
   * not setup (i.e. setProblem() was not called) when solve() is called.
   *
   * This std::exception is thrown from the PseudoBlockGmresSolMgr::solve() method.
   *
   */
  class PseudoBlockGmresSolMgrLinearProblemFailure : public BelosError {public:
    PseudoBlockGmresSolMgrLinearProblemFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  /** \brief PseudoBlockGmresSolMgrOrthoFailure is thrown when the orthogonalization manager is
   * unable to generate orthonormal columns from the initial basis vectors.
   *
   * This std::exception is thrown from the PseudoBlockGmresSolMgr::solve() method.
   *
   */
  class PseudoBlockGmresSolMgrOrthoFailure : public BelosError {public:
    PseudoBlockGmresSolMgrOrthoFailure(const std::string& what_arg) : BelosError(what_arg)
    {}};

  /*! \class PseudoBlockGmresSolMgr
   * \brief Interface to standard and "pseudoblock" GMRES.
   * \author Heidi Thornquist, Chris Baker, and Teri Barth
   * \ingroup belos_solver_framework
   *
   * This class provides an interface to the following iterative solvers:
   * - GMRES, for linear systems with one right-hand side
   * - The "pseudoblock" variant of GMRES, for linear systems
   *   with multiple right-hand sides
   *
   * If you are a new Belos user and just want standard GMRES, use
   * this class.  If you want Flexible GMRES, use \c BlockGmresSolMgr
   * with the appropriate option set.
   *
   * "Pseudoblock" GMRES is a way to improve performance when solving
   * systems with multiple right-hand sides, without changing the
   * convergence characteristics.  It is equivalent in terms of
   * convergence to running a separate instance of (standard) GMRES
   * for each right-hand side, but should often be faster.  When
   * solving for multiple right-hand sides, "Block GMRES" (as
   * implemented by \c BlockGmresSolMgr) is a different algorithm with
   * different convergence characteristics than Pseudoblock GMRES.
   */
  template<class ScalarType, class MV, class OP>
  class PseudoBlockGmresSolMgr : public SolverManager<ScalarType,MV,OP> {

  private:
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MT;

  public:

    //! @name Constructors and destructor
    //@{

    /*! \brief Empty constructor.
     *
     * This constructor takes no arguments.  It sets default solver
     * parameters, which you may change by calling setParameters().
     * Before you may call solve(), you must first give the solver a
     * linear problem to solve, by calling setProblem().
     */
    PseudoBlockGmresSolMgr();

    /*! \brief Constructor that takes the problem to solve, and a list
     *    of solver options.
     *
     * \param problem [in/out] The linear problem to be solved.
     * \param pl [in/out] A list of solver options.
     *
     * Belos' solvers accept many different options.  You may accept
     * their default values, or set any of them yourself.  We will
     * explain the options by category.
     *
     * The following options govern the number of iterations and
     * restarts:
     * - "Num Blocks" (\c int): The restart length.  The number of
     *   vectors (or blocks, in the case of multiple right-hand sides)
     *   allocated for the Krylov basis.  Its default value is 300.
     * - "Maximum Iterations" (\c int): The maximum number of
     *   iterations the solver is allowed to perform.  This does
     *   <i>not</i> include computing the initial residual, but it
     *   <i>does</i> include iterations before and after any restarts.
     *   Its default value is 1000.
     * - "Maximum Restarts" (\c int): The maximum number of restarts.
     *   This does <i>not</i> include the first "Num Blocks"
     *   iterations (before the first restart).  Its default value is
     *   20.
     *
     * We do not currently perform any sanity checks for these
     * options.  This may affect you if you set some of them but let
     * others keep their default values.  For example, if you set "Num
     * Blocks" to 2 and "Maximum Iterations" to 100, but don't set
     * "Maximum Restarts", you will only get 40 = 20*2 total
     * iterations, rather than 100.  Thus, if you set one of these
     * parameters, you should always set them all.
     *
     * When solving with multiple right-hand sides, the "Block Size"
     * (\c int) parameter controls the number of right-hand sides for
     * which the solver solves at once.  This setting controls both
     * performance and total memory use.  Doubling it (approximately)
     * doubles the total amount of memory used by the solver, but
     * might make the solves faster by reducing synchronization
     * overhead and improving memory bandwidth utilization.  The gain
     * from increasing this tends to level off quickly.  Making this
     * setting too large may actually hurt performance.
     *
     * These options govern convergence and the numerical algorithm:
     * - "Convergence Tolerance" (\c MagnitudeType): The level that
     *   residual norms must reach in order for the solver to stop
     *   iterating.
     * - "Implicit Residual Scaling" (\c std::string): How to scale
     *   the implicit residual norm.  The default is the norm of the
     *   preconditioned initial residual.
     * - "Explicit Residual Scaling" (\c std::string): How to scale
     *   the explicit residual norm.  The default is the norm of the
     *   (unpreconditioned) initial residual.
     * - "Deflation Quorum" (\c int): When solving with multiple
     *   right-hand sides: the number of right-hand sides that must
     *   have converged to the given tolerance, before the solver will
     *   consider all the systems converged.  If -1, then the solver
     *   will require that all the right-hand sides have converged
     *   before declaring all the systems converged.  This must be no
     *   bigger than the "Block Size" parameter.
     * - "Orthogonalization" (\c std::string): The desired
     *   orthogonalization method.  Currently accepted values are
     *   "DGKS", "ICGS", and "IMGS".  Please refer to Belos'
     *   documentation for more details.
     *
     * For an explanation of "implicit" vs. "explicit" residuals,
     * please see the documentation of isLOADetected().  The
     * difference matters if using left preconditioning.  Otherwise,
     * it is not so important to most users.
     *
     * The residual scaling parameters ("Implicit Residual Scaling"
     * and "Explicit Residual Scaling") accept the following values:
     * - "Norm of Initial Residual"
     * - "Norm of Preconditioned Initial Residual"
     * - "Norm of RHS" (RHS stands for "right-hand side")
     * - "None" (no scaling factor)
     *
     * GMRES always uses the 2 norm (square root of sum of squares of
     * magnitudes of entries) to measure convergence.
     *
     * Belos' solvers let users control intermediate "status" output.
     * This output tells you the current iteration and the values of
     * current convergence criteria.  The following parameters control
     * output.  The default values are fine for users who only care
     * about the final result and don't want to see status output.
     * - "Verbosity": a sum of \c MsgType enum values specifying the
     *   verbosity. Default: Belos::Errors.
     * - "Output Frequency" (\c int): How often (in terms of number of
     *   iterations) to print intermediate status output.  The default
     *   (-1) means not to print intermediate status output at all.
     * - "Output Style" (\c OutputType): The style of output.
     *   Accepted values are General and Brief.  Default: General.
     * - "Output Stream" (<tt>Teuchos::RCP<std::ostream></tt>): A
     *   pointer to an output stream to which the solver will write
     *   status output.  The default is a pointer to
     *   <tt>std::cout</tt>.  Currently, if Trilinos was built with
     *   MPI support, only the MPI process with rank 0 in
     *   MPI_COMM_WORLD will print to this output stream.
     * - "Show Maximum Residual Norm Only": When solving for multiple
     *   right-hand sides, this controls whether output shows residual
     *   norms for all the right-hand sides, or just the current
     *   maximum residual norm over all right-hand sides.
     *		\param pl [in] ParameterList with construction information
     *			\htmlonly
     *			<iframe src="belos_PseudoBlockGmres.xml" width=100% scrolling="no" frameborder="0">
     *			</iframe>
     *			<hr />
     *			\endhtmlonly
     */
    PseudoBlockGmresSolMgr( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
                            const Teuchos::RCP<Teuchos::ParameterList> &pl );

    //! Destructor.
    virtual ~PseudoBlockGmresSolMgr() {};
    //@}

    //! @name Accessor methods
    //@{

    const LinearProblem<ScalarType,MV,OP>& getProblem() const {
      return *problem_;
    }

    //! A list of valid default parameters for this solver.
    Teuchos::RCP<const Teuchos::ParameterList> getValidParameters() const;

    //! The current parameters for this solver.
    Teuchos::RCP<const Teuchos::ParameterList> getCurrentParameters() const { return params_; }

    /*! \brief Return the timers for this object.
     *
     * The timers are ordered as follows:
     *   - time spent in solve() routine
     */
    Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
      return Teuchos::tuple(timerSolve_);
    }

    /// \brief Tolerance achieved by the last \c solve() invocation.
    ///
    /// This is the maximum over all right-hand sides' achieved
    /// convergence tolerances, and is set whether or not the solve
    /// actually managed to achieve the desired convergence tolerance.
    ///
    /// \warning This result may not be meaningful if there was a loss
    ///   of accuracy during the solve.  You should first call \c
    ///   isLOADetected() to check for a loss of accuracy during the
    ///   last solve.
    MagnitudeType achievedTol() const {
      return achievedTol_;
    }

    //! Iteration count for the most recent call to \c solve().
    int getNumIters() const {
      return numIters_;
    }

    /// \brief Whether a "loss of accuracy" was detected during the last solve().
    ///
    /// This solver uses two different residual norms to predict
    /// convergence: "implicit" (also called "native") and "explicit"
    /// (also called "exact," not to be confused with "exact
    /// arithmetic").  The "implicit" residuals are computed by the
    /// solver via a recurrence relation (the Arnoldi relation, in the
    /// case of GMRES).  The "explicit" residuals are computed
    /// directly as $B - A X_k$.  Implicit residuals are much cheaper
    /// to compute, since they are available almost "for free" from
    /// the recurrence relation.  In contrast, computing exact
    /// residuals requires computing the current approximate solution
    /// \f$X_k\f$, applying the global operator \f$A\f$ to \f$X_k\f$,
    /// and then computing the norm of the resulting vector(s) via a
    /// global reduction.  Thus, GMRES favors using the cheaper
    /// implicit residuals to predict convergence.  Users typically
    /// want convergence with respect to explicit residuals, though.
    ///
    /// Implicit and explicit residuals may differ due to rounding
    /// error.  However, the difference between implicit and explicit
    /// residuals matters most when using a left (or split)
    /// preconditioner.  In that case, the implicit residuals are
    /// those of the left-preconditioned problem \f$M_L^{-1} A X =
    /// M_L^{-1} B\f$ instead of the original problem \f$A X = B\f$.
    /// The implicit residual norms may thus differ significantly from
    /// the explicit residual norms, even if one could compute without
    /// rounding error.
    ///
    /// When using a left preconditioner, this solver tries to detect
    /// if the implicit residuals have converged but the explicit
    /// residuals have not.  In that case, it will reduce the
    /// convergence tolerance and iterate a little while longer to
    /// attempt to reduce the explicit residual norm.  However, if
    /// that doesn't work, it declares a "loss of accuracy" for the
    /// affected right-hand side(s), and stops iterating on them.
    /// (Not all right-hand sides may have experienced a loss of
    /// accuracy.)  Thus, the affected right-hand sides may or may not
    /// have converged to the desired residual norm tolerance.
    /// Calling this method tells you whether a "loss of accuracy"
    /// (LOA) occurred during the last \c solve() invocation.
    ///
    /// When <i>not</i> using a left preconditioner, this solver will
    /// iterate until both the implicit and explicit residuals
    /// converge.  (It does not start testing the explicit residuals
    /// until the implicit residuals have converged.  This avoids
    /// whenever possible the cost of computing explicit residuals.)
    /// Implicit and explicit residuals may differ due to rounding
    /// error, even though they are identical when no rounding error
    /// occurs.  In this case, the algorithm does <i>not</i> report a
    /// "loss of accuracy," since it continues iterating until the
    /// explicit residuals converge.
    ///
    /// \note Calling \c solve() again resets the flag that reports
    ///   whether a loss of accuracy was detected.  Thus, you should
    ///   call this method immediately after calling \c solve().
    bool isLOADetected() const { return loaDetected_; }

    //@}

    //! @name Set methods
    //@{

    //! Set the linear problem to solve.
    void setProblem (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem) {
      problem_ = problem;
    }

    //! Set the parameters the solver manager should use to solve the linear problem.
    void setParameters (const Teuchos::RCP<Teuchos::ParameterList> &params);

    /// \brief Set a custom status test.
    ///
    /// A custom status test is not required.  If you decide to set
    /// one, the current implementation will apply it sequentially
    /// (short-circuiting OR, like the || operator in C++) after
    /// Pseudoblock GMRES' standard convergence test.
    virtual void setUserConvStatusTest(
      const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &userConvStatusTest,
      const typename StatusTestCombo<ScalarType,MV,OP>::ComboType &comboType =
          StatusTestCombo<ScalarType,MV,OP>::SEQ
      );

    //! Set a debug status test that will be checked at the same time as the top-level status test.
    void setDebugStatusTest( const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &debugStatusTest );

    //@}

    //! @name Reset methods
    //@{
    /*! \brief Performs a reset of the solver manager specified by the \c ResetType.  This informs the
     *  solver manager that the solver should prepare for the next call to solve by resetting certain elements
     *  of the iterative solver strategy.
     */
    void reset( const ResetType type ) { if ((type & Belos::Problem) && !Teuchos::is_null(problem_)) problem_->setProblem(); }
    //@}

    //! @name Solver application methods
    //@{

    /*! \brief This method performs possibly repeated calls to the underlying linear solver's iterate() routine
     * until the problem has been solved (as decided by the solver manager) or the solver manager decides to
     * quit.
     *
     * This method calls PseudoBlockGmresIter::iterate(), which will return either because a specially constructed status test evaluates to
     * ::Passed or an std::exception is thrown.
     *
     * A return from PseudoBlockGmresIter::iterate() signifies one of the following scenarios:
     *    - the maximum number of restarts has been exceeded. In this scenario, the current solutions to the linear system
     *      will be placed in the linear problem and return ::Unconverged.
     *    - global convergence has been met. In this case, the current solutions to the linear system will be placed in the linear
     *      problem and the solver manager will return ::Converged
     *
     * \returns ::ReturnType specifying:
     *     - ::Converged: the linear problem was solved to the specification required by the solver manager.
     *     - ::Unconverged: the linear problem was not solved to the specification desired by the solver manager.
     */
    ReturnType solve();

    //@}

    /** \name Overridden from Teuchos::Describable */
    //@{

    /// \brief Print the object with the given verbosity level to a FancyOStream.
    ///
    /// \param out [out] Output stream to which to print.
    ///
    /// \param verbLevel [in] Verbosity level.  The default verbosity
    ///   (verbLevel=Teuchos::VERB_DEFAULT) is Teuchos::VERB_LOW.
    void
    describe (Teuchos::FancyOStream& out,
              const Teuchos::EVerbosityLevel verbLevel =
              Teuchos::Describable::verbLevel_default) const;

    //! Return a one-line description of this object.
    std::string description () const;

    //@}

  private:

    /// \brief Check current status tests against current linear problem.
    ///
    /// (Re)create all the status tests, based on the current solve
    /// parameters and the current linear problem to solve.  This is
    /// necessary whenever the linear problem is set or changed via \c
    /// setProblem(), because the residual norm test to use depends on
    /// whether or not the (new) linear problem defines a left
    /// preconditioner.  Furthermore, include the user's custom
    /// convergence test if they set one via \c
    /// setUserConvStatusTest().
    ///
    /// \return False if we were able to (re)create all the status
    ///   tests correctly, else true.  The \c solve() routine may call
    ///   this method.  If it does, it checks the return value.
    bool checkStatusTest();

    //! The current linear problem to solve.
    Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > problem_;

    // Output manager.
    Teuchos::RCP<OutputManager<ScalarType> > printer_;
    Teuchos::RCP<std::ostream> outputStream_;

    // Status tests.
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > userConvStatusTest_;
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > debugStatusTest_;
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > sTest_;
    Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxIterTest_;
    Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convTest_;
    Teuchos::RCP<StatusTestResNorm<ScalarType,MV,OP> > impConvTest_, expConvTest_;
    Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputTest_;
    typename StatusTestCombo<ScalarType,MV,OP>::ComboType comboType_;
    Teuchos::RCP<std::map<std::string, Teuchos::RCP<StatusTest<ScalarType, MV, OP> > > > taggedTests_;

    // Orthogonalization manager.
    Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho_;

     // Current parameter list.
    Teuchos::RCP<Teuchos::ParameterList> params_;

    // Default solver values.
    static const MagnitudeType convtol_default_;
    static const MagnitudeType orthoKappa_default_;
    static const int maxRestarts_default_;
    static const int maxIters_default_;
    static const bool showMaxResNormOnly_default_;
    static const int blockSize_default_;
    static const int numBlocks_default_;
    static const int verbosity_default_;
    static const int outputStyle_default_;
    static const int outputFreq_default_;
    static const int defQuorum_default_;
    static const std::string impResScale_default_;
    static const std::string expResScale_default_;
    static const MagnitudeType resScaleFactor_default_;
    static const std::string label_default_;
    static const std::string orthoType_default_;
    static const Teuchos::RCP<std::ostream> outputStream_default_;

    // Current solver values.
    MagnitudeType convtol_, orthoKappa_, achievedTol_;
    int maxRestarts_, maxIters_, numIters_;
    int blockSize_, numBlocks_, verbosity_, outputStyle_, outputFreq_, defQuorum_;
    bool showMaxResNormOnly_;
    std::string orthoType_;
    std::string impResScale_, expResScale_;
    MagnitudeType resScaleFactor_;

    // Timers.
    std::string label_;
    Teuchos::RCP<Teuchos::Time> timerSolve_;

    // Internal state variables.
    bool isSet_, isSTSet_, expResTest_;
    bool loaDetected_;
  };


// Default solver values.
template<class ScalarType, class MV, class OP>
const typename PseudoBlockGmresSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::convtol_default_ = 1e-8;

template<class ScalarType, class MV, class OP>
const typename PseudoBlockGmresSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::orthoKappa_default_ = -1.0;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::maxRestarts_default_ = 20;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::maxIters_default_ = 1000;

template<class ScalarType, class MV, class OP>
const bool PseudoBlockGmresSolMgr<ScalarType,MV,OP>::showMaxResNormOnly_default_ = false;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::blockSize_default_ = 1;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::numBlocks_default_ = 300;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::verbosity_default_ = Belos::Errors;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::outputStyle_default_ = Belos::General;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::outputFreq_default_ = -1;

template<class ScalarType, class MV, class OP>
const int PseudoBlockGmresSolMgr<ScalarType,MV,OP>::defQuorum_default_ = 1;

template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::impResScale_default_ = "Norm of Preconditioned Initial Residual";

template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::expResScale_default_ = "Norm of Initial Residual";

template<class ScalarType, class MV, class OP>
const typename PseudoBlockGmresSolMgr<ScalarType,MV,OP>::MagnitudeType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::resScaleFactor_default_ = 1.0;

template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::label_default_ = "Belos";

template<class ScalarType, class MV, class OP>
const std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::orthoType_default_ = "DGKS";

template<class ScalarType, class MV, class OP>
const Teuchos::RCP<std::ostream> PseudoBlockGmresSolMgr<ScalarType,MV,OP>::outputStream_default_ = Teuchos::rcp(&std::cout,false);

// Empty Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::PseudoBlockGmresSolMgr() :
  outputStream_(outputStream_default_),
  taggedTests_(Teuchos::null),
  convtol_(convtol_default_),
  orthoKappa_(orthoKappa_default_),
  achievedTol_(Teuchos::ScalarTraits<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>::zero()),
  maxRestarts_(maxRestarts_default_),
  maxIters_(maxIters_default_),
  numIters_(0),
  blockSize_(blockSize_default_),
  numBlocks_(numBlocks_default_),
  verbosity_(verbosity_default_),
  outputStyle_(outputStyle_default_),
  outputFreq_(outputFreq_default_),
  defQuorum_(defQuorum_default_),
  showMaxResNormOnly_(showMaxResNormOnly_default_),
  orthoType_(orthoType_default_),
  impResScale_(impResScale_default_),
  expResScale_(expResScale_default_),
  resScaleFactor_(resScaleFactor_default_),
  label_(label_default_),
  isSet_(false),
  isSTSet_(false),
  expResTest_(false),
  loaDetected_(false)
{}

// Basic Constructor
template<class ScalarType, class MV, class OP>
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::
PseudoBlockGmresSolMgr (const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
                        const Teuchos::RCP<Teuchos::ParameterList> &pl) :
  problem_(problem),
  outputStream_(outputStream_default_),
  taggedTests_(Teuchos::null),
  convtol_(convtol_default_),
  orthoKappa_(orthoKappa_default_),
  achievedTol_(Teuchos::ScalarTraits<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType>::zero()),
  maxRestarts_(maxRestarts_default_),
  maxIters_(maxIters_default_),
  numIters_(0),
  blockSize_(blockSize_default_),
  numBlocks_(numBlocks_default_),
  verbosity_(verbosity_default_),
  outputStyle_(outputStyle_default_),
  outputFreq_(outputFreq_default_),
  defQuorum_(defQuorum_default_),
  showMaxResNormOnly_(showMaxResNormOnly_default_),
  orthoType_(orthoType_default_),
  impResScale_(impResScale_default_),
  expResScale_(expResScale_default_),
  resScaleFactor_(resScaleFactor_default_),
  label_(label_default_),
  isSet_(false),
  isSTSet_(false),
  expResTest_(false),
  loaDetected_(false)
{
  TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");

  // If the parameter list pointer is null, then set the current parameters to the default parameter list.
  if (!is_null(pl)) {
    // Set the parameters using the list that was passed in.
    setParameters( pl );
  }
}

template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::
setParameters (const Teuchos::RCP<Teuchos::ParameterList>& params)
{
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::rcp;
  using Teuchos::rcp_dynamic_cast;

  // Create the internal parameter list if one doesn't already exist.
  if (params_ == Teuchos::null) {
    params_ = parameterList (*getValidParameters ());
  } else {
    // TAW: 3/8/2016: do not validate sub parameter lists as they
    //                might not have a pre-defined structure
    //                e.g. user-specified status tests
    // The Belos Pseudo Block GMRES parameters on the first level are
    // not affected and verified.
    params->validateParameters (*getValidParameters (), 0);
  }

  // Check for maximum number of restarts
  if (params->isParameter ("Maximum Restarts")) {
    maxRestarts_ = params->get ("Maximum Restarts", maxRestarts_default_);

    // Update parameter in our list.
    params_->set ("Maximum Restarts", maxRestarts_);
  }

  // Check for maximum number of iterations
  if (params->isParameter ("Maximum Iterations")) {
    maxIters_ = params->get ("Maximum Iterations", maxIters_default_);

    // Update parameter in our list and in status test.
    params_->set ("Maximum Iterations", maxIters_);
    if (! maxIterTest_.is_null ()) {
      maxIterTest_->setMaxIters (maxIters_);
    }
  }

  // Check for blocksize
  if (params->isParameter ("Block Size")) {
    blockSize_ = params->get ("Block Size", blockSize_default_);
    TEUCHOS_TEST_FOR_EXCEPTION(
      blockSize_ <= 0, std::invalid_argument,
      "Belos::PseudoBlockGmresSolMgr::setParameters: "
      "The \"Block Size\" parameter must be strictly positive, "
      "but you specified a value of " << blockSize_ << ".");

    // Update parameter in our list.
    params_->set ("Block Size", blockSize_);
  }

  // Check for the maximum number of blocks.
  if (params->isParameter ("Num Blocks")) {
    numBlocks_ = params->get ("Num Blocks", numBlocks_default_);
    TEUCHOS_TEST_FOR_EXCEPTION(
      numBlocks_ <= 0, std::invalid_argument,
      "Belos::PseudoBlockGmresSolMgr::setParameters: "
      "The \"Num Blocks\" parameter must be strictly positive, "
      "but you specified a value of " << numBlocks_ << ".");

    // Update parameter in our list.
    params_->set ("Num Blocks", numBlocks_);
  }

  // Check to see if the timer label changed.
  if (params->isParameter ("Timer Label")) {
    const std::string tempLabel = params->get ("Timer Label", label_default_);

    // Update parameter in our list and solver timer
    if (tempLabel != label_) {
      label_ = tempLabel;
      params_->set ("Timer Label", label_);
      const std::string solveLabel =
        label_ + ": PseudoBlockGmresSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
      timerSolve_ = Teuchos::TimeMonitor::getNewCounter (solveLabel);
#endif // BELOS_TEUCHOS_TIME_MONITOR
      if (ortho_ != Teuchos::null) {
        ortho_->setLabel( label_ );
      }
    }
  }

  // Check if the orthogonalization changed.
  if (params->isParameter ("Orthogonalization")) {
    std::string tempOrthoType = params->get ("Orthogonalization", orthoType_default_);
#ifdef HAVE_BELOS_TSQR
    TEUCHOS_TEST_FOR_EXCEPTION(
      tempOrthoType != "DGKS" && tempOrthoType != "ICGS" &&
      tempOrthoType != "IMGS" && tempOrthoType != "TSQR",
      std::invalid_argument,
      "Belos::PseudoBlockGmresSolMgr::setParameters: "
      "The \"Orthogonalization\" parameter must be one of \"DGKS\", \"ICGS\", "
      "\"IMGS\", or \"TSQR\".");
#else
    TEUCHOS_TEST_FOR_EXCEPTION(
      tempOrthoType != "DGKS" && tempOrthoType != "ICGS" &&
      tempOrthoType != "IMGS",
      std::invalid_argument,
      "Belos::PseudoBlockGmresSolMgr::setParameters: "
      "The \"Orthogonalization\" parameter must be one of \"DGKS\", \"ICGS\", "
      "or \"IMGS\".");
#endif // HAVE_BELOS_TSQR

    if (tempOrthoType != orthoType_) {
      orthoType_ = tempOrthoType;
      params_->set("Orthogonalization", orthoType_);
      // Create orthogonalization manager
      if (orthoType_ == "DGKS") {
        typedef DGKSOrthoManager<ScalarType, MV, OP> ortho_type;
        if (orthoKappa_ <= 0) {
          ortho_ = rcp (new ortho_type (label_));
        }
        else {
          ortho_ = rcp (new ortho_type (label_));
          rcp_dynamic_cast<ortho_type> (ortho_)->setDepTol (orthoKappa_);
        }
      }
      else if (orthoType_ == "ICGS") {
        typedef ICGSOrthoManager<ScalarType, MV, OP> ortho_type;
        ortho_ = rcp (new ortho_type (label_));
      }
      else if (orthoType_ == "IMGS") {
        typedef IMGSOrthoManager<ScalarType, MV, OP> ortho_type;
        ortho_ = rcp (new ortho_type (label_));
      }
#ifdef HAVE_BELOS_TSQR
      else if (orthoType_ == "TSQR") {
        typedef TsqrMatOrthoManager<ScalarType, MV, OP> ortho_type;
        ortho_ = rcp (new ortho_type (label_));
      }
#endif // HAVE_BELOS_TSQR
    }
  }

  // Check which orthogonalization constant to use.
  if (params->isParameter ("Orthogonalization Constant")) {
    orthoKappa_ = params->get ("Orthogonalization Constant", orthoKappa_default_);

    // Update parameter in our list.
    params_->set ("Orthogonalization Constant", orthoKappa_);
    if (orthoType_ == "DGKS") {
      if (orthoKappa_ > 0 && ! ortho_.is_null ()) {
        typedef DGKSOrthoManager<ScalarType, MV, OP> ortho_type;
        rcp_dynamic_cast<ortho_type> (ortho_)->setDepTol (orthoKappa_);
      }
    }
  }

  // Check for a change in verbosity level
  if (params->isParameter ("Verbosity")) {
    if (Teuchos::isParameterType<int> (*params, "Verbosity")) {
      verbosity_ = params->get ("Verbosity", verbosity_default_);
    } else {
      verbosity_ = (int) Teuchos::getParameter<Belos::MsgType> (*params, "Verbosity");
    }

    // Update parameter in our list.
    params_->set ("Verbosity", verbosity_);
    if (! printer_.is_null ()) {
      printer_->setVerbosity (verbosity_);
    }
  }

  // Check for a change in output style.
  if (params->isParameter ("Output Style")) {
    if (Teuchos::isParameterType<int> (*params, "Output Style")) {
      outputStyle_ = params->get ("Output Style", outputStyle_default_);
    } else {
      outputStyle_ = (int) Teuchos::getParameter<Belos::OutputType> (*params, "Output Style");
    }

    // Update parameter in our list.
    params_->set ("Output Style", verbosity_);
    if (! outputTest_.is_null ()) {
      isSTSet_ = false;
    }

  }

  // Check if user has specified his own status tests
  if (params->isSublist ("User Status Tests")) {
    Teuchos::ParameterList userStatusTestsList = params->sublist("User Status Tests",true);
    if ( userStatusTestsList.numParams() > 0 ) {
      std::string userCombo_string = params->get<std::string>("User Status Tests Combo Type", "SEQ");
      Teuchos::RCP<StatusTestFactory<ScalarType,MV,OP> > testFactory = Teuchos::rcp(new StatusTestFactory<ScalarType,MV,OP>());
      setUserConvStatusTest( testFactory->buildStatusTests(userStatusTestsList), testFactory->stringToComboType(userCombo_string) );
      taggedTests_ = testFactory->getTaggedTests();
      isSTSet_ = false;
    }
  }

  // output stream
  if (params->isParameter ("Output Stream")) {
    outputStream_ = Teuchos::getParameter<Teuchos::RCP<std::ostream> > (*params, "Output Stream");

    // Update parameter in our list.
    params_->set("Output Stream", outputStream_);
    if (! printer_.is_null ()) {
      printer_->setOStream (outputStream_);
    }
  }

  // frequency level
  if (verbosity_ & Belos::StatusTestDetails) {
    if (params->isParameter ("Output Frequency")) {
      outputFreq_ = params->get ("Output Frequency", outputFreq_default_);
    }

    // Update parameter in out list and output status test.
    params_->set ("Output Frequency", outputFreq_);
    if (! outputTest_.is_null ()) {
      outputTest_->setOutputFrequency (outputFreq_);
    }
  }

  // Create output manager if we need to.
  if (printer_.is_null ()) {
    printer_ = rcp (new OutputManager<ScalarType> (verbosity_, outputStream_));
  }

  // Convergence

  // Check for convergence tolerance
  if (params->isParameter ("Convergence Tolerance")) {
    convtol_ = params->get ("Convergence Tolerance", convtol_default_);

    // Update parameter in our list and residual tests.
    params_->set ("Convergence Tolerance", convtol_);
    if (! impConvTest_.is_null ()) {
      impConvTest_->setTolerance (convtol_);
    }
    if (! expConvTest_.is_null ()) {
      expConvTest_->setTolerance (convtol_);
    }
  }

  // Grab the user defined residual scaling
  bool userDefinedResidualScalingUpdated = false;
  if (params->isParameter ("User Defined Residual Scaling")) {
    const MagnitudeType tempResScaleFactor =
      Teuchos::getParameter<MagnitudeType> (*params, "User Defined Residual Scaling");

    // Only update the scaling if it's different.
    if (resScaleFactor_ != tempResScaleFactor) {
      resScaleFactor_ = tempResScaleFactor;
      userDefinedResidualScalingUpdated = true;
    }

    if(userDefinedResidualScalingUpdated)
    {
      if (! params->isParameter ("Implicit Residual Scaling") && ! impConvTest_.is_null ()) {
        try {
          if(impResScale_ == "User Provided")
            impConvTest_->defineScaleForm (Belos::UserProvided, Belos::TwoNorm, resScaleFactor_);
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
      if (! params->isParameter ("Explicit Residual Scaling") && ! expConvTest_.is_null ()) {
        try {
          if(expResScale_ == "User Provided")
            expConvTest_->defineScaleForm (Belos::UserProvided, Belos::TwoNorm, resScaleFactor_);
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
  }

  // Check for a change in scaling, if so we need to build new residual tests.
  if (params->isParameter ("Implicit Residual Scaling")) {
    const std::string tempImpResScale =
      Teuchos::getParameter<std::string> (*params, "Implicit Residual Scaling");

    // Only update the scaling if it's different.
    if (impResScale_ != tempImpResScale) {
      Belos::ScaleType impResScaleType = convertStringToScaleType (tempImpResScale);
      impResScale_ = tempImpResScale;

      // Update parameter in our list and residual tests
      params_->set ("Implicit Residual Scaling", impResScale_);
      if (! impConvTest_.is_null ()) {
        try {
          if(impResScale_ == "User Provided")
            impConvTest_->defineScaleForm (impResScaleType, Belos::TwoNorm, resScaleFactor_);
          else
            impConvTest_->defineScaleForm (impResScaleType, Belos::TwoNorm);
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
    else if (userDefinedResidualScalingUpdated) {
      Belos::ScaleType impResScaleType = convertStringToScaleType (impResScale_);

      if (! impConvTest_.is_null ()) {
        try {
          if(impResScale_ == "User Provided")
            impConvTest_->defineScaleForm (impResScaleType, Belos::TwoNorm, resScaleFactor_);
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
  }

  if (params->isParameter ("Explicit Residual Scaling")) {
    const std::string tempExpResScale =
      Teuchos::getParameter<std::string> (*params, "Explicit Residual Scaling");

    // Only update the scaling if it's different.
    if (expResScale_ != tempExpResScale) {
      Belos::ScaleType expResScaleType = convertStringToScaleType (tempExpResScale);
      expResScale_ = tempExpResScale;

      // Update parameter in our list and residual tests
      params_->set ("Explicit Residual Scaling", expResScale_);
      if (! expConvTest_.is_null ()) {
        try {
          if(expResScale_ == "User Provided")
            expConvTest_->defineScaleForm (expResScaleType, Belos::TwoNorm, resScaleFactor_);
          else
            expConvTest_->defineScaleForm (expResScaleType, Belos::TwoNorm);
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
    else if (userDefinedResidualScalingUpdated) {
      Belos::ScaleType expResScaleType = convertStringToScaleType (expResScale_);

      if (! expConvTest_.is_null ()) {
        try {
          if(expResScale_ == "User Provided")
            expConvTest_->defineScaleForm (expResScaleType, Belos::TwoNorm, resScaleFactor_);
        }
        catch (std::exception& e) {
          // Make sure the convergence test gets constructed again.
          isSTSet_ = false;
        }
      }
    }
  }


  if (params->isParameter ("Show Maximum Residual Norm Only")) {
    showMaxResNormOnly_ =
      Teuchos::getParameter<bool> (*params, "Show Maximum Residual Norm Only");

    // Update parameter in our list and residual tests
    params_->set ("Show Maximum Residual Norm Only", showMaxResNormOnly_);
    if (! impConvTest_.is_null ()) {
      impConvTest_->setShowMaxResNormOnly (showMaxResNormOnly_);
    }
    if (! expConvTest_.is_null ()) {
      expConvTest_->setShowMaxResNormOnly (showMaxResNormOnly_);
    }
  }

  // Create status tests if we need to.

  // Get the deflation quorum, or number of converged systems before deflation is allowed
  if (params->isParameter("Deflation Quorum")) {
    defQuorum_ = params->get("Deflation Quorum", defQuorum_);
    TEUCHOS_TEST_FOR_EXCEPTION(
      defQuorum_ > blockSize_, std::invalid_argument,
      "Belos::PseudoBlockGmresSolMgr::setParameters: "
      "The \"Deflation Quorum\" parameter (= " << defQuorum_ << ") must not be "
      "larger than \"Block Size\" (= " << blockSize_ << ").");
    params_->set ("Deflation Quorum", defQuorum_);
    if (! impConvTest_.is_null ()) {
      impConvTest_->setQuorum (defQuorum_);
    }
    if (! expConvTest_.is_null ()) {
      expConvTest_->setQuorum (defQuorum_);
    }
  }

  // Create orthogonalization manager if we need to.
  if (ortho_.is_null ()) {
    params_->set("Orthogonalization", orthoType_);
    if (orthoType_ == "DGKS") {
      typedef DGKSOrthoManager<ScalarType, MV, OP> ortho_type;
      if (orthoKappa_ <= 0) {
        ortho_ = rcp (new ortho_type (label_));
      }
      else {
        ortho_ = rcp (new ortho_type (label_));
        rcp_dynamic_cast<ortho_type> (ortho_)->setDepTol (orthoKappa_);
      }
    }
    else if (orthoType_ == "ICGS") {
      typedef ICGSOrthoManager<ScalarType, MV, OP> ortho_type;
      ortho_ = rcp (new ortho_type (label_));
    }
    else if (orthoType_ == "IMGS") {
      typedef IMGSOrthoManager<ScalarType, MV, OP> ortho_type;
      ortho_ = rcp (new ortho_type (label_));
    }
#ifdef HAVE_BELOS_TSQR
    else if (orthoType_ == "TSQR") {
      typedef TsqrMatOrthoManager<ScalarType, MV, OP> ortho_type;
      ortho_ = rcp (new ortho_type (label_));
    }
#endif // HAVE_BELOS_TSQR
    else {
#ifdef HAVE_BELOS_TSQR
      TEUCHOS_TEST_FOR_EXCEPTION(
        orthoType_ != "ICGS" && orthoType_ != "DGKS" &&
        orthoType_ != "IMGS" && orthoType_ != "TSQR",
        std::logic_error,
        "Belos::PseudoBlockGmresSolMgr::setParameters(): "
        "Invalid orthogonalization type \"" << orthoType_ << "\".");
#else
      TEUCHOS_TEST_FOR_EXCEPTION(
        orthoType_ != "ICGS" && orthoType_ != "DGKS" &&
        orthoType_ != "IMGS",
        std::logic_error,
        "Belos::PseudoBlockGmresSolMgr::setParameters(): "
        "Invalid orthogonalization type \"" << orthoType_ << "\".");
#endif // HAVE_BELOS_TSQR
    }
  }

  // Create the timer if we need to.
  if (timerSolve_ == Teuchos::null) {
    std::string solveLabel = label_ + ": PseudoBlockGmresSolMgr total solve time";
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    timerSolve_ = Teuchos::TimeMonitor::getNewCounter (solveLabel);
#endif
  }

  // Inform the solver manager that the current parameters were set.
  isSet_ = true;
}


template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::setUserConvStatusTest(
  const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &userConvStatusTest,
  const typename StatusTestCombo<ScalarType,MV,OP>::ComboType &comboType
  )
{
  userConvStatusTest_ = userConvStatusTest;
  comboType_ = comboType;
}

template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::setDebugStatusTest(
  const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &debugStatusTest
  )
{
  debugStatusTest_ = debugStatusTest;
}



template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList>
PseudoBlockGmresSolMgr<ScalarType,MV,OP>::getValidParameters() const
{
  static Teuchos::RCP<const Teuchos::ParameterList> validPL;
  if (is_null(validPL)) {
    Teuchos::RCP<Teuchos::ParameterList> pl = Teuchos::parameterList();
  // Set all the valid parameters and their default values.
    pl= Teuchos::rcp( new Teuchos::ParameterList() );
    pl->set("Convergence Tolerance", convtol_default_,
      "The relative residual tolerance that needs to be achieved by the\n"
      "iterative solver in order for the linear system to be declared converged.");
    pl->set("Maximum Restarts", maxRestarts_default_,
      "The maximum number of restarts allowed for each\n"
      "set of RHS solved.");
    pl->set("Maximum Iterations", maxIters_default_,
      "The maximum number of block iterations allowed for each\n"
      "set of RHS solved.");
    pl->set("Num Blocks", numBlocks_default_,
      "The maximum number of vectors allowed in the Krylov subspace\n"
      "for each set of RHS solved.");
    pl->set("Block Size", blockSize_default_,
      "The number of RHS solved simultaneously.");
    pl->set("Verbosity", verbosity_default_,
      "What type(s) of solver information should be outputted\n"
      "to the output stream.");
    pl->set("Output Style", outputStyle_default_,
      "What style is used for the solver information outputted\n"
      "to the output stream.");
    pl->set("Output Frequency", outputFreq_default_,
      "How often convergence information should be outputted\n"
      "to the output stream.");
    pl->set("Deflation Quorum", defQuorum_default_,
      "The number of linear systems that need to converge before\n"
      "they are deflated.  This number should be <= block size.");
    pl->set("Output Stream", outputStream_default_,
      "A reference-counted pointer to the output stream where all\n"
      "solver output is sent.");
    pl->set("Show Maximum Residual Norm Only", showMaxResNormOnly_default_,
      "When convergence information is printed, only show the maximum\n"
      "relative residual norm when the block size is greater than one.");
    pl->set("Implicit Residual Scaling", impResScale_default_,
      "The type of scaling used in the implicit residual convergence test.");
    pl->set("Explicit Residual Scaling", expResScale_default_,
      "The type of scaling used in the explicit residual convergence test.");
    pl->set("Timer Label", label_default_,
      "The string to use as a prefix for the timer labels.");
    pl->set("Orthogonalization", orthoType_default_,
      "The type of orthogonalization to use: DGKS, ICGS, IMGS.");
    pl->set("Orthogonalization Constant",orthoKappa_default_,
      "The constant used by DGKS orthogonalization to determine\n"
      "whether another step of classical Gram-Schmidt is necessary.");
    pl->sublist("User Status Tests");
    pl->set("User Status Tests Combo Type", "SEQ",
        "Type of logical combination operation of user-defined\n"
        "and/or solver-specific status tests.");
    validPL = pl;
  }
  return validPL;
}

// Check the status test versus the defined linear problem
template<class ScalarType, class MV, class OP>
bool PseudoBlockGmresSolMgr<ScalarType,MV,OP>::checkStatusTest() {

  typedef Belos::StatusTestCombo<ScalarType,MV,OP>  StatusTestCombo_t;
  typedef Belos::StatusTestGenResNorm<ScalarType,MV,OP>  StatusTestGenResNorm_t;
  typedef Belos::StatusTestImpResNorm<ScalarType,MV,OP>  StatusTestImpResNorm_t;

  // Basic test checks maximum iterations and native residual.
  maxIterTest_ = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>( maxIters_ ) );

  // If there is a left preconditioner, we create a combined status test that checks the implicit
  // and then explicit residual norm to see if we have convergence.
  if ( !Teuchos::is_null(problem_->getLeftPrec()) ) {
    expResTest_ = true;
  }

  if (expResTest_) {

    // Implicit residual test, using the native residual to determine if convergence was achieved.
    Teuchos::RCP<StatusTestGenResNorm_t> tmpImpConvTest =
      Teuchos::rcp( new StatusTestGenResNorm_t( convtol_, defQuorum_ ) );
    if(impResScale_ == "User Provided")
      tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm, resScaleFactor_ );
    else
      tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );

    tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
    impConvTest_ = tmpImpConvTest;

    // Explicit residual test once the native residual is below the tolerance
    Teuchos::RCP<StatusTestGenResNorm_t> tmpExpConvTest =
      Teuchos::rcp( new StatusTestGenResNorm_t( convtol_, defQuorum_ ) );
    tmpExpConvTest->defineResForm( StatusTestGenResNorm_t::Explicit, Belos::TwoNorm );
    if(expResScale_ == "User Provided")
      tmpExpConvTest->defineScaleForm( convertStringToScaleType(expResScale_), Belos::TwoNorm, resScaleFactor_ );
    else
      tmpExpConvTest->defineScaleForm( convertStringToScaleType(expResScale_), Belos::TwoNorm );
    tmpExpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
    expConvTest_ = tmpExpConvTest;

    // The convergence test is a combination of the "cheap" implicit test and explicit test.
    convTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::SEQ, impConvTest_, expConvTest_ ) );
  }
  else {

    // Implicit residual test, using the native residual to determine if convergence was achieved.
    // Use test that checks for loss of accuracy.
    Teuchos::RCP<StatusTestImpResNorm_t> tmpImpConvTest =
      Teuchos::rcp( new StatusTestImpResNorm_t( convtol_, defQuorum_ ) );
    if(impResScale_ == "User Provided")
      tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm, resScaleFactor_ );
    else
      tmpImpConvTest->defineScaleForm( convertStringToScaleType(impResScale_), Belos::TwoNorm );
    tmpImpConvTest->setShowMaxResNormOnly( showMaxResNormOnly_ );
    impConvTest_ = tmpImpConvTest;

    // Set the explicit and total convergence test to this implicit test that checks for accuracy loss.
    expConvTest_ = impConvTest_;
    convTest_ = impConvTest_;
  }

  if (nonnull(userConvStatusTest_) ) {
    // Override the overall convergence test with the users convergence test
    convTest_ = Teuchos::rcp(
      new StatusTestCombo_t( comboType_, convTest_, userConvStatusTest_ ) );
    // brief output style not compatible with more general combinations
    //outputStyle_ = Belos::General;
    // NOTE: Above, you have to run the other convergence tests also because
    // the logic in this class depends on it.  This is very unfortunate.
  }

  sTest_ = Teuchos::rcp( new StatusTestCombo_t( StatusTestCombo_t::OR, maxIterTest_, convTest_ ) );

  // Add debug status test, if one is provided by the user
  if (nonnull(debugStatusTest_) ) {
    // Add debug convergence test
    Teuchos::rcp_dynamic_cast<StatusTestCombo_t>(sTest_)->addStatusTest( debugStatusTest_ );
  }

  // Create the status test output class.
  // This class manages and formats the output from the status test.
  StatusTestOutputFactory<ScalarType,MV,OP> stoFactory( outputStyle_, taggedTests_ );
  outputTest_ = stoFactory.create( printer_, sTest_, outputFreq_, Passed+Failed+Undefined );

  // Set the solver string for the output test
  std::string solverDesc = " Pseudo Block Gmres ";
  outputTest_->setSolverDesc( solverDesc );


  // The status test is now set.
  isSTSet_ = true;

  return false;
}


// solve()
template<class ScalarType, class MV, class OP>
ReturnType PseudoBlockGmresSolMgr<ScalarType,MV,OP>::solve() {

  // Set the current parameters if they were not set before.
  // NOTE:  This may occur if the user generated the solver manager with the default constructor and
  // then didn't set any parameters using setParameters().
  if (!isSet_) { setParameters( params_ ); }

  Teuchos::BLAS<int,ScalarType> blas;

  TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),PseudoBlockGmresSolMgrLinearProblemFailure,
                     "Belos::PseudoBlockGmresSolMgr::solve(): Linear problem is not ready, setProblem() has not been called.");

  // Check if we have to create the status tests.
  if (!isSTSet_ || (!expResTest_ && !Teuchos::is_null(problem_->getLeftPrec())) ) {
    TEUCHOS_TEST_FOR_EXCEPTION( checkStatusTest(),PseudoBlockGmresSolMgrLinearProblemFailure,
      "Belos::BlockGmresSolMgr::solve(): Linear problem and requested status tests are incompatible.");
  }

  // Create indices for the linear systems to be solved.
  int startPtr = 0;
  int numRHS2Solve = MVT::GetNumberVecs( *(problem_->getRHS()) );
  int numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;

  std::vector<int> currIdx( numCurrRHS );
  blockSize_ = numCurrRHS;
  for (int i=0; i<numCurrRHS; ++i)
    { currIdx[i] = startPtr+i; }

  // Inform the linear problem of the current linear system to solve.
  problem_->setLSIndex( currIdx );

  //////////////////////////////////////////////////////////////////////////////////////
  // Parameter list
  Teuchos::ParameterList plist;
  plist.set("Num Blocks",numBlocks_);

  // Reset the status test.
  outputTest_->reset();
  loaDetected_ = false;

  // Assume convergence is achieved, then let any failed convergence set this to false.
  bool isConverged = true;

  //////////////////////////////////////////////////////////////////////////////////////
  // BlockGmres solver

  Teuchos::RCP<PseudoBlockGmresIter<ScalarType,MV,OP> > block_gmres_iter
    = Teuchos::rcp( new PseudoBlockGmresIter<ScalarType,MV,OP>(problem_,printer_,outputTest_,ortho_,plist) );

  // Enter solve() iterations
  {
#ifdef BELOS_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor slvtimer(*timerSolve_);
#endif

    while ( numRHS2Solve > 0 ) {

      // Reset the active / converged vectors from this block
      std::vector<int> convRHSIdx;
      std::vector<int> currRHSIdx( currIdx );
      currRHSIdx.resize(numCurrRHS);

      // Set the current number of blocks with the pseudo Gmres iteration.
      block_gmres_iter->setNumBlocks( numBlocks_ );

      // Reset the number of iterations.
      block_gmres_iter->resetNumIters();

      // Reset the number of calls that the status test output knows about.
      outputTest_->resetNumCalls();

      // Get a new state struct and initialize the solver.
      PseudoBlockGmresIterState<ScalarType,MV> newState;

      // Create the first block in the current Krylov basis for each right-hand side.
      std::vector<int> index(1);
      Teuchos::RCP<MV> tmpV, R_0 = MVT::CloneCopy( *(problem_->getInitPrecResVec()), currIdx );
      newState.V.resize( blockSize_ );
      newState.Z.resize( blockSize_ );
      for (int i=0; i<blockSize_; ++i) {
        index[0]=i;
        tmpV = MVT::CloneViewNonConst( *R_0, index );

        // Get a matrix to hold the orthonormalization coefficients.
        Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > tmpZ
          = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>( 1 ));

        // Orthonormalize the new V_0
        int rank = ortho_->normalize( *tmpV, tmpZ );
        TEUCHOS_TEST_FOR_EXCEPTION(rank != 1, PseudoBlockGmresSolMgrOrthoFailure,
            "Belos::PseudoBlockGmresSolMgr::solve(): Failed to compute initial block of orthonormal vectors.");

        newState.V[i] = tmpV;
        newState.Z[i] = tmpZ;
      }

      newState.curDim = 0;
      block_gmres_iter->initialize(newState);
      int numRestarts = 0;

      while(1) {

        // tell block_gmres_iter to iterate
        try {
          block_gmres_iter->iterate();

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check convergence first
          //
          ////////////////////////////////////////////////////////////////////////////////////
          if ( convTest_->getStatus() == Passed ) {

            if ( expConvTest_->getLOADetected() ) {
              // Oops!  There was a loss of accuracy (LOA) for one or
              // more right-hand sides.  That means the implicit
              // (a.k.a. "native") residuals claim convergence,
              // whereas the explicit (hence expConvTest_, i.e.,
              // "explicit convergence test") residuals have not
              // converged.
              //
              // We choose to deal with this situation by deflating
              // out the affected right-hand sides and moving on.
              loaDetected_ = true;
              printer_->stream(Warnings) <<
                "Belos::PseudoBlockGmresSolMgr::solve(): Warning! Solver has experienced a loss of accuracy!" << std::endl;
              isConverged = false;
            }

            // Figure out which linear systems converged.
            std::vector<int> convIdx = expConvTest_->convIndices();

            // If the number of converged linear systems is equal to the
            // number of current linear systems, then we are done with this block.
            if (convIdx.size() == currRHSIdx.size())
              break;  // break from while(1){block_gmres_iter->iterate()}

            // Get a new state struct and initialize the solver.
            PseudoBlockGmresIterState<ScalarType,MV> defState;

            // Inform the linear problem that we are finished with this current linear system.
            problem_->setCurrLS();

            // Get the state.
            PseudoBlockGmresIterState<ScalarType,MV> oldState = block_gmres_iter->getState();
            int curDim = oldState.curDim;

            // Get a new state struct and reset currRHSIdx to have the right-hand sides that
            // are left to converge for this block.
            int have = 0;
            std::vector<int> oldRHSIdx( currRHSIdx );
            std::vector<int> defRHSIdx;
            for (unsigned int i=0; i<currRHSIdx.size(); ++i) {
              bool found = false;
              for (unsigned int j=0; j<convIdx.size(); ++j) {
                if (currRHSIdx[i] == convIdx[j]) {
                  found = true;
                  break;
                }
              }
              if (found) {
                defRHSIdx.push_back( i );
              }
              else {
                defState.V.push_back( Teuchos::rcp_const_cast<MV>( oldState.V[i] ) );
                defState.Z.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseVector<int,ScalarType> >( oldState.Z[i] ) );
                defState.H.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseMatrix<int,ScalarType> >( oldState.H[i] ) );
                defState.sn.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseVector<int,ScalarType> >( oldState.sn[i] ) );
                defState.cs.push_back( Teuchos::rcp_const_cast<Teuchos::SerialDenseVector<int,MagnitudeType> >(oldState.cs[i] ) );
                currRHSIdx[have] = currRHSIdx[i];
                have++;
              }
            }
            defRHSIdx.resize(currRHSIdx.size()-have);
            currRHSIdx.resize(have);

            // Compute the current solution that needs to be deflated if this solver has taken any steps.
            if (curDim) {
              Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
              Teuchos::RCP<MV> defUpdate = MVT::CloneViewNonConst( *update, defRHSIdx );

              // Set the deflated indices so we can update the solution.
              problem_->setLSIndex( convIdx );

              // Update the linear problem.
              problem_->updateSolution( defUpdate, true );
            }

            // Set the remaining indices after deflation.
            problem_->setLSIndex( currRHSIdx );

            // Set the dimension of the subspace, which is the same as the old subspace size.
            defState.curDim = curDim;

            // Initialize the solver with the deflated system.
            block_gmres_iter->initialize(defState);
          }
          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check for maximum iterations
          //
          ////////////////////////////////////////////////////////////////////////////////////
          else if ( maxIterTest_->getStatus() == Passed ) {
            // we don't have convergence
            isConverged = false;
            break;  // break from while(1){block_gmres_iter->iterate()}
          }
          ////////////////////////////////////////////////////////////////////////////////////
          //
          // check for restarting, i.e. the subspace is full
          //
          ////////////////////////////////////////////////////////////////////////////////////
          else if ( block_gmres_iter->getCurSubspaceDim() == block_gmres_iter->getMaxSubspaceDim() ) {

            if ( numRestarts >= maxRestarts_ ) {
              isConverged = false;
              break; // break from while(1){block_gmres_iter->iterate()}
            }
            numRestarts++;

            printer_->stream(Debug) << " Performing restart number " << numRestarts << " of " << maxRestarts_ << std::endl << std::endl;

            // Update the linear problem.
            Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
            problem_->updateSolution( update, true );

            // Get the state.
            PseudoBlockGmresIterState<ScalarType,MV> oldState = block_gmres_iter->getState();

            // Set the new state.
            PseudoBlockGmresIterState<ScalarType,MV> newstate;
            newstate.V.resize(currRHSIdx.size());
            newstate.Z.resize(currRHSIdx.size());

            // Compute the restart vectors
            // NOTE: Force the linear problem to update the current residual since the solution was updated.
            R_0 = MVT::Clone( *(problem_->getInitPrecResVec()), currRHSIdx.size() );
            problem_->computeCurrPrecResVec( &*R_0 );
            for (unsigned int i=0; i<currRHSIdx.size(); ++i) {
              index[0] = i;  // index(1) vector declared on line 891

              tmpV = MVT::CloneViewNonConst( *R_0, index );

              // Get a matrix to hold the orthonormalization coefficients.
              Teuchos::RCP<Teuchos::SerialDenseVector<int,ScalarType> > tmpZ
                = Teuchos::rcp( new Teuchos::SerialDenseVector<int,ScalarType>( 1 ));

              // Orthonormalize the new V_0
              int rank = ortho_->normalize( *tmpV, tmpZ );
              TEUCHOS_TEST_FOR_EXCEPTION(rank != 1 ,PseudoBlockGmresSolMgrOrthoFailure,
                  "Belos::PseudoBlockGmresSolMgr::solve(): Failed to compute initial block of orthonormal vectors after the restart.");

              newstate.V[i] = tmpV;
              newstate.Z[i] = tmpZ;
            }

            // Initialize the solver.
            newstate.curDim = 0;
            block_gmres_iter->initialize(newstate);

          } // end of restarting

          ////////////////////////////////////////////////////////////////////////////////////
          //
          // we returned from iterate(), but none of our status tests Passed.
          // something is wrong, and it is probably our fault.
          //
          ////////////////////////////////////////////////////////////////////////////////////

          else {
            TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,
                "Belos::PseudoBlockGmresSolMgr::solve(): Invalid return from PseudoBlockGmresIter::iterate().");
          }
        }
        catch (const PseudoBlockGmresIterOrthoFailure &e) {

          // Try to recover the most recent least-squares solution
          block_gmres_iter->updateLSQR( block_gmres_iter->getCurSubspaceDim() );

          // Check to see if the most recent least-squares solution yielded convergence.
          sTest_->checkStatus( &*block_gmres_iter );
          if (convTest_->getStatus() != Passed)
            isConverged = false;
          break;
        }
        catch (const std::exception &e) {
          printer_->stream(Errors) << "Error! Caught std::exception in PseudoBlockGmresIter::iterate() at iteration "
                                   << block_gmres_iter->getNumIters() << std::endl
                                   << e.what() << std::endl;
          throw;
        }
      }

      // Compute the current solution.
      // Update the linear problem.
      if (nonnull(userConvStatusTest_)) {
        //std::cout << "\nnonnull(userConvStatusTest_)\n";
        Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
        problem_->updateSolution( update, true );
      }
      else if (nonnull(expConvTest_->getSolution())) {
        //std::cout << "\nexpConvTest_->getSolution()\n";
        Teuchos::RCP<MV> newX = expConvTest_->getSolution();
        Teuchos::RCP<MV> curX = problem_->getCurrLHSVec();
        MVT::MvAddMv( 0.0, *newX, 1.0, *newX, *curX );
      }
      else {
        //std::cout << "\nblock_gmres_iter->getCurrentUpdate()\n";
        Teuchos::RCP<MV> update = block_gmres_iter->getCurrentUpdate();
        problem_->updateSolution( update, true );
      }

      // Inform the linear problem that we are finished with this block linear system.
      problem_->setCurrLS();

      // Update indices for the linear systems to be solved.
      startPtr += numCurrRHS;
      numRHS2Solve -= numCurrRHS;
      if ( numRHS2Solve > 0 ) {
        numCurrRHS = ( numRHS2Solve < blockSize_) ? numRHS2Solve : blockSize_;

        blockSize_ = numCurrRHS;
        currIdx.resize( numCurrRHS  );
        for (int i=0; i<numCurrRHS; ++i)
        { currIdx[i] = startPtr+i; }

        // Adapt the status test quorum if we need to.
        if (defQuorum_ > blockSize_) {
          if (impConvTest_ != Teuchos::null)
            impConvTest_->setQuorum( blockSize_ );
          if (expConvTest_ != Teuchos::null)
            expConvTest_->setQuorum( blockSize_ );
        }

        // Set the next indices.
        problem_->setLSIndex( currIdx );
      }
      else {
        currIdx.resize( numRHS2Solve );
      }

    }// while ( numRHS2Solve > 0 )

  }

  // print final summary
  sTest_->print( printer_->stream(FinalSummary) );

  // print timing information
#ifdef BELOS_TEUCHOS_TIME_MONITOR
  // Calling summarize() can be expensive, so don't call unless the
  // user wants to print out timing details.  summarize() will do all
  // the work even if it's passed a "black hole" output stream.
  if (verbosity_ & TimingDetails)
    Teuchos::TimeMonitor::summarize( printer_->stream(TimingDetails) );
#endif

  // get iteration information for this solve
  numIters_ = maxIterTest_->getNumIters();

  // Save the convergence test value ("achieved tolerance") for this
  // solve.  For this solver, convTest_ may either be a single
  // residual norm test, or a combination of two residual norm tests.
  // In the latter case, the master convergence test convTest_ is a
  // SEQ combo of the implicit resp. explicit tests.  If the implicit
  // test never passes, then the explicit test won't ever be executed.
  // This manifests as expConvTest_->getTestValue()->size() < 1.  We
  // deal with this case by using the values returned by
  // impConvTest_->getTestValue().
  {
    // We'll fetch the vector of residual norms one way or the other.
    const std::vector<MagnitudeType>* pTestValues = NULL;
    if (expResTest_) {
      pTestValues = expConvTest_->getTestValue();
      if (pTestValues == NULL || pTestValues->size() < 1) {
        pTestValues = impConvTest_->getTestValue();
      }
    }
    else {
      // Only the implicit residual norm test is being used.
      pTestValues = impConvTest_->getTestValue();
    }
    TEUCHOS_TEST_FOR_EXCEPTION(pTestValues == NULL, std::logic_error,
      "Belos::PseudoBlockGmresSolMgr::solve(): The implicit convergence test's "
      "getTestValue() method returned NULL.  Please report this bug to the "
      "Belos developers.");
    TEUCHOS_TEST_FOR_EXCEPTION(pTestValues->size() < 1, std::logic_error,
      "Belos::PseudoBlockGmresSolMgr::solve(): The implicit convergence test's "
      "getTestValue() method returned a vector of length zero.  Please report "
      "this bug to the Belos developers.");

    // FIXME (mfh 12 Dec 2011) Does pTestValues really contain the
    // achieved tolerances for all vectors in the current solve(), or
    // just for the vectors from the last deflation?
    achievedTol_ = *std::max_element (pTestValues->begin(), pTestValues->end());
  }

  if (!isConverged || loaDetected_) {
    return Unconverged; // return from PseudoBlockGmresSolMgr::solve()
  }
  return Converged; // return from PseudoBlockGmresSolMgr::solve()
}


template<class ScalarType, class MV, class OP>
std::string PseudoBlockGmresSolMgr<ScalarType,MV,OP>::description () const
{
  std::ostringstream out;

  out << "\"Belos::PseudoBlockGmresSolMgr\": {";
  if (this->getObjectLabel () != "") {
    out << "Label: " << this->getObjectLabel () << ", ";
  }
  out << "Num Blocks: " << numBlocks_
      << ", Maximum Iterations: " << maxIters_
      << ", Maximum Restarts: " << maxRestarts_
      << ", Convergence Tolerance: " << convtol_
      << "}";
  return out.str ();
}


template<class ScalarType, class MV, class OP>
void
PseudoBlockGmresSolMgr<ScalarType, MV, OP>::
describe (Teuchos::FancyOStream &out,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  using Teuchos::TypeNameTraits;
  using Teuchos::VERB_DEFAULT;
  using Teuchos::VERB_NONE;
  using Teuchos::VERB_LOW;
  // using Teuchos::VERB_MEDIUM;
  // using Teuchos::VERB_HIGH;
  // using Teuchos::VERB_EXTREME;
  using std::endl;

  // Set default verbosity if applicable.
  const Teuchos::EVerbosityLevel vl =
    (verbLevel == VERB_DEFAULT) ? VERB_LOW : verbLevel;

  if (vl != VERB_NONE) {
    Teuchos::OSTab tab0 (out);

    out << "\"Belos::PseudoBlockGmresSolMgr\":" << endl;
    Teuchos::OSTab tab1 (out);
    out << "Template parameters:" << endl;
    {
      Teuchos::OSTab tab2 (out);
      out << "ScalarType: " << TypeNameTraits<ScalarType>::name () << endl
          << "MV: " << TypeNameTraits<MV>::name () << endl
          << "OP: " << TypeNameTraits<OP>::name () << endl;
    }
    if (this->getObjectLabel () != "") {
      out << "Label: " << this->getObjectLabel () << endl;
    }
    out << "Num Blocks: " << numBlocks_ << endl
        << "Maximum Iterations: " << maxIters_ << endl
        << "Maximum Restarts: " << maxRestarts_ << endl
        << "Convergence Tolerance: " << convtol_ << endl;
  }
}

} // end Belos namespace

#endif /* BELOS_PSEUDO_BLOCK_GMRES_SOLMGR_HPP */