/usr/include/trilinos/Epetra_SerialDenseMatrix.h is in libtrilinos-epetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | /*
//@HEADER
// ************************************************************************
//
// Epetra: Linear Algebra Services Package
// Copyright 2011 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef EPETRA_SERIALDENSEMATRIX_H
#define EPETRA_SERIALDENSEMATRIX_H
#include "Epetra_ConfigDefs.h"
#include "Epetra_Object.h"
#include "Epetra_CompObject.h"
#include "Epetra_BLAS.h"
#include "Epetra_SerialDenseOperator.h"
class Epetra_SerialSymDenseMatrix;
class Epetra_VbrMatrix;
//! Epetra_SerialDenseMatrix: A class for constructing and using real double precision general dense matrices.
/*! The Epetra_SerialDenseMatrix class enables the construction and use of real-valued, general,
double-precision dense matrices. It is built on the BLAS, and derives from the Epetra_BLAS.
The Epetra_SerialDenseMatrix class is intended to provide very basic support for dense rectangular matrices.
<b>Constructing Epetra_SerialDenseMatrix Objects</b>
There are four Epetra_SerialDenseMatrix constructors. The first constructs a zero-sized object which should be made
to appropriate length using the Shape() or Reshape() functions and then filled with the [] or () operators.
The second constructs an object sized to the dimensions specified, which should be filled with the [] or () operators.
The third is a constructor that accepts user
data as a 2D array, and the fourth is a copy constructor. The third constructor has
two data access modes (specified by the Epetra_DataAccess argument):
<ol>
<li> Copy mode - Allocates memory and makes a copy of the user-provided data. In this case, the
user data is not needed after construction.
<li> View mode - Creates a "view" of the user data. In this case, the
user data is required to remain intact for the life of the object.
</ol>
\warning View mode is \e extremely dangerous from a data hiding perspective.
Therefore, we strongly encourage users to develop code using Copy mode first and
only use the View mode in a secondary optimization phase.
<b>Extracting Data from Epetra_SerialDenseMatrix Objects</b>
Once a Epetra_SerialDenseMatrix is constructed, it is possible to view the data via access functions.
\warning Use of these access functions cam be \e extremely dangerous from a data hiding perspective.
<b>Vector and Utility Functions</b>
Once a Epetra_SerialDenseMatrix is constructed, several mathematical functions can be applied to
the object. Specifically:
<ul>
<li> Multiplication.
<li> Norms.
</ul>
<b>Counting floating point operations </b>
The Epetra_SerialDenseMatrix class has Epetra_CompObject as a base class. Thus, floating point operations
are counted and accumulated in the Epetra_Flop object (if any) that was set using the SetFlopCounter()
method in the Epetra_CompObject base class.
*/
//=========================================================================
class EPETRA_LIB_DLL_EXPORT Epetra_SerialDenseMatrix : public Epetra_CompObject, public Epetra_Object, public Epetra_SerialDenseOperator, public Epetra_BLAS {
public:
//! @name Constructor/Destructor Methods
//@{
//! Default constructor; defines a zero size object.
/*!
Epetra_SerialDenseMatrix objects defined by the default constructor should be sized with the
Shape() or Reshape functions.
Values should be defined by using the [] or () operators.
*/
Epetra_SerialDenseMatrix(bool set_object_label=true);
//! Shaped constructor; defines a variable-sized object
/*!
\param In
NumRows - Number of rows in object.
\param In
NumCols - Number of columns in object.
Epetra_SerialDenseMatrix objects defined by the shaped constructor are already shaped to the
dimensions given as a parameters. All values are initialized to 0. Calling this constructor
is equivalent to using the default constructor, and then calling the Shape function on it.
Values should be defined by using the [] or () operators.
*/
Epetra_SerialDenseMatrix(int NumRows, int NumCols, bool set_object_label=true);
//! Set object values from two-dimensional array.
/*!
\param In
Epetra_DataAccess - Enumerated type set to Copy or View.
\param In
A - Pointer to an array of double precision numbers. The first vector starts at A.
The second vector starts at A+LDA, the third at A+2*LDA, and so on.
\param In
LDA - The "Leading Dimension", or stride between vectors in memory.
\param In
NumRows - Number of rows in object.
\param In
NumCols - Number of columns in object.
See Detailed Description section for further discussion.
*/
Epetra_SerialDenseMatrix(Epetra_DataAccess CV, double* A_in, int LDA_in, int NumRows, int NumCols,
bool set_object_label=true);
//! Epetra_SerialDenseMatrix copy constructor.
Epetra_SerialDenseMatrix(const Epetra_SerialDenseMatrix& Source);
//! Epetra_SerialDenseMatrix destructor.
virtual ~Epetra_SerialDenseMatrix ();
//@}
//! @name Shaping/sizing Methods
//@{
//! Set dimensions of a Epetra_SerialDenseMatrix object; init values to zero.
/*!
\param In
NumRows - Number of rows in object.
\param In
NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_SerialDenseMatrix at any point. This function can
be called at any point after construction. Any values that were previously in this object are
destroyed and the resized matrix starts off with all zero values.
\return Integer error code, set to 0 if successful.
*/
int Shape(int NumRows, int NumCols);
//! Reshape a Epetra_SerialDenseMatrix object.
/*!
\param In
NumRows - Number of rows in object.
\param In
NumCols - Number of columns in object.
Allows user to define the dimensions of a Epetra_SerialDenseMatrix at any point. This function can
be called at any point after construction. Any values that were previously in this object are
copied into the new shape. If the new shape is smaller than the original, the upper left portion
of the original matrix (the principal submatrix) is copied to the new matrix.
\return Integer error code, set to 0 if successful.
*/
int Reshape(int NumRows, int NumCols);
//@}
//! @name Mathematical methods
//@{
//! Matrix-Matrix multiplication, \e this = ScalarThis*\e this + ScalarAB*A*B.
/*! This function performs a variety of matrix-matrix multiply operations.
\param In
TransA - Operate with the transpose of A if = 'T', else no transpose if = 'N'.
\param In
TransB - Operate with the transpose of B if = 'T', else no transpose if = 'N'.
\param In
ScalarAB - Scalar to multiply with A*B.
\param In
A - Dense Matrix.
\param In
B - Dense Matrix.
\param In
ScalarThis - Scalar to multiply with \e this.
\return Integer error code, set to 0 if successful.
*/
int Multiply(char TransA, char TransB, double ScalarAB,
const Epetra_SerialDenseMatrix& A,
const Epetra_SerialDenseMatrix& B,
double ScalarThis);
//! Matrix-Vector multiplication, y = A*x, where 'this' == A.
/* This method is intended to imitate the semantics of the matrix-vector
multiplication provided by Epetra's sparse matrices. The 'vector' arguments
are actually matrices; this method will return an error if the
dimensions of 'x' are not compatible. 'y' will be reshaped if necessary.
*/
int Multiply(bool transA,
const Epetra_SerialDenseMatrix& x,
Epetra_SerialDenseMatrix& y);
//! Matrix-Matrix multiplication with a symmetric matrix A.
/*! If SideA = 'L', compute \e this = ScalarThis*\e this + ScalarAB*A*B.
If SideA = 'R', compute \e this = ScalarThis*\e this + ScalarAB*B*A.
This function performs a variety of matrix-matrix multiply operations.
\param In
SideA - Specifies order of A relative to B.
\param In
ScalarAB - Scalar to multiply with A*B.
\param In
A - Symmetric Dense Matrix, either upper or lower triangle will be used depending on
value of A.Upper().
\param In
B - Dense Matrix.
\param In
ScalarThis - Scalar to multiply with \e this.
\return Integer error code, set to 0 if successful.
*/
int Multiply(char SideA, double ScalarAB,
const Epetra_SerialSymDenseMatrix& A,
const Epetra_SerialDenseMatrix& B,
double ScalarThis);
//! Inplace scalar-matrix product A = \e a A.
/*! Scale a matrix, entry-by-entry using the value ScalarA.
\param ScalarA (In) Scalar to multiply with A.
\return Integer error code, set to 0 if successful.
*/
int Scale(double ScalarA);
//! Computes the 1-Norm of the \e this matrix.
/*!
\return Integer error code, set to 0 if successful.
*/
virtual double NormOne() const;
//! Computes the Infinity-Norm of the \e this matrix.
virtual double NormInf() const;
//@}
//! @name Data Accessor methods
//@{
//! Value copy from one matrix to another.
/*!
The operator= allows one to copy the values from one existing SerialDenseMatrix to another, as
long as there is enough room in the target to hold the source.
\return Values of the left hand side matrix are modified by the values of the right hand side matrix.
*/
Epetra_SerialDenseMatrix & operator = (const Epetra_SerialDenseMatrix& Source);
//! Comparison operator.
/*! operator== compares two Epetra_SerialDenseMatrix objects, returns false if sizes are different,
or if any coefficients differ by an amount greater than Epetra_MinDouble.
*/
bool operator==(const Epetra_SerialDenseMatrix& rhs) const;
//! Inequality operator
/*! operator!= simply returns the negation of operator==.
*/
bool operator!=(const Epetra_SerialDenseMatrix& rhs) const
{ return !(*this == rhs); }
//! Add one matrix to another.
/*!
The operator+= allows one to add the values from one existin SerialDenseMatrix to another, as
long as there is enough room in the target to hold the source.
\return Values of the left hand side matrix are modified by the addition
of the values of the right hand side matrix.
*/
Epetra_SerialDenseMatrix & operator += (const Epetra_SerialDenseMatrix& Source);
//! Element access function.
/*!
The parentheses operator returns the element in the ith row and jth column if A(i,j) is
specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
Thus, A(i,j) = A[j][i] for all valid i and j.
\return Element from the specified row and column.
\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
*/
double& operator () (int RowIndex, int ColIndex);
//! Element access function.
/*!
The parentheses operator returns the element in the ith row and jth column if A(i,j) is
specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
Thus, A(i,j) = A[j][i] for all valid i and j.
\return Element from the specified row and column.
\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
*/
const double& operator () (int RowIndex, int ColIndex) const;
//! Column access function.
/*!
The parentheses operator returns the element in the ith row and jth column if A(i,j) is
specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
Thus, A(i,j) = A[j][i] for all valid i and j.
\return Pointer to address of specified column.
\warning No bounds checking can be done for the index i in the expression A[j][i].
\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
*/
double* operator [] (int ColIndex);
//! Column access function.
/*!
The parentheses operator returns the element in the ith row and jth column if A(i,j) is
specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
Thus, A(i,j) = A[j][i] for all valid i and j.
\return Pointer to address of specified column.
\warning No bounds checking can be done for the index i in the expression A[j][i].
\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
*/
const double* operator [] (int ColIndex) const;
//! Set matrix values to random numbers.
/*!
SerialDenseMatrix uses the random number generator provided by Epetra_Util.
The matrix values will be set to random values on the interval (-1.0, 1.0).
\return Integer error code, set to 0 if successful.
*/
int Random();
//! Returns row dimension of system.
int M() const {return(M_);};
//! Returns column dimension of system.
int N() const {return(N_);};
//! Returns pointer to the \e this matrix.
double* A() const {return(A_);};
//! Returns pointer to the \e this matrix.
double* A() {return(A_);};
//! Returns the leading dimension of the \e this matrix.
int LDA() const {return(LDA_);};
//! Returns the data access mode of the \e this matrix.
Epetra_DataAccess CV() const {return(CV_);};
//@}
//! @name I/O methods
//@{
//! Print service methods; defines behavior of ostream << operator.
virtual void Print(std::ostream& os) const;
//@}
//! @name Deprecated methods (will be removed in later versions of this class)
//@{
//! Computes the 1-Norm of the \e this matrix (identical to NormOne() method).
/*!
\return Integer error code, set to 0 if successful.
*/
virtual double OneNorm() const {return(NormOne());};
//! Computes the Infinity-Norm of the \e this matrix (identical to NormInf() method).
virtual double InfNorm() const {return(NormInf());};
//@}
//! @name Additional methods to support Epetra_SerialDenseOperator interface
//@{
//! If set true, transpose of this operator will be applied.
/*! This flag allows the transpose of the given operator to be used implicitly. Setting this flag
affects only the Apply() and ApplyInverse() methods. If the implementation of this interface
does not support transpose use, this method should return a value of -1.
\param In
UseTranspose -If true, multiply by the transpose of operator, otherwise just use operator.
\return Integer error code, set to 0 if successful. Set to -1 if this implementation does not support transpose.
*/
virtual int SetUseTranspose(bool UseTranspose_in) { UseTranspose_ = UseTranspose_in; return (0); }
//! Returns the result of a Epetra_SerialDenseOperator applied to a Epetra_SerialDenseMatrix X in Y.
/*!
\param In
X - A Epetra_SerialDenseMatrix to multiply with operator.
\param Out
Y -A Epetra_SerialDenseMatrix containing result.
\return Integer error code, set to 0 if successful.
*/
virtual int Apply(const Epetra_SerialDenseMatrix& X, Epetra_SerialDenseMatrix& Y);
//! Returns the result of a Epetra_SerialDenseOperator inverse applied to an Epetra_SerialDenseMatrix X in Y.
/*!
\param In
X - A Epetra_SerialDenseMatrix to solve for.
\param Out
Y -A Epetra_SerialDenseMatrix containing result.
\return Integer error code, set to 0 if successful.
*/
virtual int ApplyInverse(const Epetra_SerialDenseMatrix & X, Epetra_SerialDenseMatrix & Y)
{
(void)X;//prevents unused variable compiler warning
(void)Y;
return (-1);
}
//! Returns a character string describing the operator
virtual const char * Label() const { return Epetra_Object::Label(); }
//! Returns the current UseTranspose setting.
virtual bool UseTranspose() const { return UseTranspose_; }
//! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
virtual bool HasNormInf() const { return true; }
//! Returns the row dimension of operator
virtual int RowDim() const { return M(); }
//! Returns the column dimension of operator
virtual int ColDim() const { return N(); }
//@}
protected:
void CopyMat(const double* Source, int Source_LDA, int NumRows, int NumCols,
double* Target, int Target_LDA, bool add=false);
void CleanupData();
int M_;
int N_;
bool A_Copied_;
Epetra_DataAccess CV_;
//For performance reasons, it's better if Epetra_VbrMatrix can access the
//LDA_ and A_ members of this class directly without going through an
//accessor method. Rather than making them public members, we'll make
//Epetra_VbrMatrix a friend class.
friend class Epetra_VbrMatrix;
int LDA_;
double* A_;
bool UseTranspose_;
};
// inlined definitions of op() and op[]
//=========================================================================
inline double& Epetra_SerialDenseMatrix::operator () (int RowIndex, int ColIndex) {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
if (RowIndex >= M_ || RowIndex < 0)
throw ReportError("Row index = " +toString(RowIndex) +
" Out of Range 0 - " + toString(M_-1),-1);
if (ColIndex >= N_ || ColIndex < 0)
throw ReportError("Column index = " +toString(ColIndex) +
" Out of Range 0 - " + toString(N_-1),-2);
#endif
return(A_[ColIndex*LDA_ + RowIndex]);
}
//=========================================================================
inline const double& Epetra_SerialDenseMatrix::operator () (int RowIndex, int ColIndex) const {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
if (RowIndex >= M_ || RowIndex < 0)
throw ReportError("Row index = " +toString(RowIndex) +
" Out of Range 0 - " + toString(M_-1),-1);
if (ColIndex >= N_ || ColIndex < 0)
throw ReportError("Column index = " +toString(ColIndex) +
" Out of Range 0 - " + toString(N_-1),-2);
#endif
return(A_[ColIndex*LDA_ + RowIndex]);
}
//=========================================================================
inline double* Epetra_SerialDenseMatrix::operator [] (int ColIndex) {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
if (ColIndex >= N_ || ColIndex < 0)
throw ReportError("Column index = " +toString(ColIndex) +
" Out of Range 0 - " + toString(N_-1),-2);
#endif
return(A_ + ColIndex*LDA_);
}
//=========================================================================
inline const double* Epetra_SerialDenseMatrix::operator [] (int ColIndex) const {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
if (ColIndex >= N_ || ColIndex < 0)
throw ReportError("Column index = " +toString(ColIndex) +
" Out of Range 0 - " + toString(N_-1),-2);
#endif
return(A_+ ColIndex*LDA_);
}
//=========================================================================
#endif /* EPETRA_SERIALDENSEMATRIX_H */
|