This file is indexed.

/usr/include/trilinos/BelosPseudoBlockStochasticCGIter.hpp is in libtrilinos-belos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//@HEADER
// ************************************************************************
//
//                 Belos: Block Linear Solvers Package
//                  Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_ITER_HPP
#define BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_ITER_HPP

/*! \file BelosPseudoBlockStochasticCGIter.hpp
    \brief Belos concrete class for performing the stochastic pseudo-block CG iteration.
*/

#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosStochasticCGIteration.hpp"

#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"

#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!	
  \class Belos::PseudoBlockStochasticCGIter
  
  \brief This class implements the stochastic pseudo-block CG iteration, where the basic 
  stochastic CG algorithm is performed on all of the linear systems simultaneously.  The
  implementation is a pseudo-block generalization of the stochastic CG algorithm of 
  Parker and Fox, SISC 2012.
  
  THIS CODE IS CURRENTLY EXPERIMENTAL. CAVEAT EMPTOR.

  \ingroup belos_solver_framework
 
  \author  Chris Siefert 
*/

namespace Belos {
  
  template<class ScalarType, class MV, class OP>
  class PseudoBlockStochasticCGIter : virtual public StochasticCGIteration<ScalarType,MV,OP> {
    
  public:
    
    //
    // Convenience typedefs
    //
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    
    //! @name Constructors/Destructor
    //@{ 
    
    /*! \brief %PseudoBlockStochasticCGIter constructor with linear problem, solver utilities, and parameter list of solver options.
     *
     * This constructor takes pointers required by the linear solver, in addition
     * to a parameter list of options for the linear solver. 
     */
    PseudoBlockStochasticCGIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
				 const Teuchos::RCP<OutputManager<ScalarType> > &printer,
				 const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
				 Teuchos::ParameterList &params );
    
    //! Destructor.
    virtual ~PseudoBlockStochasticCGIter() {};
    //@}
    
    
    //! @name Solver methods
    //@{ 
    
    /*! \brief This method performs stochastic CG iterations on each linear system until the status
     * test indicates the need to stop or an error occurs (in which case, an
     * std::exception is thrown).
     *
     * iterate() will first determine whether the solver is initialized; if
     * not, it will call initialize() using default arguments. After
     * initialization, the solver performs stochastic CG iterations until the
     * status test evaluates as ::Passed, at which point the method returns to
     * the caller. 
     *
     * The status test is queried at the beginning of the iteration.
     *
     */
    void iterate();
    
    /*! \brief Initialize the solver to an iterate, providing a complete state.
     *
     * The %PseudoBlockStochasticCGIter contains a certain amount of state, consisting of the current 
     * direction vectors and residuals.
     *
     * initialize() gives the user the opportunity to manually set these,
     * although this must be done with caution, abiding by the rules given
     * below. 
     *
     * \post 
     * <li>isInitialized() == \c true (see post-conditions of isInitialize())
     *
     * The user has the option of specifying any component of the state using
     * initialize(). However, these arguments are assumed to match the
     * post-conditions specified under isInitialized(). Any necessary component of the
     * state not given to initialize() will be generated.
     *
     * \note For any pointer in \c newstate which directly points to the multivectors in 
     * the solver, the data is not copied.
     */
    void initializeCG(StochasticCGIterationState<ScalarType,MV>& newstate);
    
    /*! \brief Initialize the solver with the initial vectors from the linear problem
     *  or random data.
     */
    void initialize()
    {
      StochasticCGIterationState<ScalarType,MV> empty;
      initializeCG(empty);
    }
    
    /*! \brief Get the current state of the linear solver.
     *
     * The data is only valid if isInitialized() == \c true.
     *
     * \returns A StochasticCGIterationState object containing const pointers to the current
     * solver state.
     */
    StochasticCGIterationState<ScalarType,MV> getState() const {
      StochasticCGIterationState<ScalarType,MV> state;
      state.R = R_;
      state.P = P_;
      state.AP = AP_;
      state.Z = Z_;
      state.Y = Y_;
      return state;
    }
    
    //@}
    
    
    //! @name Status methods
    //@{ 
    
    //! \brief Get the current iteration count.
    int getNumIters() const { return iter_; }
    
    //! \brief Reset the iteration count.
    void resetNumIters( int iter = 0 ) { iter_ = iter; }
    
    //! Get the norms of the residuals native to the solver.
    //! \return A std::vector of length blockSize containing the native residuals.
    Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const { return R_; }
    
    //! Get the current update to the linear system.
    /*! \note This method returns a null pointer because the linear problem is current.
    */
    Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }
    
    //! Get the stochastic vector   
    Teuchos::RCP<MV> getStochasticVector() const { return Y_; }

    //@}
    
    //! @name Accessor methods
    //@{ 
    
    //! Get a constant reference to the linear problem.
    const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
    
    //! Get the blocksize to be used by the iterative solver in solving this linear problem.
    int getBlockSize() const { return 1; }
    
    //! \brief Set the blocksize.
    void setBlockSize(int blockSize) { 
      TEUCHOS_TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,
			 "Belos::PseudoBlockStochasticCGIter::setBlockSize(): Cannot use a block size that is not one.");
    }
    
    //! States whether the solver has been initialized or not.
    bool isInitialized() { return initialized_; }
    
    //@}
    
  private:

    //! Wrapper for Normal(0,1) random variables
    inline ScalarType normal() {
      // Do all of the calculations with doubles, because that is what the Odeh and Evans 1974 constants are for.
      // Then cast to ScalarType.
      
      const double p0 = -0.322232431088;
      const double p1 = -1.0;
      const double p2 = -0.342242088547; 
      const double p3 = -0.204231210245e-1;
      const double p4 = -0.453642210148e-4;
      const double q0 =  0.993484626060e-1;
      const double q1 =  0.588581570495;
      const double q2 =  0.531103462366;
      const double q3 =  0.103537752850;
      const double q4 =  0.38560700634e-2;
      double r,p,q,y,z;
      
      // Get a random number (-1,1) and rescale to (0,1). 
      r=0.5*(Teuchos::ScalarTraits<double>::random() + 1.0);
      
      // Odeh and Evans algorithm (as modified by Park & Geyer)
      if(r < 0.5) y=std::sqrt(-2.0 * log(r));
      else y=std::sqrt(-2.0 * log(1.0 - r));
      
      p = p0 + y * (p1 + y* (p2 + y * (p3 + y * p4)));
      q = q0 + y * (q1 + y* (q2 + y * (q3 + y * q4)));
      
      if(r < 0.5) z = (p / q) - y;
      else z = y - (p / q);
      
      return Teuchos::as<ScalarType,double>(z);
    }
       
    //
    // Classes inputed through constructor that define the linear problem to be solved.
    //
    const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> >    lp_;
    const Teuchos::RCP<OutputManager<ScalarType> >          om_;
    const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >       stest_;
    
    //
    // Algorithmic parameters
    //  
    // numRHS_ is the current number of linear systems being solved.
    int numRHS_;
    
    // 
    // Current solver state
    //
    // initialized_ specifies that the basis vectors have been initialized and the iterate() routine
    // is capable of running; _initialize is controlled  by the initialize() member method
    // For the implications of the state of initialized_, please see documentation for initialize()
    bool initialized_;
    
    // Current number of iterations performed.
    int iter_;

    // Current number of iterations performed.
    bool assertPositiveDefiniteness_;

    // 
    // State Storage
    //
    // Residual
    Teuchos::RCP<MV> R_;
    //
    // Preconditioned residual
    Teuchos::RCP<MV> Z_;
    //
    // Direction vector
    Teuchos::RCP<MV> P_;
    //
    // Operator applied to direction vector
    Teuchos::RCP<MV> AP_;
    //
    // Stochastic recurrence vector
    Teuchos::RCP<MV> Y_;


  };
  
  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor.
  template<class ScalarType, class MV, class OP>
  PseudoBlockStochasticCGIter<ScalarType,MV,OP>::PseudoBlockStochasticCGIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem, 
							       const Teuchos::RCP<OutputManager<ScalarType> > &printer,
							       const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
							       Teuchos::ParameterList &params ):
    lp_(problem),
    om_(printer),
    stest_(tester),
    numRHS_(0),
    initialized_(false),
    iter_(0),
    assertPositiveDefiniteness_( params.get("Assert Positive Definiteness", true) )
  {
  }
  

  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Initialize this iteration object
  template <class ScalarType, class MV, class OP>
  void PseudoBlockStochasticCGIter<ScalarType,MV,OP>::initializeCG(StochasticCGIterationState<ScalarType,MV>& newstate)
  {
    // Check if there is any multivector to clone from.
    Teuchos::RCP<const MV> lhsMV = lp_->getCurrLHSVec();
    Teuchos::RCP<const MV> rhsMV = lp_->getCurrRHSVec();
    TEUCHOS_TEST_FOR_EXCEPTION((lhsMV==Teuchos::null && rhsMV==Teuchos::null),std::invalid_argument,
		       "Belos::PseudoBlockStochasticCGIter::initialize(): Cannot initialize state storage!");

    // Get the multivector that is not null.
    Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );

    // Get the number of right-hand sides we're solving for now.
    int numRHS = MVT::GetNumberVecs(*tmp);
    numRHS_ = numRHS;
	
    // Initialize the state storage
    // If the subspace has not be initialized before or has changed sizes, generate it using the LHS or RHS from lp_.
    if (Teuchos::is_null(R_) || MVT::GetNumberVecs(*R_)!=numRHS_) {
      R_  = MVT::Clone( *tmp, numRHS_ );
      Z_  = MVT::Clone( *tmp, numRHS_ );
      P_  = MVT::Clone( *tmp, numRHS_ );
      AP_ = MVT::Clone( *tmp, numRHS_ );
      Y_  = MVT::Clone( *tmp, numRHS_ );
    }
	
    // NOTE:  In StochasticCGIter R_, the initial residual, is required!!!  
    //
    std::string errstr("Belos::BlockPseudoStochasticCGIter::initialize(): Specified multivectors must have a consistent length and width.");

    // Create convenience variables for zero and one.
    const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
    const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();

    if (!Teuchos::is_null(newstate.R)) {

      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*R_),
                          std::invalid_argument, errstr );
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.R) != numRHS_,
                          std::invalid_argument, errstr );

      // Copy basis vectors from newstate into V
      if (newstate.R != R_) {
        // copy over the initial residual (unpreconditioned).
	MVT::MvAddMv( one, *newstate.R, zero, *newstate.R, *R_ );
      }

      // Compute initial direction vectors
      // Initially, they are set to the preconditioned residuals
      
      if ( lp_->getLeftPrec() != Teuchos::null ) {
        lp_->applyLeftPrec( *R_, *Z_ );
        if ( lp_->getRightPrec() != Teuchos::null ) {
          Teuchos::RCP<MV> tmp2 = MVT::Clone( *Z_, numRHS_ );
          lp_->applyRightPrec( *Z_, *tmp2 );
          Z_ = tmp2;
        }
      }
      else if ( lp_->getRightPrec() != Teuchos::null ) {
	lp_->applyRightPrec( *R_, *Z_ ); 
      } 
      else {
	Z_ = R_;
      }
      MVT::MvAddMv( one, *Z_, zero, *Z_, *P_ );
    }
    else {

      TEUCHOS_TEST_FOR_EXCEPTION(Teuchos::is_null(newstate.R),std::invalid_argument,
                         "Belos::StochasticCGIter::initialize(): CGStateIterState does not have initial residual.");
    }

    // The solver is initialized
    initialized_ = true;
  }


 //////////////////////////////////////////////////////////////////////////////////////////////////
  // Iterate until the status test informs us we should stop.
  template <class ScalarType, class MV, class OP>
  void PseudoBlockStochasticCGIter<ScalarType,MV,OP>::iterate()
  {
    //
    // Allocate/initialize data structures
    //
    if (initialized_ == false) {
      initialize();
    }

    // Allocate memory for scalars.
    int i=0;
    std::vector<int> index(1);
    std::vector<ScalarType> rHz( numRHS_ ), rHz_old( numRHS_ ), pAp( numRHS_ );
    Teuchos::SerialDenseMatrix<int, ScalarType> alpha( numRHS_,numRHS_ ), beta( numRHS_,numRHS_ ), zeta(numRHS_,numRHS_);

    // Create convenience variables for zero and one.
    const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
    const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();
    
    // Get the current solution std::vector.
    Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();

    // Compute first <r,z> a.k.a. rHz
    MVT::MvDot( *R_, *Z_, rHz );

    if ( assertPositiveDefiniteness_ )
        for (i=0; i<numRHS_; ++i)
            TEUCHOS_TEST_FOR_EXCEPTION( SCT::real(rHz[i]) < zero,
                                CGIterateFailure,
                                "Belos::PseudoBlockStochasticCGIter::iterate(): negative value for r^H*M*r encountered!" );

    ////////////////////////////////////////////////////////////////
    // Iterate until the status test tells us to stop.
    //
    while (stest_->checkStatus(this) != Passed) {
      
      // Increment the iteration
      iter_++;

      // Multiply the current direction std::vector by A and store in AP_
      lp_->applyOp( *P_, *AP_ );
      
      // Compute alpha := <R_,Z_> / <P_,AP_>
      MVT::MvDot( *P_, *AP_, pAp );

      for (i=0; i<numRHS_; ++i) {
        if ( assertPositiveDefiniteness_ )
            // Check that pAp[i] is a positive number!
            TEUCHOS_TEST_FOR_EXCEPTION( SCT::real(pAp[i]) <= zero,
                                CGIterateFailure,
                                "Belos::PseudoBlockStochasticCGIter::iterate(): non-positive value for p^H*A*p encountered!" );

        alpha(i,i) = rHz[i] / pAp[i];


	// Compute the scaling parameter for the stochastic vector
	ScalarType z = normal();
	zeta(i,i) = z / Teuchos::ScalarTraits<ScalarType>::squareroot(pAp[i]);
      }

      //
      // Update the solution std::vector x := x + alpha * P_
      //
      MVT::MvTimesMatAddMv( one, *P_, alpha, one, *cur_soln_vec );
      lp_->updateSolution();

      // Updates the stochastic vector y := y + zeta * P_
      MVT::MvTimesMatAddMv( one, *P_, zeta, one, *Y_);

      //
      // Save the denominator of beta before residual is updated [ old <R_, Z_> ]
      //
      for (i=0; i<numRHS_; ++i) {
        rHz_old[i] = rHz[i];
      }
      //
      // Compute the new residual R_ := R_ - alpha * AP_
      //
      MVT::MvTimesMatAddMv( -one, *AP_, alpha, one, *R_ );
      //
      // Compute beta := [ new <R_, Z_> ] / [ old <R_, Z_> ], 
      // and the new direction std::vector p.
      //
      if ( lp_->getLeftPrec() != Teuchos::null ) {
        lp_->applyLeftPrec( *R_, *Z_ );
        if ( lp_->getRightPrec() != Teuchos::null ) {
          Teuchos::RCP<MV> tmp = MVT::Clone( *Z_, numRHS_ );
          lp_->applyRightPrec( *Z_, *tmp );
          Z_ = tmp;
        }
      }
      else if ( lp_->getRightPrec() != Teuchos::null ) {
        lp_->applyRightPrec( *R_, *Z_ );
      } 
      else {
        Z_ = R_;
      }
      //
      MVT::MvDot( *R_, *Z_, rHz );
      if ( assertPositiveDefiniteness_ )
          for (i=0; i<numRHS_; ++i)
              TEUCHOS_TEST_FOR_EXCEPTION( SCT::real(rHz[i]) < zero,
                                  CGIterateFailure,
                                  "Belos::PseudoBlockStochasticCGIter::iterate(): negative value for r^H*M*r encountered!" );
      //
      // Update the search directions.
      for (i=0; i<numRHS_; ++i) {
        beta(i,i) = rHz[i] / rHz_old[i];
	index[0] = i;
	Teuchos::RCP<const MV> Z_i = MVT::CloneView( *Z_, index );
	Teuchos::RCP<MV> P_i = MVT::CloneViewNonConst( *P_, index );
        MVT::MvAddMv( one, *Z_i, beta(i,i), *P_i, *P_i );
      }
      //      
    } // end while (sTest_->checkStatus(this) != Passed)
  }

} // end Belos namespace

#endif /* BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_ITER_HPP */