/usr/include/trilinos/BelosPseudoBlockStochasticCGIter.hpp is in libtrilinos-belos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_ITER_HPP
#define BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_ITER_HPP
/*! \file BelosPseudoBlockStochasticCGIter.hpp
\brief Belos concrete class for performing the stochastic pseudo-block CG iteration.
*/
#include "BelosConfigDefs.hpp"
#include "BelosTypes.hpp"
#include "BelosStochasticCGIteration.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosMatOrthoManager.hpp"
#include "BelosOutputManager.hpp"
#include "BelosStatusTest.hpp"
#include "BelosOperatorTraits.hpp"
#include "BelosMultiVecTraits.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_SerialDenseVector.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"
/*!
\class Belos::PseudoBlockStochasticCGIter
\brief This class implements the stochastic pseudo-block CG iteration, where the basic
stochastic CG algorithm is performed on all of the linear systems simultaneously. The
implementation is a pseudo-block generalization of the stochastic CG algorithm of
Parker and Fox, SISC 2012.
THIS CODE IS CURRENTLY EXPERIMENTAL. CAVEAT EMPTOR.
\ingroup belos_solver_framework
\author Chris Siefert
*/
namespace Belos {
template<class ScalarType, class MV, class OP>
class PseudoBlockStochasticCGIter : virtual public StochasticCGIteration<ScalarType,MV,OP> {
public:
//
// Convenience typedefs
//
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename SCT::magnitudeType MagnitudeType;
//! @name Constructors/Destructor
//@{
/*! \brief %PseudoBlockStochasticCGIter constructor with linear problem, solver utilities, and parameter list of solver options.
*
* This constructor takes pointers required by the linear solver, in addition
* to a parameter list of options for the linear solver.
*/
PseudoBlockStochasticCGIter( const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
Teuchos::ParameterList ¶ms );
//! Destructor.
virtual ~PseudoBlockStochasticCGIter() {};
//@}
//! @name Solver methods
//@{
/*! \brief This method performs stochastic CG iterations on each linear system until the status
* test indicates the need to stop or an error occurs (in which case, an
* std::exception is thrown).
*
* iterate() will first determine whether the solver is initialized; if
* not, it will call initialize() using default arguments. After
* initialization, the solver performs stochastic CG iterations until the
* status test evaluates as ::Passed, at which point the method returns to
* the caller.
*
* The status test is queried at the beginning of the iteration.
*
*/
void iterate();
/*! \brief Initialize the solver to an iterate, providing a complete state.
*
* The %PseudoBlockStochasticCGIter contains a certain amount of state, consisting of the current
* direction vectors and residuals.
*
* initialize() gives the user the opportunity to manually set these,
* although this must be done with caution, abiding by the rules given
* below.
*
* \post
* <li>isInitialized() == \c true (see post-conditions of isInitialize())
*
* The user has the option of specifying any component of the state using
* initialize(). However, these arguments are assumed to match the
* post-conditions specified under isInitialized(). Any necessary component of the
* state not given to initialize() will be generated.
*
* \note For any pointer in \c newstate which directly points to the multivectors in
* the solver, the data is not copied.
*/
void initializeCG(StochasticCGIterationState<ScalarType,MV>& newstate);
/*! \brief Initialize the solver with the initial vectors from the linear problem
* or random data.
*/
void initialize()
{
StochasticCGIterationState<ScalarType,MV> empty;
initializeCG(empty);
}
/*! \brief Get the current state of the linear solver.
*
* The data is only valid if isInitialized() == \c true.
*
* \returns A StochasticCGIterationState object containing const pointers to the current
* solver state.
*/
StochasticCGIterationState<ScalarType,MV> getState() const {
StochasticCGIterationState<ScalarType,MV> state;
state.R = R_;
state.P = P_;
state.AP = AP_;
state.Z = Z_;
state.Y = Y_;
return state;
}
//@}
//! @name Status methods
//@{
//! \brief Get the current iteration count.
int getNumIters() const { return iter_; }
//! \brief Reset the iteration count.
void resetNumIters( int iter = 0 ) { iter_ = iter; }
//! Get the norms of the residuals native to the solver.
//! \return A std::vector of length blockSize containing the native residuals.
Teuchos::RCP<const MV> getNativeResiduals( std::vector<MagnitudeType> *norms ) const { return R_; }
//! Get the current update to the linear system.
/*! \note This method returns a null pointer because the linear problem is current.
*/
Teuchos::RCP<MV> getCurrentUpdate() const { return Teuchos::null; }
//! Get the stochastic vector
Teuchos::RCP<MV> getStochasticVector() const { return Y_; }
//@}
//! @name Accessor methods
//@{
//! Get a constant reference to the linear problem.
const LinearProblem<ScalarType,MV,OP>& getProblem() const { return *lp_; }
//! Get the blocksize to be used by the iterative solver in solving this linear problem.
int getBlockSize() const { return 1; }
//! \brief Set the blocksize.
void setBlockSize(int blockSize) {
TEUCHOS_TEST_FOR_EXCEPTION(blockSize!=1,std::invalid_argument,
"Belos::PseudoBlockStochasticCGIter::setBlockSize(): Cannot use a block size that is not one.");
}
//! States whether the solver has been initialized or not.
bool isInitialized() { return initialized_; }
//@}
private:
//! Wrapper for Normal(0,1) random variables
inline ScalarType normal() {
// Do all of the calculations with doubles, because that is what the Odeh and Evans 1974 constants are for.
// Then cast to ScalarType.
const double p0 = -0.322232431088;
const double p1 = -1.0;
const double p2 = -0.342242088547;
const double p3 = -0.204231210245e-1;
const double p4 = -0.453642210148e-4;
const double q0 = 0.993484626060e-1;
const double q1 = 0.588581570495;
const double q2 = 0.531103462366;
const double q3 = 0.103537752850;
const double q4 = 0.38560700634e-2;
double r,p,q,y,z;
// Get a random number (-1,1) and rescale to (0,1).
r=0.5*(Teuchos::ScalarTraits<double>::random() + 1.0);
// Odeh and Evans algorithm (as modified by Park & Geyer)
if(r < 0.5) y=std::sqrt(-2.0 * log(r));
else y=std::sqrt(-2.0 * log(1.0 - r));
p = p0 + y * (p1 + y* (p2 + y * (p3 + y * p4)));
q = q0 + y * (q1 + y* (q2 + y * (q3 + y * q4)));
if(r < 0.5) z = (p / q) - y;
else z = y - (p / q);
return Teuchos::as<ScalarType,double>(z);
}
//
// Classes inputed through constructor that define the linear problem to be solved.
//
const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > lp_;
const Teuchos::RCP<OutputManager<ScalarType> > om_;
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > stest_;
//
// Algorithmic parameters
//
// numRHS_ is the current number of linear systems being solved.
int numRHS_;
//
// Current solver state
//
// initialized_ specifies that the basis vectors have been initialized and the iterate() routine
// is capable of running; _initialize is controlled by the initialize() member method
// For the implications of the state of initialized_, please see documentation for initialize()
bool initialized_;
// Current number of iterations performed.
int iter_;
// Current number of iterations performed.
bool assertPositiveDefiniteness_;
//
// State Storage
//
// Residual
Teuchos::RCP<MV> R_;
//
// Preconditioned residual
Teuchos::RCP<MV> Z_;
//
// Direction vector
Teuchos::RCP<MV> P_;
//
// Operator applied to direction vector
Teuchos::RCP<MV> AP_;
//
// Stochastic recurrence vector
Teuchos::RCP<MV> Y_;
};
//////////////////////////////////////////////////////////////////////////////////////////////////
// Constructor.
template<class ScalarType, class MV, class OP>
PseudoBlockStochasticCGIter<ScalarType,MV,OP>::PseudoBlockStochasticCGIter(const Teuchos::RCP<LinearProblem<ScalarType,MV,OP> > &problem,
const Teuchos::RCP<OutputManager<ScalarType> > &printer,
const Teuchos::RCP<StatusTest<ScalarType,MV,OP> > &tester,
Teuchos::ParameterList ¶ms ):
lp_(problem),
om_(printer),
stest_(tester),
numRHS_(0),
initialized_(false),
iter_(0),
assertPositiveDefiniteness_( params.get("Assert Positive Definiteness", true) )
{
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Initialize this iteration object
template <class ScalarType, class MV, class OP>
void PseudoBlockStochasticCGIter<ScalarType,MV,OP>::initializeCG(StochasticCGIterationState<ScalarType,MV>& newstate)
{
// Check if there is any multivector to clone from.
Teuchos::RCP<const MV> lhsMV = lp_->getCurrLHSVec();
Teuchos::RCP<const MV> rhsMV = lp_->getCurrRHSVec();
TEUCHOS_TEST_FOR_EXCEPTION((lhsMV==Teuchos::null && rhsMV==Teuchos::null),std::invalid_argument,
"Belos::PseudoBlockStochasticCGIter::initialize(): Cannot initialize state storage!");
// Get the multivector that is not null.
Teuchos::RCP<const MV> tmp = ( (rhsMV!=Teuchos::null)? rhsMV: lhsMV );
// Get the number of right-hand sides we're solving for now.
int numRHS = MVT::GetNumberVecs(*tmp);
numRHS_ = numRHS;
// Initialize the state storage
// If the subspace has not be initialized before or has changed sizes, generate it using the LHS or RHS from lp_.
if (Teuchos::is_null(R_) || MVT::GetNumberVecs(*R_)!=numRHS_) {
R_ = MVT::Clone( *tmp, numRHS_ );
Z_ = MVT::Clone( *tmp, numRHS_ );
P_ = MVT::Clone( *tmp, numRHS_ );
AP_ = MVT::Clone( *tmp, numRHS_ );
Y_ = MVT::Clone( *tmp, numRHS_ );
}
// NOTE: In StochasticCGIter R_, the initial residual, is required!!!
//
std::string errstr("Belos::BlockPseudoStochasticCGIter::initialize(): Specified multivectors must have a consistent length and width.");
// Create convenience variables for zero and one.
const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();
if (!Teuchos::is_null(newstate.R)) {
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength(*newstate.R) != MVT::GetGlobalLength(*R_),
std::invalid_argument, errstr );
TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetNumberVecs(*newstate.R) != numRHS_,
std::invalid_argument, errstr );
// Copy basis vectors from newstate into V
if (newstate.R != R_) {
// copy over the initial residual (unpreconditioned).
MVT::MvAddMv( one, *newstate.R, zero, *newstate.R, *R_ );
}
// Compute initial direction vectors
// Initially, they are set to the preconditioned residuals
if ( lp_->getLeftPrec() != Teuchos::null ) {
lp_->applyLeftPrec( *R_, *Z_ );
if ( lp_->getRightPrec() != Teuchos::null ) {
Teuchos::RCP<MV> tmp2 = MVT::Clone( *Z_, numRHS_ );
lp_->applyRightPrec( *Z_, *tmp2 );
Z_ = tmp2;
}
}
else if ( lp_->getRightPrec() != Teuchos::null ) {
lp_->applyRightPrec( *R_, *Z_ );
}
else {
Z_ = R_;
}
MVT::MvAddMv( one, *Z_, zero, *Z_, *P_ );
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(Teuchos::is_null(newstate.R),std::invalid_argument,
"Belos::StochasticCGIter::initialize(): CGStateIterState does not have initial residual.");
}
// The solver is initialized
initialized_ = true;
}
//////////////////////////////////////////////////////////////////////////////////////////////////
// Iterate until the status test informs us we should stop.
template <class ScalarType, class MV, class OP>
void PseudoBlockStochasticCGIter<ScalarType,MV,OP>::iterate()
{
//
// Allocate/initialize data structures
//
if (initialized_ == false) {
initialize();
}
// Allocate memory for scalars.
int i=0;
std::vector<int> index(1);
std::vector<ScalarType> rHz( numRHS_ ), rHz_old( numRHS_ ), pAp( numRHS_ );
Teuchos::SerialDenseMatrix<int, ScalarType> alpha( numRHS_,numRHS_ ), beta( numRHS_,numRHS_ ), zeta(numRHS_,numRHS_);
// Create convenience variables for zero and one.
const ScalarType one = Teuchos::ScalarTraits<ScalarType>::one();
const MagnitudeType zero = Teuchos::ScalarTraits<MagnitudeType>::zero();
// Get the current solution std::vector.
Teuchos::RCP<MV> cur_soln_vec = lp_->getCurrLHSVec();
// Compute first <r,z> a.k.a. rHz
MVT::MvDot( *R_, *Z_, rHz );
if ( assertPositiveDefiniteness_ )
for (i=0; i<numRHS_; ++i)
TEUCHOS_TEST_FOR_EXCEPTION( SCT::real(rHz[i]) < zero,
CGIterateFailure,
"Belos::PseudoBlockStochasticCGIter::iterate(): negative value for r^H*M*r encountered!" );
////////////////////////////////////////////////////////////////
// Iterate until the status test tells us to stop.
//
while (stest_->checkStatus(this) != Passed) {
// Increment the iteration
iter_++;
// Multiply the current direction std::vector by A and store in AP_
lp_->applyOp( *P_, *AP_ );
// Compute alpha := <R_,Z_> / <P_,AP_>
MVT::MvDot( *P_, *AP_, pAp );
for (i=0; i<numRHS_; ++i) {
if ( assertPositiveDefiniteness_ )
// Check that pAp[i] is a positive number!
TEUCHOS_TEST_FOR_EXCEPTION( SCT::real(pAp[i]) <= zero,
CGIterateFailure,
"Belos::PseudoBlockStochasticCGIter::iterate(): non-positive value for p^H*A*p encountered!" );
alpha(i,i) = rHz[i] / pAp[i];
// Compute the scaling parameter for the stochastic vector
ScalarType z = normal();
zeta(i,i) = z / Teuchos::ScalarTraits<ScalarType>::squareroot(pAp[i]);
}
//
// Update the solution std::vector x := x + alpha * P_
//
MVT::MvTimesMatAddMv( one, *P_, alpha, one, *cur_soln_vec );
lp_->updateSolution();
// Updates the stochastic vector y := y + zeta * P_
MVT::MvTimesMatAddMv( one, *P_, zeta, one, *Y_);
//
// Save the denominator of beta before residual is updated [ old <R_, Z_> ]
//
for (i=0; i<numRHS_; ++i) {
rHz_old[i] = rHz[i];
}
//
// Compute the new residual R_ := R_ - alpha * AP_
//
MVT::MvTimesMatAddMv( -one, *AP_, alpha, one, *R_ );
//
// Compute beta := [ new <R_, Z_> ] / [ old <R_, Z_> ],
// and the new direction std::vector p.
//
if ( lp_->getLeftPrec() != Teuchos::null ) {
lp_->applyLeftPrec( *R_, *Z_ );
if ( lp_->getRightPrec() != Teuchos::null ) {
Teuchos::RCP<MV> tmp = MVT::Clone( *Z_, numRHS_ );
lp_->applyRightPrec( *Z_, *tmp );
Z_ = tmp;
}
}
else if ( lp_->getRightPrec() != Teuchos::null ) {
lp_->applyRightPrec( *R_, *Z_ );
}
else {
Z_ = R_;
}
//
MVT::MvDot( *R_, *Z_, rHz );
if ( assertPositiveDefiniteness_ )
for (i=0; i<numRHS_; ++i)
TEUCHOS_TEST_FOR_EXCEPTION( SCT::real(rHz[i]) < zero,
CGIterateFailure,
"Belos::PseudoBlockStochasticCGIter::iterate(): negative value for r^H*M*r encountered!" );
//
// Update the search directions.
for (i=0; i<numRHS_; ++i) {
beta(i,i) = rHz[i] / rHz_old[i];
index[0] = i;
Teuchos::RCP<const MV> Z_i = MVT::CloneView( *Z_, index );
Teuchos::RCP<MV> P_i = MVT::CloneViewNonConst( *P_, index );
MVT::MvAddMv( one, *Z_i, beta(i,i), *P_i, *P_i );
}
//
} // end while (sTest_->checkStatus(this) != Passed)
}
} // end Belos namespace
#endif /* BELOS_PSEUDO_BLOCK_STOCHASTIC_CG_ITER_HPP */
|