/usr/include/trilinos/Epetra_LAPACK.h is in libtrilinos-epetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | /*
//@HEADER
// ************************************************************************
//
// Epetra: Linear Algebra Services Package
// Copyright 2011 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef EPETRA_LAPACK_H
#define EPETRA_LAPACK_H
//! Epetra_LAPACK: The Epetra LAPACK Wrapper Class.
/*! The Epetra_LAPACK class is a wrapper that encapsulates LAPACK
(Linear Algebra Package). LAPACK provides portable, high-
performance implementations of linear, eigen, SVD, etc solvers.
The standard LAPACK interface is Fortran-specific. Unfortunately, the
interface between C++ and Fortran is not standard across all computer
platforms. The Epetra_LAPACK class provides C++ wrappers for the LAPACK
kernels in order to insulate the rest of Epetra from the details of C++ to Fortran
translation.
A Epetra_LAPACK object is essentially nothing, but allows access to the LAPACK wrapper
functions.
Epetra_LAPACK is a serial interface only. This is appropriate since the standard
LAPACK are only specified for serial execution (or shared memory parallel).
*/
#include "Epetra_ConfigDefs.h"
#include "Epetra_Object.h"
class EPETRA_LIB_DLL_EXPORT Epetra_LAPACK {
public:
//! @name Constructors/destructors
//@{
//! Epetra_LAPACK Constructor.
/*! Builds an instance of a serial LAPACK object.
*/
Epetra_LAPACK(void);
//! Epetra_LAPACK Copy Constructor.
/*! Makes an exact copy of an existing Epetra_LAPACK instance.
*/
Epetra_LAPACK(const Epetra_LAPACK& LAPACK);
//! Epetra_LAPACK Destructor.
virtual ~Epetra_LAPACK(void);
//@}
//! @name Symmetric Positive Definite linear system routines
//@{
//! Epetra_LAPACK factorization for positive definite matrix (SPOTRF)
void POTRF( const char UPLO, const int N, float * A, const int LDA, int * INFO) const;
//! Epetra_LAPACK factorization for positive definite matrix (DPOTRF)
void POTRF( const char UPLO, const int N, double * A, const int LDA, int * INFO) const;
//! Epetra_LAPACK solve (after factorization) for positive definite matrix (SPOTRS)
void POTRS( const char UPLO, const int N, const int NRHS, const float * A, const int LDA, float * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK solve (after factorization) for positive definite matrix (DPOTRS)
void POTRS( const char UPLO, const int N, const int NRHS, const double * A, const int LDA, double * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK inversion for positive definite matrix (SPOTRI)
void POTRI( const char UPLO, const int N, float * A, const int LDA, int * INFO) const;
//! Epetra_LAPACK inversion for positive definite matrix (DPOTRI)
void POTRI( const char UPLO, const int N, double * A, const int LDA, int * INFO) const;
//! Epetra_LAPACK condition number estimator for positive definite matrix (SPOCON)
void POCON( const char UPLO, const int N, const float * A, const int LDA, const float ANORM,
float * RCOND, float * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK condition number estimator for positive definite matrix (DPOCON)
void POCON( const char UPLO, const int N, const double * A, const int LDA, const double ANORM,
double * RCOND, double * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK factor and solve for positive definite matrix (SPOSV)
void POSV( const char UPLO, const int N, const int NRHS, float * A, const int LDA, float * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK factor and solve for positive definite matrix (DPOSV)
void POSV( const char UPLO, const int N, const int NRHS, double * A, const int LDA, double * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK equilibration for positive definite matrix (SPOEQU)
void POEQU(const int N, const float * A, const int LDA, float * S, float * SCOND, float * AMAX, int * INFO) const;
//! Epetra_LAPACK equilibration for positive definite matrix (DPOEQU)
void POEQU(const int N, const double * A, const int LDA, double * S, double * SCOND, double * AMAX, int * INFO) const;
//! Epetra_LAPACK solve driver for positive definite matrix (SPOSVX)
void PORFS(const char UPLO, const int N, const int NRHS, const float * A, const int LDA, const float * AF, const int LDAF,
const float * B, const int LDB, float * X, const int LDX,
float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK solve driver for positive definite matrix (DPOSVX)
void PORFS(const char UPLO, const int N, const int NRHS, const double * A, const int LDA, const double * AF, const int LDAF,
const double * B, const int LDB, double * X, const int LDX,
double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK solve driver for positive definite matrix (SPOSVX)
void POSVX(const char FACT, const char UPLO, const int N, const int NRHS, float * A, const int LDA, float * AF, const int LDAF,
const char EQUED, float * S, float * B, const int LDB, float * X, const int LDX, float * RCOND,
float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK solve driver for positive definite matrix (DPOSVX)
void POSVX(const char FACT, const char UPLO, const int N, const int NRHS, double * A, const int LDA, double * AF, const int LDAF,
const char EQUED, double * S, double * B, const int LDB, double * X, const int LDX, double * RCOND,
double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;
//@}
//! @name General linear system routines
//@{
//! Epetra_LAPACK simple driver to solve least-squares systems
void GELS( const char TRANS, const int M, const int N, const int NRHS, double* A, const int LDA,
double* B, const int LDB, double* WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK factorization for general matrix (SGETRF)
void GETRF( const int M, const int N, float * A, const int LDA, int * IPIV, int * INFO) const;
//! Epetra_LAPACK factorization for general matrix (DGETRF)
void GETRF( const int M, const int N, double * A, const int LDA, int * IPIV, int * INFO) const;
//! Epetra_LAPACK QR factorization for general matrix (SGEQRF)
void GEQRF( const int M, const int N, float * A, const int LDA, float * TAU, float * WORK, const int lwork, int * INFO) const;
//! Epetra_LAPACK factorization for general matrix (DGEQRF)
void GEQRF( const int M, const int N, double * A, const int LDA, double * TAU, double * WORK, const int lwork, int * INFO) const;
//! Epetra_LAPACK solve (after factorization) for general matrix (SGETRS)
void GETRS( const char TRANS, const int N, const int NRHS, const float * A, const int LDA, const int * IPIV, float * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK solve (after factorization) for general matrix (DGETRS)
void GETRS( const char TRANS, const int N, const int NRHS, const double * A, const int LDA, const int * IPIV, double * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK inversion for general matrix (SGETRI)
void GETRI( const int N, float * A, const int LDA, int * IPIV, float * WORK, const int * LWORK, int * INFO) const;
//! Epetra_LAPACK inversion for general matrix (DGETRI)
void GETRI( const int N, double * A, const int LDA, int * IPIV, double * WORK, const int * LWORK, int * INFO) const;
//! Epetra_LAPACK condition number estimator for general matrix (SGECON)
void GECON( const char NORM, const int N, const float * A, const int LDA, const float ANORM,
float * RCOND, float * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK condition number estimator for general matrix (DGECON)
void GECON( const char NORM, const int N, const double * A, const int LDA, const double ANORM,
double * RCOND, double * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK factor and solve for general matrix (SGESV)
void GESV( const int N, const int NRHS, float * A, const int LDA, int * IPIV, float * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK factor and solve for general matrix (DGESV)
void GESV( const int N, const int NRHS, double * A, const int LDA, int * IPIV, double * X, const int LDX, int * INFO) const;
//! Epetra_LAPACK equilibration for general matrix (SGEEQU)
void GEEQU(const int M, const int N, const float * A, const int LDA, float * R, float * C, float * ROWCND, float * COLCND, float * AMAX, int * INFO) const;
//! Epetra_LAPACK equilibration for general matrix (DGEEQU)
void GEEQU(const int M, const int N, const double * A, const int LDA, double * R, double * C, double * ROWCND, double * COLCND, double * AMAX, int * INFO) const;
//! Epetra_LAPACK Refine solution (GERFS)
void GERFS(const char TRANS, const int N, const int NRHS, const float * A, const int LDA, const float * AF, const int LDAF,
const int * IPIV, const float * B, const int LDB, float * X, const int LDX,
float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK Refine solution (GERFS)
void GERFS(const char TRANS, const int N, const int NRHS, const double * A, const int LDA, const double * AF, const int LDAF,
const int * IPIV, const double * B, const int LDB, double * X, const int LDX,
double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK solve driver for general matrix (SGESVX)
void GESVX(const char FACT, const char TRANS, const int N, const int NRHS, float * A, const int LDA, float * AF, const int LDAF, int * IPIV,
const char EQUED, float * R, float * C, float * B, const int LDB, float * X, const int LDX, float * RCOND,
float * FERR, float * BERR, float * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK solve driver for general matrix (DGESVX)
void GESVX(const char FACT, const char TRANS, const int N, const int NRHS, double * A, const int LDA, double * AF, const int LDAF, int * IPIV,
const char EQUED, double * R, double * C, double * B, const int LDB, double * X, const int LDX, double * RCOND,
double * FERR, double * BERR, double * WORK, int * IWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for reduction to Hessenberg form (SGEHRD)
void GEHRD(const int N, const int ILO, const int IHI, float * A, const int LDA, float * TAU, float * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for reduction to Hessenberg form (DGEHRD)
void GEHRD(const int N, const int ILO, const int IHI, double * A, const int LDA, double * TAU, double * WORK, const int LWORK, int * INFO) const;
//@}
//! @name Hessenberg routines
//@{
//! Epetra_LAPACK wrapper for computing the eigenvalues of a real upper Hessenberg matrix (SHSEQR)
void HSEQR( const char JOB, const char COMPZ, const int N, const int ILO, const int IHI, float * H, const int LDH, float * WR, float * WI,
float * Z, const int LDZ, float * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for computing the eigenvalues of a real upper Hessenberg matrix (DHSEQR)
void HSEQR( const char JOB, const char COMPZ, const int N, const int ILO, const int IHI, double * H, const int LDH, double * WR, double * WI,
double * Z, const int LDZ, double * WORK, const int LWORK, int * INFO) const;
//@}
//! @name Orthogonal matrix routines
//@{
//! Epetra_LAPACK wrapper for generating a m x n real matrix Q with orthonormal columns, defined as the product of k elementary reflectors. (SORGQR)
void ORGQR( const int M, const int N, const int K, float * A, const int LDA, float * TAU, float * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for generating a m x n real matrix Q with orthonormal columns, defined as the product of k elementary reflectors. (DORGQR)
void ORGQR( const int M, const int N, const int K, double * A, const int LDA, double * TAU, double * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for generating a real orthogonal matrix Q defined by elementary reflectors. (SORGHR)
void ORGHR( const int N, const int ILO, const int IHI, float * A, const int LDA, float * TAU, float * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for generating a real orthogonal matrix Q defined by elementary reflectors. (DORGHR)
void ORGHR( const int N, const int ILO, const int IHI, double * A, const int LDA, double * TAU, double * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for applying an orthogonal matrix in-place (SORMHR)
void ORMHR( const char SIDE, const char TRANS, const int M, const int N, const int ILO, const int IHI, const float * A, const int LDA,
const float * TAU, float * C,
const int LDC, float * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for applying an orthogonal matrix in-place (DORMHR)
void ORMHR( const char SIDE, const char TRANS, const int M, const int N, const int ILO, const int IHI, const double * A, const int LDA,
const double * TAU, double * C,
const int LDC, double * WORK, const int LWORK, int * INFO) const;
//! Epetra_LAPACK for forming the triangular factor of a product of elementary Householder reflectors (SLARFT).
void LARFT( const char DIRECT, const char STOREV, const int N, const int K, double * V, const int LDV, double * TAU, double * T, const int LDT) const;
//! Epetra_LAPACK for forming the triangular factor of a product of elementary Householder reflectors (DLARFT).
void LARFT( const char DIRECT, const char STOREV, const int N, const int K, float * V, const int LDV, float * TAU, float * T, const int LDT) const;
//@}
//! @name Triangular matrix routines
//@{
//! Epetra_LAPACK wrapper for computing eigenvectors of a quasi-triangular/triagnular matrix (STREVC)
/*! \warning HOWMNY = 'S" is not supported.
*/
void TREVC( const char SIDE, const char HOWMNY, int * SELECT, const int N, const float * T, const int LDT, float *VL, const int LDVL,
float * VR, const int LDVR, const int MM, int * M, float * WORK, int * INFO) const;
//! Epetra_LAPACK wrapper for computing eigenvectors of a quasi-triangular/triagnular matrix (DTREVC)
/*! \warning HOWMNY = 'S" is not supported.
*/
void TREVC( const char SIDE, const char HOWMNY, int * SELECT, const int N, const double * T, const int LDT, double *VL, const int LDVL,
double * VR, const int LDVR, const int MM, int *M, double * WORK, int * INFO) const;
//! Epetra_LAPACK wrapper for reordering the real-Schur/Schur factorization of a matrix (STREXC)
void TREXC( const char COMPQ, const int N, float * T, const int LDT, float * Q, const int LDQ, int IFST, int ILST,
float * WORK, int * INFO) const;
//! Epetra_LAPACK wrapper for reordering the real-Schur/Schur factorization of a matrix (DTREXC)
void TREXC( const char COMPQ, const int N, double * T, const int LDT, double * Q, const int LDQ, int IFST, int ILST,
double * WORK, int * INFO) const;
//@}
//! @name Singular Value Decomposition matrix routines
//@{
//! Epetra_LAPACK wrapper for computing the singular value decomposition (SGESVD)
void GESVD( const char JOBU, const char JOBVT, const int M, const int N, float * A, const int LDA, float * S, float * U,
const int LDU, float * VT, const int LDVT, float * WORK, const int * LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper for computing the singular value decomposition (DGESVD)
void GESVD( const char JOBU, const char JOBVT, const int M, const int N, double * A, const int LDA, double * S, double * U,
const int LDU, double * VT, const int LDVT, double * WORK, const int * LWORK, int * INFO) const;
//! Epetra_LAPACK wrapper to compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B
void GGSVD(const char JOBU, const char JOBV, const char JOBQ, const int M, const int N, const int P, int * K, int * L, double* A, const int LDA, double* B, const int LDB,
double* ALPHA, double* BETA, double* U, const int LDU, double* V, const int LDV, double* Q, const int LDQ, double* WORK,
#ifdef HAVE_EPETRA_LAPACK_GSSVD3
const int LWORK,
#endif
int* IWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B
void GGSVD(const char JOBU, const char JOBV, const char JOBQ, const int M, const int N, const int P, int * K, int * L, float* A, const int LDA, float* B, const int LDB,
float* ALPHA, float* BETA, float* U, const int LDU, float* V, const int LDV, float* Q, const int LDQ, float* WORK,
#ifdef HAVE_EPETRA_LAPACK_GSSVD3
const int LWORK,
#endif
int* IWORK, int* INFO) const;
//@}
//! @name Eigenvalue/Eigenvector routines
//@{
//! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
void GEEV(const char JOBVL, const char JOBVR, const int N, double* A, const int LDA, double* WR, double* WI,
double* VL, const int LDVL, double* VR, const int LDVR, double* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
void GEEV(const char JOBVL, const char JOBVR, const int N, float* A, const int LDA, float* WR, float* WI,
float* VL, const int LDVL, float* VR, const int LDVR, float* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
void SPEV(const char JOBZ, const char UPLO, const int N, double* AP, double* W, double* Z, int LDZ, double* WORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
void SPEV(const char JOBZ, const char UPLO, const int N, float* AP, float* W, float* Z, int LDZ, float* WORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
void SPGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, double* AP, double* BP, double* W, double* Z, const int LDZ, double* WORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
void SPGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, float* AP, float* BP, float* W, float* Z, const int LDZ, float* WORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
void SYEV(const char JOBZ, const char UPLO, const int N, double* A, const int LDA, double* W, double* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
void SYEV(const char JOBZ, const char UPLO, const int N, float* A, const int LDA, float* W, float* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
void SYEVD(const char JOBZ, const char UPLO, const int N, double* A, const int LDA, double* W,
double* WORK, const int LWORK, int* IWORK, const int LIWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
void SYEVD(const char JOBZ, const char UPLO, const int N, float* A, const int LDA, float* W,
float* WORK, const int LWORK, int* IWORK, const int LIWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
void SYEVX(const char JOBZ, const char RANGE, const char UPLO, const int N, double* A, const int LDA,
const double* VL, const double* VU, const int* IL, const int* IU,
const double ABSTOL, int * M, double* W, double* Z, const int LDZ, double* WORK,
const int LWORK, int* IWORK, int* IFAIL,
int* INFO) const;
//! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A
void SYEVX(const char JOBZ, const char RANGE, const char UPLO, const int N, float* A, const int LDA,
const float* VL, const float* VU, const int* IL, const int* IU,
const float ABSTOL, int * M, float* W, float* Z, const int LDZ, float* WORK,
const int LWORK, int* IWORK, int* IFAIL,
int* INFO) const;
//! Epetra_LAPACK wrapper to compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
void SYGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, double* A, const int LDA, double* B,
const int LDB, double* W, double* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
void SYGV(const int ITYPE, const char JOBZ, const char UPLO, const int N, float* A, const int LDA, float* B,
const int LDB, float* W, float* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
void SYGVX(const int ITYPE, const char JOBZ, const char RANGE, const char UPLO, const int N,
double* A, const int LDA, double* B, const int LDB, const double* VL, const double* VU,
const int* IL, const int* IU, const double ABSTOL, int* M, double* W, double* Z,
const int LDZ, double* WORK, const int LWORK, int* IWORK,
int* IFAIL, int* INFO) const;
//! Epetra_LAPACK wrapper to compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
void SYGVX(const int ITYPE, const char JOBZ, const char RANGE, const char UPLO, const int N,
float* A, const int LDA, float* B, const int LDB, const float* VL, const float* VU,
const int* IL, const int* IU, const float ABSTOL, int* M, float* W, float* Z,
const int LDZ, float* WORK, const int LWORK, int* IWORK,
int* IFAIL, int* INFO) const;
//! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T
void SYEVR(const char JOBZ, const char RANGE, const char UPLO, const int N, double* A, const int LDA, const double* VL, const double* VU, const int *IL, const int *IU,
const double ABSTOL, int* M, double* W, double* Z, const int LDZ, int* ISUPPZ, double* WORK, const int LWORK, int* IWORK,
const int LIWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T
void SYEVR(const char JOBZ, const char RANGE, const char UPLO, const int N, float* A, const int LDA,
const float* VL, const float* VU, const int *IL, const int *IU,
const float ABSTOL, int* M, float* W, float* Z, const int LDZ, int* ISUPPZ,
float* WORK, const int LWORK, int* IWORK,
const int LIWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int N, double* A, const int LDA, double* WR, double* WI, double* VL,
const int LDVL, double* VR, const int LDVR, int* ILO, int* IHI, double* SCALE, double* ABNRM, double* RCONDE,
double* RCONDV, double* WORK, const int LWORK, int* IWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors
void GEEVX(const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int N, float* A, const int LDA, float* WR, float* WI, float* VL,
const int LDVL, float* VR, const int LDVR, int* ILO, int* IHI, float* SCALE, float* ABNRM, float* RCONDE,
float* RCONDV, float* WORK, const int LWORK, int* IWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors
void GESDD(const char JOBZ, const int M, const int N, double* A, const int LDA, double* S, double* U, const int LDU, double* VT, const int LDVT, double* WORK,
const int LWORK, int* IWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to
void GESDD(const char JOBZ, const int M, const int N, float* A, const int LDA, float* S, float* U, const int LDU, float* VT, const int LDVT, float* WORK,
const int LWORK, int* IWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
void GGEV(const char JOBVL, const char JOBVR, const int N, double* A, const int LDA, double* B, const int LDB, double* ALPHAR, double* ALPHAI,
double* BETA, double* VL, const int LDVL, double* VR, const int LDVR, double* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to compute for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors.
void GGEV(const char JOBVL, const char JOBVR, const int N, float* A, const int LDA, float* B, const int LDB, float* ALPHAR, float* ALPHAI,
float* BETA, float* VL, const int LDVL, float* VR, const int LDVR, float* WORK, const int LWORK, int* INFO) const;
//@}
//! @name Linear Least Squares
//@{
//! Epetra_LAPACK wrapper to solve the linear equality-constrained least squares (LSE) problem
void GGLSE(const int M, const int N, const int P, double* A, const int LDA, double* B, const int LDB,
double* C, double* D, double* X, double* WORK, const int LWORK, int* INFO) const;
//! Epetra_LAPACK wrapper to solve the linear equality-constrained least squares (LSE) problem
void GGLSE(const int M, const int N, const int P, float* A, const int LDA, float* B, const int LDB,
float* C, float* D, float* X, float* WORK, const int LWORK, int* INFO) const;
//@}
//! @name Machine characteristics routines
//@{
//! Epetra_LAPACK wrapper for DLAMCH routine. On out, T holds machine double precision floating point characteristics. This information is returned by the Lapack routine.
void LAMCH ( const char CMACH, float & T) const;
//! Epetra_LAPACK wrapper for SLAMCH routine. On out, T holds machine single precision floating point characteristics. This information is returned by the Lapack routine.
void LAMCH ( const char CMACH, double & T) const;
//@}
//@}
//! @name Triangular solve
//@{
//! Epetra_LAPACK wrapper for TRTRS routine.
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int N, const int NRHS, const float *A,
const int LDA, float *B, const int LDB, int *INFO) const;
//! Epetra_LAPACK wrapper for TRTRS routine.
void TRTRS(const char UPLO, const char TRANS, const char DIAG, const int N, const int NRHS, const double *A,
const int LDA, double *B, const int LDB, int *INFO) const;
};
// Epetra_LAPACK constructor
inline Epetra_LAPACK::Epetra_LAPACK(void){}
// Epetra_LAPACK constructor
inline Epetra_LAPACK::Epetra_LAPACK(const Epetra_LAPACK& LAPACK){(void)LAPACK;}
// Epetra_LAPACK destructor
inline Epetra_LAPACK::~Epetra_LAPACK(){}
#endif /* EPETRA_LAPACK_H */
|