This file is indexed.

/usr/include/trilinos/Epetra_VbrMatrix.h is in libtrilinos-epetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
/*
//@HEADER
// ************************************************************************
//
//               Epetra: Linear Algebra Services Package
//                 Copyright 2011 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
*/

#ifndef EPETRA_VBRMATRIX_H
#define EPETRA_VBRMATRIX_H

// FIXME long long : whole file

#include <Epetra_ConfigDefs.h>
#include <Epetra_DistObject.h>
#include <Epetra_CompObject.h>
#include <Epetra_BLAS.h>
#include <Epetra_RowMatrix.h>
#include <Epetra_Operator.h>
#include <Epetra_CrsGraph.h>
#include <Epetra_SerialDenseMatrix.h>
class Epetra_BlockMap;
class Epetra_Map;
class Epetra_Import;
class Epetra_Export;
class Epetra_Vector;
class Epetra_MultiVector;

//! Epetra_VbrMatrix: A class for the construction and use of real-valued double-precision variable block-row sparse matrices.
/*! The Epetra_VbrMatrix class is a sparse variable block row matrix object. This matrix can be
  used in a parallel setting, with data distribution described by Epetra_Map attributes.
  The structure or graph of the matrix is defined by an Epetra_CrsGraph attribute.

 In addition to coefficient access, the primary operations provided by Epetra_VbrMatrix are matrix
 times vector and matrix times multi-vector multiplication.
<p>
<b>Creating and filling Epetra_VbrMatrix objects</b>

Constructing Epetra_VbrMatrix objects is a multi-step process.  The basic steps are as follows:
<ol>
  <li> Create Epetra_VbrMatrix instance via one of the constructors:
    <ul>
     <li>Constructor that accepts one Epetra_Map object, a row-map defining the distribution of matrix rows.
     <li>Constructor that accepts two Epetra_Map objects. (The second map is a column-map, and describes the set
       of column-indices that appear in each processor's portion of the matrix. Generally these are
       overlapping sets -- column-indices may appear on more than one processor.)
     <li>Constructor that accepts an Epetra_CrsGraph object, defining the non-zero structure of the matrix.
    </ul>
  <li> Input coefficient values (more detail on this below).
  <li> Complete construction by calling FillComplete.
</ol>

Note that even after FillComplete() has been called, it is possible to update existing matrix
entries but it is \e not possible to create new entries.
<p>

<b>Using Epetra_VbrMatrix as an Epetra_RowMatrix</b>

Although Epetra_VbrMatrix does inherit from Epetra_RowMatrix,
a design flaw in the inheritance structure of Epetra prohibits the use of
an Epetra_VbrMatrix object as an Epetra_RowMatrix in some important situations.  Therefore we recommend the
use of the Epetra_VbrRowMatrix class to wrap an Epetra_VbrMatrix object for use as an Epetra_RowMatrix.  The
Epetra_VbrRowMatrix object does not duplicate data in the Epetra_VbrMatrix object, but uses it to satisfy the
Epetra_RowMatrix interface.

<b>Epetra_Map attributes</b>

Epetra_VbrMatrix objects have four Epetra_Map attributes, which are held by the Epetra_CrsGraph attribute.

The Epetra_Map attributes can be obtained via these accessor methods:
<ul>
 <li>RowMap() Describes the numbering and distribution of the rows of the matrix. The row-map exists and is valid
 for the entire life of the matrix. The set of matrix rows is defined by the row-map and may not be changed. Rows
 may not be inserted or deleted by the user. The only change that may be made is that the user can replace the
 row-map with a compatible row-map (which is the same except for re-numbering) by calling the ReplaceRowMap() method.
 <li>ColMap() Describes the set of column-indices that appear in the rows in each processor's portion of the matrix.
 Unless provided by the user at construction time, a valid column-map doesn't exist until FillComplete() is called.
 <li>RangeMap() Describes the range of the matrix operator. e.g., for a matrix-vector product operation, the result
   vector's map must be compatible with the range-map of this matrix. The range-map is usually the same as the row-map.
   The range-map is set equal to the row-map at matrix creation time, but may be specified by the user when
   FillComplete() is called.
 <li>DomainMap() Describes the domain of the matrix operator. The domain-map can be specified by the user when
 FillComplete() is called. Until then, it is set equal to the row-map.
</ul>

It is important to note that while the row-map and the range-map are often the same, the column-map and the domain-map
are almost never the same. The set of entries in a distributed column-map almost always form overlapping sets, with
entries being associated with more than one processor. A domain-map, on the other hand, must be a 1-to-1 map, with
entries being associated with only a single processor.

<b>Local versus Global Indices</b>

Epetra_VbrMatrix has query functions IndicesAreLocal() and IndicesAreGlobal(), which are used to determine whether the
underlying Epetra_CrsGraph attribute's column-indices have been transformed into a local index space or not. (This
transformation occurs when the method Epetra_CrsGraph::FillComplete() is called, which happens when
the method Epetra_VbrMatrix::FillComplete() is called.) The state of the indices in the
graph determines the behavior of many Epetra_VbrMatrix methods. If an Epetra_VbrMatrix instance is constructed using
one of the constructors that does not accept a pre-existing Epetra_CrsGraph object, then an Epetra_CrsGraph attribute
is created internally and its indices remain untransformed (IndicesAreGlobal()==true) until Epetra_VbrMatrix::FillComplete()
is called. The query function Epetra_VbrMatrix::Filled() returns true if Epetra_VbrMatrix::FillComplete() has been
called.

<b>Inputting coefficient values</b>

The process for inputting block-entry coefficients is as follows:
<ol>
<li>Indicate that values for a specified row are about to be provided by calling one of these methods
  which specify a block-row and a list of block-column-indices:
 <ul>
  <li>BeginInsertGlobalValues()
  <li>BeginInsertMyValues()
  <li>BeginReplaceGlobalValues()
  <li>BeginReplaceMyValues()
  <li>BeginSumIntoGlobalValues()
  <li>BeginSumIntoMyValues()
 </ul>
<li>Loop over the list of block-column-indices and pass each block-entry to the matrix using the
  method SubmitBlockEntry().
<li>Complete the process for the specified block-row by calling the method EndSubmitEntries().
</ol>

Note that the 'GlobalValues' methods have the precondition that IndicesAreGlobal() must be true, and
the 'MyValues' methods have the precondition that IndicesAreLocal() must be true. Furthermore, the
'SumInto' and 'Replace' methods may only be used to update matrix entries which already exist, and
the 'Insert' methods may only be used if IndicesAreContiguous() is false.

<b> Counting Floating Point Operations </b>

Each Epetra_VbrMatrix object keeps track of the number of \e serial floating point operations
performed using the specified object as the \e this argument to the function.  The Flops()
function returns this number as a double precision number.  Using this information, in
conjunction with the Epetra_Time class, one can get accurate parallel performance
numbers.  The ResetFlops() function resets the floating point counter.

*/

class EPETRA_LIB_DLL_EXPORT Epetra_VbrMatrix : public Epetra_DistObject,
          public Epetra_CompObject,
          public Epetra_BLAS,
          public virtual Epetra_RowMatrix {
 public:

   //! @name Constructors/Destructor
  //@{
  //! Epetra_VbrMatrix constuctor with variable number of indices per row.
  /*! Creates a Epetra_VbrMatrix object and allocates storage.

    \param In
           CV - A Epetra_DataAccess enumerated type set to Copy or View.
    \param In
           RowMap - A Epetra_BlockMap listing the block rows that this processor will contribute to.
    \param In
           NumBlockEntriesPerRow - An integer array of length NumRows
     such that NumBlockEntriesPerRow[i] indicates the (approximate) number of Block entries in the ith row.
  */
  Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, int *NumBlockEntriesPerRow);

  //! Epetra_VbrMatrix constuctor with fixed number of indices per row.
  /*! Creates a Epetra_VbrMatrix object and allocates storage.

    \param In
           CV - A Epetra_DataAccess enumerated type set to Copy or View.
    \param In
           RowMap - An Epetra_BlockMap listing the block rows that this processor will contribute to.
    \param In
           NumBlockEntriesPerRow - An integer that indicates the (approximate) number of Block entries in the each Block row.
     Note that it is possible to use 0 for this value and let fill occur during the insertion phase.

  */
  Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, int NumBlockEntriesPerRow);

  //! Epetra_VbrMatrix constuctor with variable number of indices per row.
  /*! Creates a Epetra_VbrMatrix object and allocates storage.

    \param In
           CV - A Epetra_DataAccess enumerated type set to Copy or View.
    \param In
           RowMap - A Epetra_BlockMap listing the block rows that this processor will contribute to.
    \param In
           ColMap - A Epetra_BlockMap.
    \param In
           NumBlockEntriesPerRow - An integer array of length NumRows
     such that NumBlockEntriesPerRow[i] indicates the (approximate) number of Block entries in the ith row.
  */
  Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, const Epetra_BlockMap& ColMap, int *NumBlockEntriesPerRow);

  //! Epetra_VbrMatrix constuctor with fixed number of indices per row.
  /*! Creates a Epetra_VbrMatrix object and allocates storage.

    \param In
           CV - A Epetra_DataAccess enumerated type set to Copy or View.
    \param In
           RowMap - A Epetra_BlockMap listing the block rows that this processor will contribute to.
    \param In
           ColMap - An Epetra_BlockMap listing the block columns that this processor will contribute to.
    \param In
           NumBlockEntriesPerRow - An integer that indicates the (approximate) number of Block entries in the each Block row.
     Note that it is possible to use 0 for this value and let fill occur during the insertion phase.

  */
  Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, const Epetra_BlockMap& ColMap, int NumBlockEntriesPerRow);

  //! Construct a matrix using an existing Epetra_CrsGraph object.
  /*! Allows the nonzero structure from another matrix, or a structure that was
      constructed independently, to be used for this matrix.
    \param In
           CV - A Epetra_DataAccess enumerated type set to Copy or View.
    \param In
           Graph - A Epetra_CrsGraph object, extracted from another Epetra matrix object or constructed directly from
     using the Epetra_CrsGraph constructors.
  */

  Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_CrsGraph & Graph);

  //! Copy constructor.
  Epetra_VbrMatrix(const Epetra_VbrMatrix & Matrix);

  //! Epetra_VbrMatrix Destructor
  virtual ~Epetra_VbrMatrix();
  //@}

  //! @name Insertion/Replace/SumInto methods
  //@{

  Epetra_VbrMatrix& operator=(const Epetra_VbrMatrix& src);

  //! Initialize all values in graph of the matrix with constant value.
  /*!
    \param In
           ScalarConstant - Value to use.

    \return Integer error code, set to 0 if successful.
  */
    int PutScalar(double ScalarConstant);

  //! Multiply all values in the matrix by a constant value (in place: A <- ScalarConstant * A).
  /*!
    \param In
           ScalarConstant - Value to use.

    \return Integer error code, set to 0 if successful.
  */
    int Scale(double ScalarConstant);

    //! Submit a block-entry directly into the matrix (without using a begin/end sequence)
    /** Experimental method which allows submitting a block-entry without first
      calling BeginInsertGlobalValues. This method copies the input data directly
      into the matrix storage.
      The block-entry is specified by global block-row and block-col indices.
    */
    int DirectSubmitBlockEntry(int GlobalBlockRow, int GlobalBlockCol,
                               const double *values, int LDA,
                               int NumRows, int NumCols, bool sum_into);

  //! Initiate insertion of a list of elements in a given global row of the matrix, values are inserted via SubmitEntry().
  /*!
    \param In
           BlockRow - Block Row number (in global coordinates) to put elements.
    \param In
           NumBlockEntries - Number of entries.
    \param In
           Indices - Global column indices corresponding to values.

    \return Integer error code, set to 0 if successful.
  */
    int BeginInsertGlobalValues(int BlockRow,
        int NumBlockEntries,
        int * BlockIndices);

  //! Initiate insertion of a list of elements in a given local row of the matrix, values are inserted via SubmitEntry().
  /*!
    \param In
           BlockRow - Block Row number (in local coordinates) to put elements.
    \param In
           NumBlockEntries - Number of entries.
    \param In
           Indices - Local column indices corresponding to values.

    \return Integer error code, set to 0 if successful.
  */
    int BeginInsertMyValues(int BlockRow, int NumBlockEntries, int * BlockIndices);

  //! Initiate replacement of current values with this list of entries for a given global row of the matrix, values are replaced via SubmitEntry()
  /*!
    \param In
           Row - Block Row number (in global coordinates) to put elements.
    \param In
           NumBlockEntries - Number of entries.
    \param In
           Indices - Global column indices corresponding to values.

    \return Integer error code, set to 0 if successful.
  */
    int BeginReplaceGlobalValues(int BlockRow, int NumBlockEntries, int *BlockIndices);

  //! Initiate replacement of current values with this list of entries for a given local row of the matrix, values are replaced via SubmitEntry()
  /*!
    \param In
           Row - Block Row number (in local coordinates) to put elements.
    \param In
           NumBlockEntries - Number of entries.
    \param In
           Indices - Local column indices corresponding to values.

    \return Integer error code, set to 0 if successful.
  */
    int BeginReplaceMyValues(int BlockRow, int NumBlockEntries, int *BlockIndices);

  //! Initiate summing into current values with this list of entries for a given global row of the matrix, values are replaced via SubmitEntry()
  /*!
    \param In
           Row - Block Row number (in global coordinates) to put elements.
    \param In
           NumBlockEntries - Number of entries.
    \param In
           Indices - Global column indices corresponding to values.

    \return Integer error code, set to 0 if successful.
  */
    int BeginSumIntoGlobalValues(int BlockRow, int NumBlockEntries, int *BlockIndices);

  //! Initiate summing into current values with this list of entries for a given local row of the matrix, values are replaced via SubmitEntry()
  /*!
    \param In
           Row - Block Row number (in local coordinates) to put elements.
    \param In
           NumBlockEntries - Number of entries.
    \param In
           Indices - Local column indices corresponding to values.

    \return Integer error code, set to 0 if successful.
  */
    int BeginSumIntoMyValues(int BlockRow, int NumBlockEntries, int *BlockIndices);

    //! Submit a block entry to the indicated block row and column specified in the Begin routine.
    /* Submit a block entry that will recorded in the block row that was initiated by one of the
       Begin routines listed above.  Once a one of the following routines: BeginInsertGlobalValues(),
       BeginInsertMyValues(), BeginReplaceGlobalValues(), BeginReplaceMyValues(), BeginSumIntoGlobalValues(),
       BeginSumIntoMyValues(), you \e must call SubmitBlockEntry() NumBlockEntries times to register the values
       corresponding to the block indices passed in to the Begin routine.  If the Epetra_VbrMatrix constuctor
       was called in Copy mode, the values will be copied.  However, no copying will be done until the EndSubmitEntries()
       function is call to complete submission of the current block row.  If the constructor was called in View mode, all
       block entries passed via SubmitBlockEntry() will not be copied, but a pointer will be set to point to the argument Values
       that was passed in by the user.

       For performance reasons, SubmitBlockEntry() does minimal processing of data.  Any processing that can be
       delayed is performed in EndSubmitEntries().

    \param In
           Values - The starting address of the values.
    \param In
           LDA - The stride between successive columns of Values.
    \param In
           NumRows - The number of rows passed in.
    \param In
           NumCols - The number of columns passed in.

    \return Integer error code, set to 0 if successful.
    */
    int SubmitBlockEntry(double *Values, int LDA, int NumRows, int NumCols);

    //! Submit a block entry to the indicated block row and column specified in the Begin routine.
    /* Submit a block entry that will recorded in the block row that was initiated by one of the
       Begin routines listed above.  Once a one of the following routines: BeginInsertGlobalValues(),
       BeginInsertMyValues(), BeginReplaceGlobalValues(), BeginReplaceMyValues(), BeginSumIntoGlobalValues(),
       BeginSumIntoMyValues(), you \e must call SubmitBlockEntry() NumBlockEntries times to register the values
       corresponding to the block indices passed in to the Begin routine.  If the Epetra_VbrMatrix constuctor
       was called in Copy mode, the values will be copied.  However, no copying will be done until the EndSubmitEntries()
       function is call to complete submission of the current block row.  If the constructor was called in View mode, all
       block entries passed via SubmitBlockEntry() will not be copied, but a pointer will be set to point to the argument Values
       that was passed in by the user.

       For performance reasons, SubmitBlockEntry() does minimal processing of data.  Any processing that can be
       delayed is performed in EndSubmitEntries().

    \param In
           Mat - Preformed dense matrix block.

    \return Integer error code, set to 0 if successful.
    */
    int SubmitBlockEntry( Epetra_SerialDenseMatrix &Mat );

    //! Completes processing of all data passed in for the current block row.
    /*! This function completes the processing of all block entries submitted via SubmitBlockEntry().
        It also checks to make sure that SubmitBlockEntry was called the correct number of times as
  specified by the Begin routine that initiated the entry process.
    */

    int EndSubmitEntries();

    //! Replaces diagonal values of the with those in the user-provided vector.
    /*! This routine is meant to allow replacement of {\bf existing} diagonal values.
        If a diagonal value does not exist for a given row, the corresponding value in
  the input Epetra_Vector will be ignored and the return code will be set to 1.

  The Epetra_Map associated with the input Epetra_Vector must be compatible with
  the RowMap of the matrix.

    \param Diagonal (In) - New values to be placed in the main diagonal.

    \return Integer error code, set to 0 if successful, 1 of one or more diagonal entries not present in matrix.
  */
    int ReplaceDiagonalValues(const Epetra_Vector & Diagonal);

    //! Signal that data entry is complete, perform transformations to local index space.
    /* This version of FillComplete assumes that the domain and range
       distributions are identical to the matrix row distributions.
       \return error code, 0 if successful. Returns a positive warning code of 3
        if the matrix is rectangular (meaning that the other overloading of
        FillComplete should have been called, with differen domain-map and
        range-map specified).
    */
    int FillComplete();

    //! Signal that data entry is complete, perform transformations to local index space.
    /* This version of FillComplete requires the explicit specification of the domain
       and range distribution maps.  These maps are used for importing and exporting vector
       and multi-vector elements that are needed for distributed matrix computations.  For
       example, to compute y = Ax in parallel, we would specify the DomainMap as the distribution
       of the vector x and the RangeMap as the distribution of the vector y.
    \param In
           DomainMap - Map that describes the distribution of vector and multi-vectors in the
                 matrix domain.
    \param In
           RangeMap - Map that describes the distribution of vector and multi-vectors in the
                 matrix range.

    \return error code, 0 if successful. positive warning code of 2 if it is detected that the
    matrix-graph got out of sync since this matrix was constructed (for instance if
    graph.FillComplete() was called by another matrix that shares the graph)
    */
    int FillComplete(const Epetra_BlockMap& DomainMap, const Epetra_BlockMap& RangeMap);

    //! If FillComplete() has been called, this query returns true, otherwise it returns false.
    bool Filled() const {return(Graph_->Filled());};
    //@}

    //! @name Extraction methods
  //@{

    //! Copy the block indices into user-provided array, set pointers for rest of data for specified global block row.
    /*!
      This function provides the lightest weight approach to accessing a global block row when the matrix may be
      be stored in local or global index space.  In other words, this function will always work because the block
      indices are returned in user-provided space.  All other array arguments are independent of whether or not
      indices are local or global.  Other than the BlockIndices array, all other array argument are returned as
      pointers to internal data.

    \param In
           BlockRow - Global block row to extract.
    \param In
     MaxNumBlockEntries - Length of user-provided BlockIndices array.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries actually extracted.
    \param Out
     BlockIndices - Extracted global column indices for the corresponding block entries.
    \param Out
     Values - Pointer to list of pointers to block entries. Note that the actual values are not copied.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractGlobalBlockRowPointers(int BlockRow, int MaxNumBlockEntries,
              int & RowDim,  int & NumBlockEntries,
              int * BlockIndices,
              Epetra_SerialDenseMatrix ** & Values) const;

    //! Copy the block indices into user-provided array, set pointers for rest of data for specified local block row.
    /*!
      This function provides the lightest weight approach to accessing a local block row when the matrix may be
      be stored in local or global index space.  In other words, this function will always work because the block
      indices are returned in user-provided space.  All other array arguments are independent of whether or not
      indices are local or global.  Other than the BlockIndices array, all other array argument are returned as
      pointers to internal data.

    \param In
           BlockRow - Local block row to extract.
    \param In
     MaxNumBlockEntries - Length of user-provided BlockIndices array.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries actually extracted.
    \param Out
     BlockIndices - Extracted local column indices for the corresponding block entries.
    \param Out
     Values - Pointer to list of pointers to block entries. Note that the actual values are not copied.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractMyBlockRowPointers(int BlockRow, int MaxNumBlockEntries,
          int & RowDim, int & NumBlockEntries,
          int * BlockIndices,
          Epetra_SerialDenseMatrix** & Values) const;

    //! Initiates a copy of the specified global row in user-provided arrays.
    /*!
    \param In
           BlockRow - Global block row to extract.
    \param In
     MaxNumBlockEntries - Length of user-provided BlockIndices, ColDims, and LDAs arrays.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries actually extracted.
    \param Out
     BlockIndices - Extracted global column indices for the corresponding block entries.
    \param Out
     ColDim - List of column dimensions for each corresponding block entry that will be extracted.

    \return Integer error code, set to 0 if successful.
  */
    int BeginExtractGlobalBlockRowCopy(int BlockRow, int MaxNumBlockEntries,
               int & RowDim,  int & NumBlockEntries,
               int * BlockIndices, int * ColDims) const;

    //! Initiates a copy of the specified local row in user-provided arrays.
    /*!
    \param In
           BlockRow - Local block row to extract.
    \param In
     MaxNumBlockEntries - Length of user-provided BlockIndices, ColDims, and LDAs arrays.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries actually extracted.
    \param Out
     BlockIndices - Extracted local column indices for the corresponding block entries.
    \param Out
     ColDim - List of column dimensions for each corresponding block entry that will be extracted.

    \return Integer error code, set to 0 if successful.
  */
    int BeginExtractMyBlockRowCopy(int BlockRow, int MaxNumBlockEntries,
           int & RowDim, int & NumBlockEntries,
           int * BlockIndices, int * ColDims) const;

    //! Extract a copy of an entry from the block row specified by one of the BeginExtract routines.
    /*! Once BeginExtractGlobalBlockRowCopy() or BeginExtractMyBlockRowCopy() is called, you can extract
        the block entries of specified block row one-entry-at-a-time.  The entries will be extracted
  in an order corresponding to the BlockIndices list that was returned by the BeginExtract routine.

    \param In
           SizeOfValues - Amount of memory associated with Values.  This must be at least as big as
                    LDA*NumCol, where NumCol is the column dimension of the block entry being copied
    \param InOut
           Values - Starting location where the block entry will be copied.
    \param In
           LDA - Specifies the stride that will be used when copying columns into Values.
    \param In
           SumInto - If set to true, the block entry values will be summed into existing values.
    */

    int ExtractEntryCopy(int SizeOfValues, double * Values, int LDA, bool SumInto) const;

    //! Initiates a view of the specified global row, only works if matrix indices are in global mode.
    /*!
    \param In
           BlockRow - Global block row to view.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries to be viewed.
    \param Out
     BlockIndices - Pointer to global column indices for the corresponding block entries.

    \return Integer error code, set to 0 if successful.
  */
    int BeginExtractGlobalBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
               int * & BlockIndices) const;

    //! Initiates a view of the specified local row, only works if matrix indices are in local mode.
    /*!
    \param In
           BlockRow - Local block row to view.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries to be viewed.
    \param Out
     BlockIndices - Pointer to local column indices for the corresponding block entries.

    \return Integer error code, set to 0 if successful.
  */
    int BeginExtractMyBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
           int * & BlockIndices) const;


    //! Returns a pointer to the current block entry.
    /*! After a call to BeginExtractGlobal() or BlockRowViewBeginExtractMyBlockRowView(),
        ExtractEntryView() can be called up to NumBlockEntries times to get each block entry in the
  specified block row.
    \param InOut
           entry - A pointer that will be set to the current block entry.
    */

    int ExtractEntryView(Epetra_SerialDenseMatrix* & entry) const;

    //! Initiates a view of the specified global row, only works if matrix indices are in global mode.
    /*!
    \param In
           BlockRow - Global block row to view.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries to be viewed.
    \param Out
     BlockIndices - Pointer to global column indices for the corresponding block entries.
    \param Out
     Values - Pointer to an array of pointers to the block entries in the specified block row.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractGlobalBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
          int * & BlockIndices,
          Epetra_SerialDenseMatrix** & Values) const;

    //! Initiates a view of the specified local row, only works if matrix indices are in local mode.
    /*!
    \param In
           BlockRow - Local block row to view.
    \param Out
     RowDim - Number of equations in the requested block row.
    \param Out
     NumBlockEntries - Number of nonzero entries to be viewed.
    \param Out
     BlockIndices - Pointer to local column indices for the corresponding block entries.
    \param Out
     Values - Pointer to an array of pointers to the block entries in the specified block row.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractMyBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
            int * & BlockIndices,
            Epetra_SerialDenseMatrix** & Values) const;


    //! Returns a copy of the main diagonal in a user-provided vector.
    /*!
    \param Out
     Diagonal - Extracted main diagonal.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractDiagonalCopy(Epetra_Vector & Diagonal) const;

    //! Initiates a copy of the block diagonal entries to user-provided arrays.
    /*!
    \param In
     MaxNumBlockDiagonalEntries - Length of user-provided RowColDims array.
    \param Out
     NumBlockDiagonalEntries - Number of block diagonal entries that can actually be extracted.
    \param Out
     RowColDim - List  of row and column dimension for corresponding block diagonal entries.

    \return Integer error code, set to 0 if successful.
  */
    int BeginExtractBlockDiagonalCopy(int MaxNumBlockDiagonalEntries,
              int & NumBlockDiagonalEntries, int * RowColDims ) const;
    //! Extract a copy of a block diagonal entry from the matrix.
    /*! Once BeginExtractBlockDiagonalCopy() is called, you can extract
        the block diagonal entries one-entry-at-a-time.  The entries will be extracted
  in ascending order.

    \param In
           SizeOfValues - Amount of memory associated with Values.  This must be at least as big as
                    LDA*NumCol, where NumCol is the column dimension of the block entry being copied
    \param InOut
           Values - Starting location where the block entry will be copied.
    \param In
           LDA - Specifies the stride that will be used when copying columns into Values.
    \param In
           SumInto - If set to true, the block entry values will be summed into existing values.
    */

    int ExtractBlockDiagonalEntryCopy(int SizeOfValues, double * Values, int LDA, bool SumInto) const;

    //! Initiates a view of the block diagonal entries.
    /*!
    \param Out
     NumBlockDiagonalEntries - Number of block diagonal entries that can be viewed.
    \param Out
     RowColDim - Pointer to list  of row and column dimension for corresponding block diagonal entries.

    \return Integer error code, set to 0 if successful.
  */
    int BeginExtractBlockDiagonalView(int & NumBlockDiagonalEntries, int * & RowColDims ) const;

    //! Extract a view of a block diagonal entry from the matrix.
    /*! Once BeginExtractBlockDiagonalView() is called, you can extract a view of
        the block diagonal entries one-entry-at-a-time.  The views will be extracted
  in ascending order.

    \param Out
           Values - Pointer to internal copy of block entry.
    \param Out
           LDA - Column stride of Values.
    */

    int ExtractBlockDiagonalEntryView(double * & Values, int & LDA) const;
    //@}

    //! @name Computational methods
  //@{


    //! Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_Vector x in y.
    /*!
    \param In
     TransA - If true, multiply by the transpose of matrix, otherwise just use matrix.
    \param In
     x - A Epetra_Vector to multiply by.
    \param Out
     y - A Epetra_Vector containing result.

    \return Integer error code, set to 0 if successful.
  */
    int Multiply1(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const;

    //! Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_MultiVector X in Y.
    /*!
    \param In
     TransA -If true, multiply by the transpose of matrix, otherwise just use matrix.
    \param In
     X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Out
     Y -A Epetra_MultiVector of dimension NumVectorscontaining result.

    \return Integer error code, set to 0 if successful.
  */
    int Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

    //! Returns the result of a solve using the Epetra_VbrMatrix on a Epetra_Vector x in y.
    /*!
    \param In
     Upper -If true, solve Ux = y, otherwise solve Lx = y.
    \param In
     Trans -If true, solve transpose problem.
    \param In
     UnitDiagonal -If true, assume diagonal is unit (whether it's stored or not).
    \param In
     x -A Epetra_Vector to solve for.
    \param Out
     y -A Epetra_Vector containing result.

    \return Integer error code, set to 0 if successful.
  */
    int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_Vector& x, Epetra_Vector& y) const;

    //! Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_MultiVector X in Y.
    /*!
    \param In
     Upper -If true, solve Ux = y, otherwise solve Lx = y.
    \param In
     Trans -If true, solve transpose problem.
    \param In
     UnitDiagonal -If true, assume diagonal is unit (whether it's stored or not).
    \param In
     X - A Epetra_MultiVector of dimension NumVectors to solve for.
    \param Out
     Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.
  */
    int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;


    //! Computes the sum of absolute values of the rows of the Epetra_VbrMatrix, results returned in x.
    /*! The vector x will return such that x[i] will contain the inverse of sum of the absolute values of the
        \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the global row number of A
        and j denotes the global column number of A.  Using the resulting vector from this function as input to LeftScale()
  will make the infinity norm of the resulting matrix exactly 1.
    \param Out
     x -A Epetra_Vector containing the row sums of the \e this matrix.
     \warning It is assumed that the distribution of x is the same as the rows of \e this.

    \return Integer error code, set to 0 if successful.
  */
    int InvRowSums(Epetra_Vector& x) const;

    //! Scales the Epetra_VbrMatrix on the left with a Epetra_Vector x.
    /*! The \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the row number of A
        and j denotes the column number of A.
    \param In
     x -A Epetra_Vector to solve for.

    \return Integer error code, set to 0 if successful.
  */
    int LeftScale(const Epetra_Vector& x);

    //! Computes the sum of absolute values of the columns of the Epetra_VbrMatrix, results returned in x.
    /*! The vector x will return such that x[j] will contain the inverse of sum of the absolute values of the
        \e this matrix will be sca such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
        and j denotes the global column number of A.  Using the resulting vector from this function as input to
  RighttScale() will make the one norm of the resulting matrix exactly 1.
    \param Out
     x -A Epetra_Vector containing the column sums of the \e this matrix.
     \warning It is assumed that the distribution of x is the same as the rows of \e this.

    \return Integer error code, set to 0 if successful.
  */
    int InvColSums(Epetra_Vector& x) const ;

    //! Scales the Epetra_VbrMatrix on the right with a Epetra_Vector x.
    /*! The \e this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
        and j denotes the global column number of A.
    \param In
     x -The Epetra_Vector used for scaling \e this.

    \return Integer error code, set to 0 if successful.
  */
    int RightScale(const Epetra_Vector& x);
  //@}

  //! @name Matrix Properties Query Methods
  //@{

    //! Eliminates memory that is used for construction.  Make consecutive row index sections contiguous.
    int OptimizeStorage();

    //! If OptimizeStorage() has been called, this query returns true, otherwise it returns false.
    bool StorageOptimized() const {return(StorageOptimized_);};

    //! If matrix indices has not been transformed to local, this query returns true, otherwise it returns false.
    bool IndicesAreGlobal() const {return(Graph_->IndicesAreGlobal());};

    //! If matrix indices has been transformed to local, this query returns true, otherwise it returns false.
    bool IndicesAreLocal() const {return(Graph_->IndicesAreLocal());};

    //! If matrix indices are packed into single array (done in OptimizeStorage()) return true, otherwise false.
    bool IndicesAreContiguous() const {return(Graph_->IndicesAreContiguous());};

    //! If matrix is lower triangular in local index space, this query returns true, otherwise it returns false.
    bool LowerTriangular() const {return(Graph_->LowerTriangular());};

    //! If matrix is upper triangular in local index space, this query returns true, otherwise it returns false.
    bool UpperTriangular() const {return(Graph_->UpperTriangular());};

    //! If matrix has no diagonal entries based on global row/column index comparisons, this query returns true, otherwise it returns false.
    bool NoDiagonal() const {return(Graph_->NoDiagonal());};

  //@}

  //! @name Attribute access functions
  //@{

    //! Returns the infinity norm of the global matrix.
    /* Returns the quantity \f$ \| A \|_\infty\f$ such that
       \f[\| A \|_\infty = \max_{1\lei\lem} \sum_{j=1}^n |a_{ij}| \f].
     \warning The NormInf() method will not properly calculate the infinity norm for a matrix that has entries that are
     replicated on multiple processors.  */
    double NormInf() const;

    //! Returns the one norm of the global matrix.
    /* Returns the quantity \f$ \| A \|_1\f$ such that
       \f[\| A \|_1 = \max_{1\lej\len} \sum_{i=1}^m |a_{ij}| \f].
     \warning The NormOne() method will not properly calculate the one norm for a matrix that has entries that are
    */
    double NormOne() const;

    //! Returns the frobenius norm of the global matrix.
    /* Returns the quantity \f[ \| A \|_{Frobenius} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n\|a_{ij}\|^2}\f]
       \warning the NormFrobenius() method will not properly calculate the frobenius norm for a matrix that
       has entries which are replicated on multiple processors. In that case, the returned
       norm will be larger than the true norm.
    */
    double NormFrobenius() const;

    //! Returns the maximum row dimension of all block entries on this processor.
    int MaxRowDim() const {return(Graph_->MaxRowDim());};

    //! Returns the maximum column dimension of all block entries on this processor.
    int MaxColDim() const {return(Graph_->MaxColDim());};

    //! Returns the maximum row dimension of all block entries across all processors.
    int GlobalMaxRowDim() const {return(Graph_->GlobalMaxRowDim());};

    //! Returns the maximum column dimension of all block entries across all processors.
    int GlobalMaxColDim() const {return(Graph_->GlobalMaxColDim());};

    //! Returns the number of matrix rows owned by the calling processor.
    int NumMyRows() const {return(Graph_->NumMyRows());};
    //! Returns the number of matrix columns owned by the calling processor.
    int NumMyCols() const {return(Graph_->NumMyCols());};

    //! Returns the number of nonzero entriesowned by the calling processor .
    int NumMyNonzeros() const {return(Graph_->NumMyNonzeros());};

    //! Returns the number of global matrix rows.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalRows() const {return(Graph_->NumGlobalRows());};
#endif
    long long NumGlobalRows64() const {return(Graph_->NumGlobalRows64());};

    //! Returns the number of global matrix columns.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalCols() const {return(Graph_->NumGlobalCols());};
#endif
    long long NumGlobalCols64() const {return(Graph_->NumGlobalCols64());};

    //! Returns the number of nonzero entries in the global matrix.
    /*
     Note that if maps are defined such that some nonzeros appear on
     multiple processors, then those nonzeros will be counted multiple
     times. If the user wishes to assemble a matrix from overlapping
     submatrices, they can use Epetra_FEVbrMatrix.
    */
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalNonzeros() const {return(Graph_->NumGlobalNonzeros());};
#endif
    long long NumGlobalNonzeros64() const {return(Graph_->NumGlobalNonzeros64());};

    //! Returns the number of Block matrix rows owned by the calling processor.
    int NumMyBlockRows() const {return(Graph_->NumMyBlockRows());};

    //! Returns the number of Block matrix columns owned by the calling processor.
    int NumMyBlockCols() const {return(Graph_->NumMyBlockCols());};

    //! Returns the number of nonzero block entries in the calling processor's portion of the matrix.
    int NumMyBlockEntries() const {return(Graph_->NumMyEntries());};

    //! Returns the number of local nonzero block diagonal entries, based on global row/column index comparisons.
    int NumMyBlockDiagonals() const {return(Graph_->NumMyBlockDiagonals());};

    //! Returns the number of local nonzero diagonal entries, based on global row/column index comparisons.
    int NumMyDiagonals() const {return(Graph_->NumMyDiagonals());};

    //! Returns the number of global Block matrix rows.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalBlockRows() const {return(Graph_->NumGlobalBlockRows());};
#endif
    long long NumGlobalBlockRows64() const {return(Graph_->NumGlobalBlockRows64());};

    //! Returns the number of global Block matrix columns.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalBlockCols() const {return(Graph_->NumGlobalBlockCols());};
#endif
    long long NumGlobalBlockCols64() const {return(Graph_->NumGlobalBlockCols64());};

    //! Returns the number of nonzero block entries in the global matrix.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalBlockEntries() const {return(Graph_->NumGlobalEntries());};
#endif
    long long NumGlobalBlockEntries64() const {return(Graph_->NumGlobalEntries64());};

    //! Returns the number of global nonzero block diagonal entries, based on global row/column index comparisions.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalBlockDiagonals() const {return(Graph_->NumGlobalBlockDiagonals());};
#endif
    long long NumGlobalBlockDiagonals64() const {return(Graph_->NumGlobalBlockDiagonals64());};

    //! Returns the number of global nonzero diagonal entries, based on global row/column index comparisions.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int NumGlobalDiagonals() const {return(Graph_->NumGlobalDiagonals());};
#endif
    long long NumGlobalDiagonals64() const {return(Graph_->NumGlobalDiagonals64());};

    //! Returns the current number of nonzero Block entries in specified global row on this processor.
    int NumGlobalBlockEntries(int Row) const {return(Graph_->NumGlobalIndices(Row));};

    //! Returns the allocated number of nonzero Block entries in specified global row on this processor.
    int NumAllocatedGlobalBlockEntries(int Row) const{return(Graph_->NumAllocatedGlobalIndices(Row));};

    //! Returns the maximum number of nonzero entries across all rows on this processor.
    int MaxNumBlockEntries() const {return(Graph_->MaxNumIndices());};

    //! Returns the maximum number of nonzero entries across all rows on this processor.
    int GlobalMaxNumBlockEntries() const {return(Graph_->GlobalMaxNumIndices());};

    //! Returns the current number of nonzero Block entries in specified local row on this processor.
    int NumMyBlockEntries(int Row) const {return(Graph_->NumMyIndices(Row));};

    //! Returns the allocated number of nonzero Block entries in specified local row on this processor.
    int NumAllocatedMyBlockEntries(int Row) const {return(Graph_->NumAllocatedMyIndices(Row));};

    //! Returns the maximum number of nonzero entries across all block rows on this processor.
    /*! Let ki = the number of nonzero values in the ith block row of the VbrMatrix object.  For example,
        if the ith block row had 5 block entries and the size of each entry was 4-by-4, ki would be 80.
  Then this function return the max over all ki for all row on this processor.
    */
    int MaxNumNonzeros() const {return(Graph_->MaxNumNonzeros());};

    //! Returns the maximum number of nonzero entries across all block rows on \e all processors.
    /*! This function returns the max over all processor of MaxNumNonzeros().
     */
    int GlobalMaxNumNonzeros() const {return(Graph_->GlobalMaxNumNonzeros());};

    //! Returns the index base for row and column indices for this graph.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
  //! Index base for this map.
  int  IndexBase() const {
    if(RowMap().GlobalIndicesInt())
      return (int) IndexBase64();
    throw "Epetra_VbrMatrix::IndexBase: GlobalIndices not int.";
  }
#endif
  long long  IndexBase64() const {return(Graph_->IndexBase64());};

    //! Returns a pointer to the Epetra_CrsGraph object associated with this matrix.
    const Epetra_CrsGraph & Graph() const {return(*Graph_);};

    //! Returns the Epetra_Import object that contains the import operations for distributed operations.
    const Epetra_Import * Importer() const {return(Graph_->Importer());};

    //! Returns the Epetra_Export object that contains the export operations for distributed operations.
    const Epetra_Export * Exporter() const {return(Graph_->Exporter());};

    //! Returns the Epetra_BlockMap object associated with the domain of this matrix operator.
    const Epetra_BlockMap & DomainMap() const {return(Graph_->DomainMap());};

    //! Returns the Epetra_BlockMap object associated with the range of this matrix operator.
    const Epetra_BlockMap & RangeMap() const  {return(Graph_->RangeMap());};

    //! Returns the RowMap object as an Epetra_BlockMap (the Epetra_Map base class) needed for implementing Epetra_RowMatrix.
    const Epetra_BlockMap & RowMap() const {return(Graph_->RowMap());};

    //! Returns the ColMap as an Epetra_BlockMap (the Epetra_Map base class) needed for implementing Epetra_RowMatrix.
    const Epetra_BlockMap & ColMap() const {return(Graph_->ColMap());};

    //! Fills a matrix with rows from a source matrix based on the specified importer.

    //! Returns a pointer to the Epetra_Comm communicator associated with this matrix.
    const Epetra_Comm & Comm() const {return(Graph_->Comm());};

  //@}

  //! @name Local/Global ID methods
  //@{
    //! Returns the local row index for given global row index, returns -1 if no local row for this global row.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int LRID( int GRID_in) const {return(Graph_->LRID(GRID_in));};
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    int LRID( long long GRID_in) const {return(Graph_->LRID(GRID_in));};
#endif

    //! Returns the global row index for give local row index, returns IndexBase-1 if we don't have this local row.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int GRID(int LRID_in) const {return(Graph_->GRID(LRID_in));};
#endif
    long long GRID64( int LRID_in) const {return(Graph_->GRID64(LRID_in));};

    //! Returns the local column index for given global column index, returns -1 if no local column for this global column.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int LCID( int GCID_in) const {return(Graph_->LCID(GCID_in));};
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    int LCID( long long GCID_in) const {return(Graph_->LCID(GCID_in));};
#endif

    //! Returns the global column index for give local column index, returns IndexBase-1 if we don't have this local column.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    int GCID(int LCID_in) const {return(Graph_->GCID(LCID_in));};
#endif
    long long GCID64( int LCID_in) const {return(Graph_->GCID64(LCID_in));};

    //! Returns true if the GRID passed in belongs to the calling processor in this map, otherwise returns false.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    bool  MyGRID(int GRID_in) const {return(Graph_->MyGRID(GRID_in));};
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    bool  MyGRID(long long GRID_in) const {return(Graph_->MyGRID(GRID_in));};
#endif

    //! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
    bool  MyLRID(int LRID_in) const {return(Graph_->MyLRID(LRID_in));};

    //! Returns true if the GCID passed in belongs to the calling processor in this map, otherwise returns false.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    bool  MyGCID(int GCID_in) const {return(Graph_->MyGCID(GCID_in));};
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    bool  MyGCID(long long GCID_in) const {return(Graph_->MyGCID(GCID_in));};
#endif

    //! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
    bool  MyLCID(int LCID_in) const {return(Graph_->MyLCID(LCID_in));};

    //! Returns true of GID is owned by the calling processor, otherwise it returns false.
#ifndef EPETRA_NO_32BIT_GLOBAL_INDICES
    bool MyGlobalBlockRow(int GID) const {return(Graph_->MyGlobalRow(GID));};
#endif
#ifndef EPETRA_NO_64BIT_GLOBAL_INDICES
    bool MyGlobalBlockRow(long long GID) const {return(Graph_->MyGlobalRow(GID));};
#endif
  //@}

  //! @name I/O Methods
  //@{

  //! Print method
  virtual void Print(std::ostream & os) const;
  //@}

  //! @name Additional methods required to support the Epetra_Operator interface
  //@{

    //! Returns a character string describing the operator
    const char * Label() const {return(Epetra_Object::Label());};

    //! If set true, transpose of this operator will be applied.
    /*! This flag allows the transpose of the given operator to be used implicitly.  Setting this flag
        affects only the Apply() and ApplyInverse() methods.  If the implementation of this interface
  does not support transpose use, this method should return a value of -1.

    \param In
     UseTranspose -If true, multiply by the transpose of operator, otherwise just use operator.

    \return Always returns 0.
  */
  int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);};

    //! Returns the result of a Epetra_Operator applied to a Epetra_MultiVector X in Y.
    /*!
    \param In
     X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Out
     Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.
  */
  int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

    //! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
    /*! In this implementation, we use several existing attributes to determine how virtual
        method ApplyInverse() should call the concrete method Solve().  We pass in the UpperTriangular(),
  the Epetra_VbrMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
  if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
  be accounted for when doing a triangular solve.

    \param In
     X - A Epetra_MultiVector of dimension NumVectors to solve for.
    \param Out
     Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.
  */
  int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

    //! Returns true because this class can compute an Inf-norm.
    bool HasNormInf() const {return(true);};

    //! Returns the current UseTranspose setting.
    bool UseTranspose() const {return(UseTranspose_);};

    //! Returns the Epetra_Map object associated with the domain of this matrix operator.
    const Epetra_Map & OperatorDomainMap() const
    {
      if (!HavePointObjects_) GeneratePointObjects();
      if (UseTranspose()) return(*OperatorRangeMap_);
      else return(*OperatorDomainMap_);
    }

    //! Returns the Epetra_Map object associated with the range of this matrix operator.
    const Epetra_Map & OperatorRangeMap() const
    {
      if (!HavePointObjects_) GeneratePointObjects();
      if (UseTranspose()) return(*OperatorDomainMap_);
      else return(*OperatorRangeMap_);
    }

  //@}
  //! @name Additional methods required to implement RowMatrix interface
  //@{

    //! Returns a copy of the specified global row in user-provided arrays.
    /*!
    \param In
           GlobalRow - Global row to extract.
    \param In
     Length - Length of Values and Indices.
    \param Out
     NumEntries - Number of nonzero entries extracted.
    \param Out
     Values - Extracted values for this row.
    \param Out
     Indices - Extracted global column indices for the corresponding values.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractGlobalRowCopy(int GlobalRow, int Length, int & NumEntries, double *Values, int * Indices) const;

    //! Returns a copy of the specified local row in user-provided arrays.
    /*!
    \param In
           MyRow - Local row to extract.
    \param In
     Length - Length of Values and Indices.
    \param Out
     NumEntries - Number of nonzero entries extracted.
    \param Out
     Values - Extracted values for this row.
    \param Out
     Indices - Extracted local column indices for the corresponding values.

    \return Integer error code, set to 0 if successful.
  */
    int ExtractMyRowCopy(int MyRow, int Length, int & NumEntries, double *Values, int * Indices) const;

    //! Return the current number of values stored for the specified local row.
    /*!
    \param In
           MyRow - Local row.
    \param Out
     NumEntries - Number of nonzero values.

    \return Integer error code, set to 0 if successful.
  */
    int NumMyRowEntries(int MyRow, int & NumEntries) const;

    //! Returns the maximum of NumMyRowEntries() over all rows.
    int MaxNumEntries() const;

    //! Map() method inherited from Epetra_DistObject
    const Epetra_BlockMap& Map() const { return Epetra_DistObject::Map(); }

    //! Returns the EpetraMap object associated with the rows of this matrix.
    const Epetra_Map & RowMatrixRowMap() const
      { if (!HavePointObjects_) GeneratePointObjects(); return(*RowMatrixRowMap_); };

    //! Returns the Epetra_Map object associated with columns of this matrix.
    const Epetra_Map & RowMatrixColMap() const
      { if (!HavePointObjects_) GeneratePointObjects(); return(*RowMatrixColMap_); };

    //! Returns the Epetra_Import object that contains the import operations for distributed operations.
    const Epetra_Import * RowMatrixImporter() const
      { if (!HavePointObjects_) GeneratePointObjects(); return(RowMatrixImporter_); };

  //@}

  //! @name Deprecated methods:  These methods still work, but will be removed in a future version
  //@{

    //! Use BlockColMap() instead.
    const Epetra_BlockMap & BlockImportMap() const {return(Graph_->ImportMap());};

    //! Use FillComplete() instead.
    int TransformToLocal();

    //! Use FillComplete(const Epetra_BlockMap& DomainMap, const Epetra_BlockMap& RangeMap) instead.
    int TransformToLocal(const Epetra_BlockMap* DomainMap, const Epetra_BlockMap* RangeMap);
    //@}

 protected:
    void DeleteMemory();
    bool Allocated() const {return(Allocated_);};
    int SetAllocated(bool Flag) {Allocated_ = Flag; return(0);};
    Epetra_SerialDenseMatrix *** Values() const {return(Entries_);};

  // Internal utilities

  int DoMultiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
  int DoSolve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
  void InitializeDefaults();
  int Allocate();
  int BeginInsertValues(int BlockRow, int NumBlockEntries,
      int * BlockIndices, bool IndicesAreLocal);
  int BeginReplaceValues(int BlockRow, int NumBlockEntries,
       int *BlockIndices, bool IndicesAreLocal);
  int BeginSumIntoValues(int BlockRow, int NumBlockEntries,
       int *BlockIndices, bool IndicesAreLocal);
  int SetupForSubmits(int BlockRow, int NumBlockEntries, int * BlockIndices,
          bool IndicesAreLocal, Epetra_CombineMode SubmitMode);
  int EndReplaceSumIntoValues();
  int EndInsertValues();

  int CopyMat(double * A, int LDA, int NumRows, int NumCols,
        double * B, int LDB, bool SumInto) const;
  int BeginExtractBlockRowCopy(int BlockRow, int MaxNumBlockEntries,
             int & RowDim, int & NumBlockEntries,
             int * BlockIndices, int * ColDims,
             bool IndicesAreLocal) const;
  int SetupForExtracts(int BlockRow, int & RowDim, int NumBlockEntries,
           bool ExtractView, bool IndicesAreLocal) const;
  int ExtractBlockDimsCopy(int NumBlockEntries, int * ColDims) const;
  int ExtractBlockRowPointers(int BlockRow, int MaxNumBlockEntries,
            int & RowDim, int & NumBlockEntries,
            int * BlockIndices,
            Epetra_SerialDenseMatrix ** & Values,
            bool IndicesAreLocal) const;
  int BeginExtractBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
             int * & BlockIndices,
             bool IndicesAreLocal) const;
  int CopyMatDiag(double * A, int LDA, int NumRows, int NumCols,
      double * Diagonal) const;
  int ReplaceMatDiag(double * A, int LDA, int NumRows, int NumCols,
         double * Diagonal);

  //This BlockRowMultiply accepts Alpha and Beta arguments. It is called
  //from within the 'solve' methods.
  void BlockRowMultiply(bool TransA, int RowDim, int NumEntries,
      int * BlockIndices, int RowOff,
      int * FirstPointInElementList, int * ElementSizeList,
      double Alpha, Epetra_SerialDenseMatrix** As,
      double ** X, double Beta, double ** Y, int NumVectors) const;

  //This BlockRowMultiply doesn't accept Alpha and Beta arguments, instead it
  //assumes that they are both 1.0. It is called from within the 'Multiply'
  //methods.
  void BlockRowMultiply(bool TransA, int RowDim, int NumEntries,
      int * BlockIndices, int RowOff,
      int * FirstPointInElementList,
      int * ElementSizeList,
      Epetra_SerialDenseMatrix** As,
      double ** X, double ** Y, int NumVectors) const;
  //
  // Assumes Alpha=Beta=1 and works only on storage optimized matrices
  //
  void FastBlockRowMultiply(bool TransA, int RowDim, int NumEntries,
          int * BlockIndices, int RowOff,
          int * FirstPointInElementList,
          int * ElementSizeList,
          Epetra_SerialDenseMatrix** As,
          double ** X, double ** Y, int NumVectors) const;

  int InverseSums(bool DoRows, Epetra_Vector& x) const;
  int Scale(bool DoRows, const Epetra_Vector& x);
  void BlockRowNormInf(int RowDim, int NumEntries,
           Epetra_SerialDenseMatrix** As,
           double * Y) const;
  void BlockRowNormOne(int RowDim, int NumEntries, int * BlockRowIndices,
           Epetra_SerialDenseMatrix** As,
           int * ColFirstPointInElementList, double * x) const;
  void SetStaticGraph(bool Flag) {StaticGraph_ = Flag;};

  int CheckSizes(const Epetra_SrcDistObject& A);

  int CopyAndPermute(const Epetra_SrcDistObject & Source,
                     int NumSameIDs,
                     int NumPermuteIDs,
                     int * PermuteToLIDs,
                     int *PermuteFromLIDs,
                     const Epetra_OffsetIndex * Indexor,
                     Epetra_CombineMode CombineMode = Zero);

  int PackAndPrepare(const Epetra_SrcDistObject & Source,
                     int NumExportIDs,
                     int * ExportLIDs,
                     int & LenExports,
                     char * & Exports,
                     int & SizeOfPacket,
                     int * Sizes,
                     bool & VarSizes,
                     Epetra_Distributor & Distor);

  int UnpackAndCombine(const Epetra_SrcDistObject & Source,
                       int NumImportIDs,
                       int * ImportLIDs,
                       int LenImports,
                       char * Imports,
                       int & SizeOfPacket,
                       Epetra_Distributor & Distor,
                       Epetra_CombineMode CombineMode,
                       const Epetra_OffsetIndex * Indexor);

  //! Sort column entries, row-by-row, in ascending order.
  int SortEntries();

  //! If SortEntries() has been called, this query returns true, otherwise it returns false.
  bool Sorted() const {return(Graph_->Sorted());};

  //! Add entries that have the same column index. Remove redundant entries from list.
  int MergeRedundantEntries();

  //! If MergeRedundantEntries() has been called, this query returns true, otherwise it returns false.
  bool NoRedundancies() const {return(Graph_->NoRedundancies());};

  bool StaticGraph() const {return(StaticGraph_);};

  int GeneratePointObjects() const;
  int BlockMap2PointMap(const Epetra_BlockMap & BlockMap, Epetra_Map * & PointMap) const;
  int UpdateOperatorXY(const Epetra_MultiVector& X, const Epetra_MultiVector& Y) const;

  Epetra_CrsGraph * Graph_;
  bool Allocated_;
  bool StaticGraph_;
  bool UseTranspose_;
  bool constructedWithFilledGraph_;
  bool matrixFillCompleteCalled_;
  bool StorageOptimized_;

  int NumMyBlockRows_;

  Epetra_DataAccess CV_;


  int * NumBlockEntriesPerRow_;
  int * NumAllocatedBlockEntriesPerRow_;
  int ** Indices_;
  int * ElementSizeList_;
  int * FirstPointInElementList_;

  Epetra_SerialDenseMatrix ***Entries_;

  double *All_Values_Orig_;
  double *All_Values_;

  mutable double NormInf_;
  mutable double NormOne_;
  mutable double NormFrob_;

  mutable Epetra_MultiVector * ImportVector_;
  mutable Epetra_MultiVector * ExportVector_;

  // State variables needed for constructing matrix entry-by-entry
  mutable int *TempRowDims_;
  mutable Epetra_SerialDenseMatrix **TempEntries_;
  mutable int LenTemps_;
  mutable int CurBlockRow_;
  mutable int CurNumBlockEntries_;
  mutable int * CurBlockIndices_;
  mutable int CurEntry_;
  mutable bool CurIndicesAreLocal_;
  mutable Epetra_CombineMode CurSubmitMode_;

  // State variables needed for extracting entries
  mutable int CurExtractBlockRow_;
  mutable int CurExtractEntry_;
  mutable int CurExtractNumBlockEntries_;
  mutable bool CurExtractIndicesAreLocal_;
  mutable bool CurExtractView_;
  mutable int CurRowDim_;

  // State variable for extracting block diagonal entries
  mutable int CurBlockDiag_;

  // Maps and importer that support the Epetra_RowMatrix interface
  mutable Epetra_Map * RowMatrixRowMap_;
  mutable Epetra_Map * RowMatrixColMap_;
  mutable Epetra_Import * RowMatrixImporter_;

  // Maps that support the Epetra_Operator interface
  mutable Epetra_Map * OperatorDomainMap_;
  mutable Epetra_Map * OperatorRangeMap_;
  mutable Epetra_MultiVector * OperatorX_;
  mutable Epetra_MultiVector * OperatorY_;

  // bool to indicate if above four point maps and importer have already been created
  mutable bool HavePointObjects_;

  bool squareFillCompleteCalled_;
};

#endif /* EPETRA_VBRMATRIX_H */