/usr/include/trilinos/BelosStatusTestImpResNorm.hpp is in libtrilinos-belos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 | //@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef BELOS_STATUS_TEST_IMPRESNORM_H
#define BELOS_STATUS_TEST_IMPRESNORM_H
/*!
\file BelosStatusTestImpResNorm.hpp
\brief Belos::StatusTest for specifying an implicit residual norm stopping criteria that checks for loss of accuracy.
*/
#include "BelosStatusTestResNorm.hpp"
#include "BelosLinearProblem.hpp"
#include "BelosMultiVecTraits.hpp"
#include "Teuchos_as.hpp"
/*!
\class Belos::StatusTestImpResNorm
\brief Convergence test using the implicit residual norm(s), with an
explicit residual norm(s) check for loss of accuracy if necessary.
This test passes when a quorum of residual vectors (for all
right-hand sides) passes a residual norm test. For residual vector
\f$r_i\f$, the form of the test is \f$\|r_i\| / \sigma_i \le
\tau\f$, where \f$\tau\f$ is the convergence tolerance set in the
constructor or by setTolerance(). The default quorum consists of
all the vectors, but you can set the number of vectors that must
pass before the whole test passes, either by the constructor
argument or by calling setQuorum().
The default residual vector norm (the norm used in the numerator of
the test, and applied to the current residual vectors) is the
2-norm, but you can change the norm type (1-norm, 2-norm, or
infinity norm) using defineResForm(). The default scaling factor
\f$\sigma_i\f$ for residual vector i is the 2-norm of the initial
residual vector, but you can change this using defineScaleForm().
The norm used for the scaling factors may be different than the norm
used for the current residual vectors. Furthermore, each residual
vector may use a different scaling factor \f$\sigma_i\f$.
This test starts by using the "implicit" residual norm, otherwise
called the "recursive" or "native" residual norm. It comes from the
iterative method's projected problem, unlike the "explicit" residual
norm, which comes from explicitly computing \f$R = B - A * X\f$.
Once the implicit residual norm reaches the convergence tolerance,
this test then checks the explicit residual norm to make sure that
it has reached the convergence tolerance as well.
We say that there is a "potential loss of accuracy" when we first
detect that the implicit residual norm(s) have met the desired
original convergence tolerance, but the explicit residual norm(s)
have not. We don't actually call this a "loss of accuracy" (in the
sense of getLOADetected() returning true) unless we tried to remedy
this situation, but couldn't fix it. Upon detecting a potential
loss of accuracy, this test tells the solver to "iterate a few more
steps" by making the "current" residual tolerance (the value of
getCurrTolerance()) smaller, and forcing the implicit residual
norm(s) to meet the current tolerance before moving on to test the
explicit norm(s). If that doesn't work, this test declares a loss
of accuracy.
*/
namespace Belos {
template <class ScalarType, class MV, class OP>
class StatusTestImpResNorm: public StatusTestResNorm<ScalarType,MV,OP> {
public:
//! The type of the magnitude (absolute value) of a ScalarType.
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
private:
//! @name Abbreviations for method implementations
//@{
typedef Teuchos::ScalarTraits<ScalarType> STS;
typedef Teuchos::ScalarTraits<MagnitudeType> STM;
typedef MultiVecTraits<ScalarType,MV> MVT;
//@}
public:
//! @name Constructors and destructor.
//@{
/// \brief Constructor
///
/// \param Tolerance [in] Convergence tolerance \f$\tau\f$.
///
/// \param quorum [in] The number of vectors in the problem that
/// must pass the convergence criteria before this StatusTest
/// passes. -1 means that all residuals must pass.
///
/// \param showMaxResNormOnly [in] Whether only the maximum residual
/// norm (of all vectors) is displayed when the print() method is
/// called.
StatusTestImpResNorm (MagnitudeType Tolerance,
int quorum = -1,
bool showMaxResNormOnly = false);
//! Destructor (virtual for memory safety).
virtual ~StatusTestImpResNorm();
//@}
//! @name Form and parameter definition methods.
//@{
//! Define form of the residual, its norm and optional weighting vector.
/*! This method defines the form of \f$\|r\|\f$. We specify:
<ul>
<li> The norm to be used on the residual (this may be different than the norm used in
defineScaleForm()).
</ul>
*/
int defineResForm( NormType TypeOfNorm);
//! Define form of the scaling, its norm, its optional weighting vector, or, alternatively, define an explicit value.
/*! This method defines the form of how the residual is scaled (if at all). It operates in two modes:
<ol>
<li> User-provided scaling value:
<ul>
<li> Set argument TypeOfScaling to UserProvided.
<li> Set ScaleValue to a non-zero value that the residual norm will be divided by.
<li> TypeOfNorm argument will be ignored.
<li> Sample use: Define ScaleValue = \f$\|A\|_{\infty}\f$ where \f$ A \f$ is the matrix
of the linear problem.
</ul>
<li> Use a supported Scaling Form:
<ul>
<li> Define TypeOfScaling to be the norm of the right hand side, the initial residual vector,
or to none.
<li> Define norm to be used on the scaling vector (this may be different than the norm used
in DefineResForm()).
</ul>
</ol>
*/
int defineScaleForm( ScaleType TypeOfScaling, NormType TypeOfNorm, MagnitudeType ScaleValue = Teuchos::ScalarTraits<MagnitudeType>::one());
//! Set the value of the tolerance
/*! We allow the tolerance to be reset for cases where, in the process of testing the residual,
we find that the initial tolerance was too tight or too lax.
*/
int setTolerance (MagnitudeType tolerance) {
tolerance_ = tolerance;
return 0;
}
//! Sets the number of residuals that must pass the convergence test before Passed is returned.
//! \note If \c quorum=-1 then all residuals must pass the convergence test before Passed is returned.
int setQuorum (int quorum) {
quorum_ = quorum;
return 0;
}
//! Set whether the only maximum residual norm is displayed when the print() method is called
int setShowMaxResNormOnly (bool showMaxResNormOnly) {
showMaxResNormOnly_ = showMaxResNormOnly;
return 0;
}
//@}
//! @name Status methods
//@{
//! Check convergence status: Passed, Failed, or Undefined.
/*! This method checks to see if the convergence criteria are met.
Depending on how the residual test is constructed this method will return
the appropriate status type.
\return StatusType: Passed, Failed, or Undefined.
*/
StatusType checkStatus(Iteration<ScalarType,MV,OP>* iSolver);
//! Return the result of the most recent CheckStatus call.
StatusType getStatus() const {return(status_);};
//@}
//! @name Reset methods
//@{
//! Resets the internal configuration to the initial state.
void reset();
//@}
//! @name Print methods
//@{
//! Output formatted description of stopping test to output stream.
void print(std::ostream& os, int indent = 0) const;
//! Print message for each status specific to this stopping test.
void printStatus(std::ostream& os, StatusType type) const;
//@}
//! @name Methods to access data members.
//@{
//! Returns the current solution estimate that was computed for the most recent residual test.
Teuchos::RCP<MV> getSolution() { return curSoln_; }
//! Returns the number of residuals that must pass the convergence test before Passed is returned.
//! \note If \c quorum=-1 then all residuals must pass the convergence test before Passed is returned.
int getQuorum() const { return quorum_; }
//! Returns whether the only maximum residual norm is displayed when the print() method is called
bool getShowMaxResNormOnly() { return showMaxResNormOnly_; }
//! Returns the vector containing the indices of the residuals that passed the test.
std::vector<int> convIndices() { return ind_; }
/// \brief "Original" convergence tolerance \f$\tau\f$ as set by user.
///
/// This value is the convergence tolerance as set by the user in
/// the constructor, or by the setTolerance() method. See this
/// class' main documentation and the documentation of
/// getCurrTolerance() for an explanation of the difference between
/// the "original" and "current" tolerances.
MagnitudeType getTolerance () const {
return tolerance_;
}
/// \brief Current convergence tolerance; may be changed to prevent loss of accuracy.
///
/// The difference between "original" tolerance (the value of
/// getTolerance()) and "current" tolerance (the value of this
/// method) relates to the idea of "loss of accuracy." See this
/// class' main documentation for details. We do not allow users to
/// set the "current" tolerance.
MagnitudeType getCurrTolerance () const {
return currTolerance_;
}
//! Returns the test value, \f$ \frac{\|r\|}{\sigma} \f$, computed in most recent call to CheckStatus.
const std::vector<MagnitudeType>* getTestValue() const {return(&testvector_);};
//! Returns the residual norm value, \f$ \|r\| \f$, computed in most recent call to CheckStatus.
const std::vector<MagnitudeType>* getResNormValue() const {return(&resvector_);};
//! Returns the scaled norm value, \f$ \sigma \f$.
const std::vector<MagnitudeType>* getScaledNormValue() const {return(&scalevector_);};
//! Returns a boolean indicating a loss of accuracy has been detected in computing the residual.
bool getLOADetected() const { return lossDetected_; }
//@}
/** @name Misc. */
//@{
/** \brief Call to setup initial scaling vector.
*
* After this function is called <tt>getScaledNormValue()</tt> can be called
* to get the scaling vector.
*/
StatusType firstCallCheckStatusSetup(Iteration<ScalarType,MV,OP>* iSolver);
//@}
/** \name Overridden from Teuchos::Describable */
//@{
/** \brief Method to return description of the maximum iteration status test */
std::string description() const
{
std::ostringstream oss;
oss << "Belos::StatusTestImpResNorm<>: " << resFormStr();
oss << ", tol = " << tolerance_;
return oss.str();
}
//@}
protected:
private:
//! @name Private methods.
//@{
/** \brief Description of current residual form */
std::string resFormStr() const
{
std::ostringstream oss;
oss << "(";
oss << ((resnormtype_==OneNorm) ? "1-Norm" : (resnormtype_==TwoNorm) ? "2-Norm" : "Inf-Norm");
oss << " Res Vec) ";
// If there is no residual scaling, return current string.
if (scaletype_!=None)
{
// Insert division sign.
oss << "/ ";
// Determine output string for scaling, if there is any.
if (scaletype_==UserProvided)
oss << " (User Scale)";
else {
oss << "(";
oss << ((scalenormtype_==OneNorm) ? "1-Norm" : (resnormtype_==TwoNorm) ? "2-Norm" : "Inf-Norm");
if (scaletype_==NormOfInitRes)
oss << " Res0";
else if (scaletype_==NormOfPrecInitRes)
oss << " Prec Res0";
else
oss << " RHS ";
oss << ")";
}
}
return oss.str();
}
//! @name Private data members.
//@{
//! Current tolerance used to determine convergence and the default tolerance set by user.
MagnitudeType tolerance_, currTolerance_;
//! Number of residuals that must pass the convergence test before Passed is returned.
int quorum_;
//! Determines if the entries for all of the residuals are shown or just the max.
bool showMaxResNormOnly_;
//! Type of norm to use on residual (OneNorm, TwoNorm, or InfNorm).
NormType resnormtype_;
//! Type of scaling to use (Norm of RHS, Norm of Initial Residual, None or User provided)
ScaleType scaletype_;
//! Type of norm to use on the scaling (OneNorm, TwoNorm, or InfNorm)
NormType scalenormtype_;
//! Scaling value.
MagnitudeType scalevalue_;
//! Scaling vector.
std::vector<MagnitudeType> scalevector_;
//! Residual norm vector.
std::vector<MagnitudeType> resvector_;
//! Test vector = resvector_ / scalevector_
std::vector<MagnitudeType> testvector_;
//! Current solution vector
Teuchos::RCP<MV> curSoln_;
//! Vector containing the indices for the vectors that passed the test.
std::vector<int> ind_;
//! Status
StatusType status_;
//! The current blocksize of the linear system being solved.
int curBlksz_;
//! The current number of right-hand sides being solved for.
int curNumRHS_;
//! The indices of the current number of right-hand sides being solved for.
std::vector<int> curLSIdx_;
//! The current number of linear systems that have been loaded into the linear problem.
int curLSNum_;
//! The total number of right-hand sides being solved for.
int numrhs_;
//! Is this the first time CheckStatus is called?
bool firstcallCheckStatus_;
//! Is this the first time DefineResForm is called?
bool firstcallDefineResForm_;
//! Is this the first time DefineScaleForm is called?
bool firstcallDefineScaleForm_;
//! Has a loss in accuracy been detected?
bool lossDetected_;
//@}
};
template <class ScalarType, class MV, class OP>
StatusTestImpResNorm<ScalarType,MV,OP>::
StatusTestImpResNorm (MagnitudeType Tolerance, int quorum, bool showMaxResNormOnly)
: tolerance_(Tolerance),
currTolerance_(Tolerance),
quorum_(quorum),
showMaxResNormOnly_(showMaxResNormOnly),
resnormtype_(TwoNorm),
scaletype_(NormOfInitRes),
scalenormtype_(TwoNorm),
scalevalue_(Teuchos::ScalarTraits<MagnitudeType>::one ()),
status_(Undefined),
curBlksz_(0),
curNumRHS_(0),
curLSNum_(0),
numrhs_(0),
firstcallCheckStatus_(true),
firstcallDefineResForm_(true),
firstcallDefineScaleForm_(true),
lossDetected_(false)
{
// This constructor will compute the residual ||r_i||/||r0_i|| <= tolerance using the 2-norm of
// the implicit residual vector.
}
template <class ScalarType, class MV, class OP>
StatusTestImpResNorm<ScalarType,MV,OP>::~StatusTestImpResNorm()
{}
template <class ScalarType, class MV, class OP>
void StatusTestImpResNorm<ScalarType,MV,OP>::reset()
{
status_ = Undefined;
curBlksz_ = 0;
curLSNum_ = 0;
curLSIdx_.resize(0);
numrhs_ = 0;
ind_.resize(0);
currTolerance_ = tolerance_;
firstcallCheckStatus_ = true;
lossDetected_ = false;
curSoln_ = Teuchos::null;
}
template <class ScalarType, class MV, class OP>
int StatusTestImpResNorm<ScalarType,MV,OP>::defineResForm( NormType TypeOfNorm )
{
TEUCHOS_TEST_FOR_EXCEPTION(firstcallDefineResForm_==false,StatusTestError,
"StatusTestResNorm::defineResForm(): The residual form has already been defined.");
firstcallDefineResForm_ = false;
resnormtype_ = TypeOfNorm;
return(0);
}
template <class ScalarType, class MV, class OP>
int StatusTestImpResNorm<ScalarType,MV,OP>::defineScaleForm(ScaleType TypeOfScaling, NormType TypeOfNorm,
MagnitudeType ScaleValue )
{
TEUCHOS_TEST_FOR_EXCEPTION(firstcallDefineScaleForm_==false,StatusTestError,
"StatusTestResNorm::defineScaleForm(): The scaling type has already been defined.");
firstcallDefineScaleForm_ = false;
scaletype_ = TypeOfScaling;
scalenormtype_ = TypeOfNorm;
scalevalue_ = ScaleValue;
return(0);
}
template <class ScalarType, class MV, class OP>
StatusType StatusTestImpResNorm<ScalarType,MV,OP>::
checkStatus (Iteration<ScalarType,MV,OP>* iSolver)
{
using Teuchos::as;
using Teuchos::RCP;
const MagnitudeType zero = STM::zero ();
const LinearProblem<ScalarType,MV,OP>& lp = iSolver->getProblem ();
// Compute scaling term (done once for each block that's being solved)
if (firstcallCheckStatus_) {
StatusType status = firstCallCheckStatusSetup (iSolver);
if (status == Failed) {
status_ = Failed;
return status_;
}
}
// mfh 23 Apr 2012: I don't know exactly what this code does. It
// has something to do with picking the block of right-hand sides
// which we're currently checking.
if (curLSNum_ != lp.getLSNumber ()) {
//
// We have moved on to the next rhs block
//
curLSNum_ = lp.getLSNumber();
curLSIdx_ = lp.getLSIndex();
curBlksz_ = (int)curLSIdx_.size();
int validLS = 0;
for (int i=0; i<curBlksz_; ++i) {
if (curLSIdx_[i] > -1 && curLSIdx_[i] < numrhs_)
validLS++;
}
curNumRHS_ = validLS;
curSoln_ = Teuchos::null;
} else {
//
// We are in the same rhs block, return if we are converged
//
if (status_ == Passed) {
return status_;
}
}
//
// Get the "native" residual norms from the solver for this block of
// right-hand sides. If the solver's getNativeResiduals() method
// actually returns a multivector, compute the norms of the columns
// of the multivector explicitly. Otherwise, we assume that
// resvector_ contains the norms.
//
// Note that "compute the norms explicitly" doesn't necessarily mean
// the "explicit" residual norms (in the sense discussed in this
// class' documentation). These are just some vectors returned by
// the solver. Some Krylov methods, like CG, compute a residual
// vector "recursively." This is an "implicit residual" in the
// sense of this class' documentation. It equals the explicit
// residual in exact arithmetic, but due to rounding error, it is
// usually different than the explicit residual.
//
// FIXME (mfh 23 Apr 2012) This method does _not_ respect the
// OrthoManager used by the solver.
//
std::vector<MagnitudeType> tmp_resvector( curBlksz_ );
RCP<const MV> residMV = iSolver->getNativeResiduals (&tmp_resvector);
if (! residMV.is_null ()) {
// We got a multivector back. Compute the norms explicitly.
tmp_resvector.resize (MVT::GetNumberVecs (*residMV));
MVT::MvNorm (*residMV, tmp_resvector, resnormtype_);
typename std::vector<int>::iterator p = curLSIdx_.begin();
for (int i=0; p<curLSIdx_.end(); ++p, ++i) {
// Check if this index is valid
if (*p != -1) {
resvector_[*p] = tmp_resvector[i];
}
}
} else {
typename std::vector<int>::iterator p = curLSIdx_.begin();
for (int i=0; p<curLSIdx_.end(); ++p, ++i) {
// Check if this index is valid
if (*p != -1) {
resvector_[*p] = tmp_resvector[i];
}
}
}
//
// Scale the unscaled residual norms we computed or obtained above.
//
if (scalevector_.size () > 0) {
// There are per-vector scaling factors to apply.
typename std::vector<int>::iterator p = curLSIdx_.begin();
for (; p<curLSIdx_.end(); ++p) {
// Check if this index is valid
if (*p != -1) {
// Scale the vector accordingly
if ( scalevector_[ *p ] != zero ) {
// Don't intentionally divide by zero.
testvector_[ *p ] = resvector_[ *p ] / scalevector_[ *p ] / scalevalue_;
} else {
testvector_[ *p ] = resvector_[ *p ] / scalevalue_;
}
}
}
}
else { // There are no per-vector scaling factors.
typename std::vector<int>::iterator p = curLSIdx_.begin();
for (; p<curLSIdx_.end(); ++p) {
// Check if this index is valid
if (*p != -1) {
testvector_[ *p ] = resvector_[ *p ] / scalevalue_;
}
}
}
// Count how many scaled residual norms (in testvector_) pass, using
// the current tolerance (currTolerance_) rather than the original
// tolerance (tolerance_). If at least quorum_ of them pass, we
// have a quorum for the whole test to pass.
//
// We also check here whether any of the scaled residual norms is
// NaN, and throw an exception in that case.
int have = 0;
ind_.resize( curLSIdx_.size() );
std::vector<int> lclInd( curLSIdx_.size() );
typename std::vector<int>::iterator p = curLSIdx_.begin();
for (int i=0; p<curLSIdx_.end(); ++p, ++i) {
// Check if this index is valid
if (*p != -1) {
if (testvector_[ *p ] > currTolerance_) {
// The current residual norm doesn't pass. Do nothing.
} else if (testvector_[ *p ] <= currTolerance_) {
ind_[have] = *p;
lclInd[have] = i;
have++; // Yay, the current residual norm passes!
} else {
// Throw an std::exception if the current residual norm is
// NaN. We know that it's NaN because it is not less than,
// equal to, or greater than the current tolerance. This is
// only possible if either the residual norm or the current
// tolerance is NaN; we assume the former. We also mark the
// test as failed, in case you want to catch the exception.
status_ = Failed;
TEUCHOS_TEST_FOR_EXCEPTION(true, StatusTestError, "Belos::"
"StatusTestImpResNorm::checkStatus(): One or more of the current "
"implicit residual norms is NaN.");
}
}
}
// "have" is the number of residual norms that passed.
ind_.resize(have);
lclInd.resize(have);
// Now check the exact residuals
if (have) { // At least one residual norm has converged.
//
// Compute the explicit residual norm(s) from the current solution update.
//
RCP<MV> cur_update = iSolver->getCurrentUpdate ();
curSoln_ = lp.updateSolution (cur_update);
RCP<MV> cur_res = MVT::Clone (*curSoln_, MVT::GetNumberVecs (*curSoln_));
lp.computeCurrResVec (&*cur_res, &*curSoln_);
tmp_resvector.resize (MVT::GetNumberVecs (*cur_res));
std::vector<MagnitudeType> tmp_testvector (have);
MVT::MvNorm (*cur_res, tmp_resvector, resnormtype_);
// Scale the explicit residual norm(s), just like the implicit norm(s).
if ( scalevector_.size() > 0 ) {
for (int i=0; i<have; ++i) {
// Scale the vector accordingly
if ( scalevector_[ ind_[i] ] != zero ) {
// Don't intentionally divide by zero.
tmp_testvector[ i ] = tmp_resvector[ lclInd[i] ] / scalevector_[ ind_[i] ] / scalevalue_;
} else {
tmp_testvector[ i ] = tmp_resvector[ lclInd[i] ] / scalevalue_;
}
}
}
else {
for (int i=0; i<have; ++i) {
tmp_testvector[ i ] = tmp_resvector[ lclInd[i] ] / scalevalue_;
}
}
//
// Check whether the explicit residual norms also pass the
// convergence test. If not, check whether we want to try
// iterating a little more to force both implicit and explicit
// residual norms to pass.
//
int have2 = 0;
for (int i = 0; i < have; ++i) {
// testvector_ contains the implicit (i.e., recursive, computed
// by the algorithm) (possibly scaled) residuals. All of these
// pass the convergence test.
//
// tmp_testvector contains the explicit (i.e., ||B-AX||)
// (possibly scaled) residuals. We're checking whether these
// pass as well. The explicit residual norms only have to meet
// the _original_ tolerance (tolerance_), not the current
// tolerance (currTolerance_).
if (tmp_testvector[i] <= tolerance_) {
ind_[have2] = ind_[i];
have2++; // This right-hand side has converged.
}
else {
// Absolute difference between the current explicit and
// implicit residual norm.
const MagnitudeType diff = STM::magnitude (testvector_[ind_[i]] - tmp_testvector[i]);
if (diff > currTolerance_) {
// If the above difference is bigger than the current
// convergence tolerance, report a loss of accuracy, but
// mark this right-hand side converged. (The latter tells
// users not to iterate further on this right-hand side,
// since it probably won't do much good.) Note that the
// current tolerance may have been changed by the branch
// below in a previous call to this method.
lossDetected_ = true;
ind_[have2] = ind_[i];
have2++; // Count this right-hand side as converged.
}
else {
// Otherwise, the explicit and implicit residuals are pretty
// close together, and the implicit residual has converged,
// but the explicit residual hasn't converged. Reduce the
// convergence tolerance by some formula related to the
// difference, and keep iterating.
//
// mfh 23 Apr 2012: I have no idea why the currTolerance_
// update formula is done the way it's done below. It
// doesn't make sense to me. It definitely makes the
// current tolerance smaller, though, which is what we want.
// We define these constants in this way, rather than simply
// writing 1.5 resp. 0.1, to ensure no rounding error from
// translating from float to MagnitudeType. Remember that
// 0.1 doesn't have an exact representation in binary finite
// floating-point arithmetic.
const MagnitudeType onePointFive = as<MagnitudeType>(3) / as<MagnitudeType> (2);
const MagnitudeType oneTenth = STM::one () / as<MagnitudeType> (10);
currTolerance_ = currTolerance_ - onePointFive * diff;
while (currTolerance_ < STM::zero ()) {
currTolerance_ += oneTenth * diff;
}
}
}
}
have = have2;
ind_.resize(have);
}
// Check whether we've met the quorum of vectors necessary for the
// whole test to pass.
int need = (quorum_ == -1) ? curNumRHS_: quorum_;
status_ = (have >= need) ? Passed : Failed;
// Return the current status
return status_;
}
template <class ScalarType, class MV, class OP>
void StatusTestImpResNorm<ScalarType,MV,OP>::print(std::ostream& os, int indent) const
{
for (int j = 0; j < indent; j ++)
os << ' ';
printStatus(os, status_);
os << resFormStr();
if (status_==Undefined)
os << ", tol = " << tolerance_ << std::endl;
else {
os << std::endl;
if(showMaxResNormOnly_ && curBlksz_ > 1) {
const MagnitudeType maxRelRes = *std::max_element(
testvector_.begin()+curLSIdx_[0],testvector_.begin()+curLSIdx_[curBlksz_-1]
);
for (int j = 0; j < indent + 13; j ++)
os << ' ';
os << "max{residual["<<curLSIdx_[0]<<"..."<<curLSIdx_[curBlksz_-1]<<"]} = " << maxRelRes
<< ( maxRelRes <= tolerance_ ? " <= " : " > " ) << tolerance_ << std::endl;
}
else {
for ( int i=0; i<numrhs_; i++ ) {
for (int j = 0; j < indent + 13; j ++)
os << ' ';
os << "residual [ " << i << " ] = " << testvector_[ i ];
os << ((testvector_[i]<tolerance_) ? " < " : (testvector_[i]==tolerance_) ? " == " : (testvector_[i]>tolerance_) ? " > " : " " ) << tolerance_ << std::endl;
}
}
}
os << std::endl;
}
template <class ScalarType, class MV, class OP>
void StatusTestImpResNorm<ScalarType,MV,OP>::printStatus(std::ostream& os, StatusType type) const
{
os << std::left << std::setw(13) << std::setfill('.');
switch (type) {
case Passed:
os << "Converged";
break;
case Failed:
if (lossDetected_)
os << "Unconverged (LoA)";
else
os << "Unconverged";
break;
case Undefined:
default:
os << "**";
break;
}
os << std::left << std::setfill(' ');
return;
}
template <class ScalarType, class MV, class OP>
StatusType StatusTestImpResNorm<ScalarType,MV,OP>::
firstCallCheckStatusSetup (Iteration<ScalarType,MV,OP>* iSolver)
{
int i;
const MagnitudeType zero = STM::zero ();
const MagnitudeType one = STM::one ();
const LinearProblem<ScalarType,MV,OP>& lp = iSolver->getProblem();
// Compute scaling term (done once for each block that's being solved)
if (firstcallCheckStatus_) {
//
// Get some current solver information.
//
firstcallCheckStatus_ = false;
if (scaletype_== NormOfRHS) {
Teuchos::RCP<const MV> rhs = lp.getRHS();
numrhs_ = MVT::GetNumberVecs( *rhs );
scalevector_.resize( numrhs_ );
MVT::MvNorm( *rhs, scalevector_, scalenormtype_ );
}
else if (scaletype_==NormOfInitRes) {
Teuchos::RCP<const MV> init_res = lp.getInitResVec();
numrhs_ = MVT::GetNumberVecs( *init_res );
scalevector_.resize( numrhs_ );
MVT::MvNorm( *init_res, scalevector_, scalenormtype_ );
}
else if (scaletype_==NormOfPrecInitRes) {
Teuchos::RCP<const MV> init_res = lp.getInitPrecResVec();
numrhs_ = MVT::GetNumberVecs( *init_res );
scalevector_.resize( numrhs_ );
MVT::MvNorm( *init_res, scalevector_, scalenormtype_ );
}
else {
numrhs_ = MVT::GetNumberVecs( *(lp.getRHS()) );
}
resvector_.resize( numrhs_ );
testvector_.resize( numrhs_ );
curLSNum_ = lp.getLSNumber();
curLSIdx_ = lp.getLSIndex();
curBlksz_ = (int)curLSIdx_.size();
int validLS = 0;
for (i=0; i<curBlksz_; ++i) {
if (curLSIdx_[i] > -1 && curLSIdx_[i] < numrhs_)
validLS++;
}
curNumRHS_ = validLS;
//
// Initialize the testvector.
for (i=0; i<numrhs_; i++) { testvector_[i] = one; }
// Return an error if the scaling is zero.
if (scalevalue_ == zero) {
return Failed;
}
}
return Undefined;
}
} // end namespace Belos
#endif /* BELOS_STATUS_TEST_IMPRESNORM_H */
|