This file is indexed.

/usr/include/trilinos/EpetraExt_MatrixMatrix.h is in libtrilinos-epetraext-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//@HEADER
// ***********************************************************************
//
//     EpetraExt: Epetra Extended - Linear Algebra Services Package
//                 Copyright (2011) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
#ifndef EPETRAEXT_MATRIXMATRIX_H
#define EPETRAEXT_MATRIXMATRIX_H

#include <EpetraExt_ConfigDefs.h>

class Epetra_CrsMatrix;
class Epetra_Map;
class Epetra_Vector;

#ifdef HAVE_VECTOR
#include <vector>
#endif

namespace EpetraExt {
  class CrsMatrixStruct;


  /** Collection of matrix-matrix operations. This class basically
      functions as a namespace, containing only static methods.
      See the program epetraext/test/MatrixMatrix/cxx_main.cpp for
      a usage example.
   */
class MatrixMatrix {

  public:
    /** destructor */
    virtual ~MatrixMatrix(){}

    /** Given Epetra_CrsMatrix objects A, B and C, form the product C = A*B.
	In a parallel setting, A and B need not have matching distributions,
	but C needs to have the same row-map as A.

    @param A Input, must already have had 'FillComplete()' called.
    @param transposeA Input, whether to use transpose of matrix A.
    @param B Input, must already have had 'FillComplete()' called.
    @param transposeB Input, whether to use transpose of matrix B.
    @param C Result. On entry to this method, it doesn't matter whether
             FillComplete() has already been called on C or not. If it has,
	     then C's graph must already contain all nonzero locations that
	     will be produced when forming the product A*B. On exit,
	     C.FillComplete() will have been called, unless the last argument
             to this function is specified to be false.
    @param call_FillComplete_on_result Optional argument, defaults to true.
           Power users may specify this argument to be false if they *DON'T*
           want this function to call C.FillComplete. (It is often useful
           to allow this function to call C.FillComplete, in cases where
           one or both of the input matrices are rectangular and it is not
           trivial to know which maps to use for the domain- and range-maps.)
    @param keep_all_hard_zeros Optional argument, defaults to false.
           If true, Multiply, keeps all entries in C corresponding to hard zeros.  
	   If false, the following happens by case:
	   A*B^T, A^T*B^T         - Does not store entries caused by hard zeros in C.
	   A^T*B (unoptimized)    - Hard zeros are always stored (this option has no effect)
	   A*B, A^T*B (optimized) - Hard zeros in corresponding to hard zeros in A are not stored,
	   There are certain cases involving reuse of C, where this can be useful.	  

    @return error-code, 0 if successful. non-zero returns may result if A or
             B are not already Filled, or if errors occur in putting values
             into C, etc.
     */
    static int Multiply(const Epetra_CrsMatrix& A,
			bool transposeA,
			const Epetra_CrsMatrix& B,
			bool transposeB,
			Epetra_CrsMatrix& C,
                        bool call_FillComplete_on_result=true,
			bool keep_all_hard_zeros=false);

    /** Given Epetra_CrsMatrix objects A and B, form the sum B = a*A + b*B

    @param A Input, must already have had 'FillComplete()' called.
    @param transposeA Input, whether to use transpose of matrix A.
    @param scalarA Input, scalar multiplier for matrix A.
    @param B Result. On entry to this method, it doesn't matter whether
             FillComplete() has already been called on B or not. If it has,
	     then B's graph must already contain all nonzero locations that
	     will be produced when forming the sum.
    @param scalarB Input, scalar multiplier for matrix B.

    @return error-code, 0 if successful. non-zero returns may result if A is
             not already Filled, or if errors occur in putting values
             into B, etc.
     */
    static int Add(const Epetra_CrsMatrix& A,
                   bool transposeA,
                   double scalarA,
                   Epetra_CrsMatrix& B,
                   double scalarB);

    /** Given Epetra_CrsMatrix objects A and B, form the sum C = a*A + b*B

    @param A Input, must already have had 'FillComplete()' called.
    @param transposeA Input, whether to use transpose of matrix A.
    @param scalarA Input, scalar multiplier for matrix A.
    @param B Input, must already have had 'FillComplete()' called.
    @param transposeB Input, whether to use transpose of matrix B.
    @param scalarB Input, scalar multiplier for matrix B.
    @param C Result. On entry to this method, C can be NULL or a pointer
             to an unfilled or filled matrix. If C is NULL then a new
             object is allocated and must be deleted by the user.
             If C is not NULL and FillComplete has already
             been called then the sparsity pattern is assumed to be fixed
             and compatible  with the sparsity of A+B. If FillComplete has
             not been called then the sum is completed and the function
             returns without calling FillComplete on C.

    @return error-code, 0 if successful. non-zero returns may result if A or is
             not already Filled, or if errors occur in putting values
             into C, etc.
     */
    static int Add(const Epetra_CrsMatrix& A,
                   bool transposeA,
                   double scalarA,
                   const Epetra_CrsMatrix & B,
                   bool transposeB,
                   double scalarB,
                   Epetra_CrsMatrix * & C);


  /** Given Epetra_CrsMatrix objects A, B and C, and Epetra_Vector Dinv, form the product C = (I-omega * Dinv A)*B
	In a parallel setting, A and B need not have matching distributions,
	but C needs to have the same row-map as A.

    @param omega Input, scalar multiplier for Dinverse A
    @param Dinv Input, Epetra_Vector representing a diagonal matrix, must match A's RowMap
    @param A Input, must already have had 'FillComplete()' called.
    @param B Input, must already have had 'FillComplete()' called.
    @param C Result. On entry to this method, it doesn't matter whether
             FillComplete() has already been called on C or not. If it has,
	     then C's graph must already contain all nonzero locations that
	     will be produced when forming the product A*B. On exit,
	     C.FillComplete() will have been called, unless the last argument
             to this function is specified to be false.
    @param call_FillComplete_on_result Optional argument, defaults to true.
           Power users may specify this argument to be false if they *DON'T*
           want this function to call C.FillComplete. (It is often useful
           to allow this function to call C.FillComplete, in cases where
           one or both of the input matrices are rectangular and it is not
           trivial to know which maps to use for the domain- and range-maps.)

    @return error-code, 0 if successful. non-zero returns may result if A or
             B are not already Filled, or if errors occur in putting values
             into C, etc.
     */
    static int Jacobi(double omega,
		      const Epetra_Vector & Dinv,
		      const Epetra_CrsMatrix& A,
		      const Epetra_CrsMatrix& B,
		      Epetra_CrsMatrix& C,
		      bool call_FillComplete_on_result=true);

 private:
    template<typename int_type>
    static int Tmult_A_B(const Epetra_CrsMatrix & A,
		 CrsMatrixStruct & Aview,
		 const Epetra_CrsMatrix & B,
		 CrsMatrixStruct& Bview,
		 Epetra_CrsMatrix& C,
		 bool call_FillComplete_on_result,
		 bool keep_all_hard_zeros);

    static int mult_A_B(const Epetra_CrsMatrix & A,
		 CrsMatrixStruct & Aview,
		 const Epetra_CrsMatrix & B,
		 CrsMatrixStruct& Bview,
		 Epetra_CrsMatrix& C,
		 bool call_FillComplete_on_result,
		 bool keep_all_hard_zeros);

    template<typename int_type>
    static int Tmult_AT_B_newmatrix(const CrsMatrixStruct & Atransview, 
				    const CrsMatrixStruct & Bview, 
				    Epetra_CrsMatrix & C,
				    bool keep_all_hard_zeros);

    static int mult_AT_B_newmatrix(const CrsMatrixStruct & Atransview, 
				   const CrsMatrixStruct & Bview, 
				   Epetra_CrsMatrix & C,
				   bool keep_all_hard_zeros);

    template<typename int_type>
    static int TMultiply(const Epetra_CrsMatrix& A,
			bool transposeA,
			const Epetra_CrsMatrix& B,
			bool transposeB,
			Epetra_CrsMatrix& C,
			bool call_FillComplete_on_result,
			bool keep_all_hard_zeros);

    template<typename int_type>
    static int TAdd(const Epetra_CrsMatrix& A,
                   bool transposeA,
                   double scalarA,
                   Epetra_CrsMatrix& B,
                   double scalarB);

    template<typename int_type>
    static int TAdd(const Epetra_CrsMatrix& A,
                      bool transposeA,
                      double scalarA,
                      const Epetra_CrsMatrix & B,
                      bool transposeB,
                      double scalarB,
                      Epetra_CrsMatrix * & C);

    template<typename int_type>
    static int Tjacobi_A_B(double omega,
			   const Epetra_Vector & Dinv,
			   const Epetra_CrsMatrix & A,
			   CrsMatrixStruct & Aview,
			   const Epetra_CrsMatrix & B,
			   CrsMatrixStruct& Bview,
			   Epetra_CrsMatrix& C,
			   bool call_FillComplete_on_result);
    
    static int jacobi_A_B(double omega,
			  const Epetra_Vector & Dinv,
			  const Epetra_CrsMatrix & A,
			  CrsMatrixStruct & Aview,
			  const Epetra_CrsMatrix & B,
			  CrsMatrixStruct& Bview,
			  Epetra_CrsMatrix& C,
			  bool call_FillComplete_on_result);

    template<typename int_type>
    static int TJacobi(double omega,
		       const Epetra_Vector & Dinv,
		       const Epetra_CrsMatrix& A,
		       const Epetra_CrsMatrix& B,
		       Epetra_CrsMatrix& C,
		       bool call_FillComplete_on_result);
    

};//class MatrixMatrix


/**
 *Method for internal use... sparsedot forms a dot-product between two
 *sparsely-populated 'vectors'.
 *Important assumption: assumes the indices in u_ind and v_ind are sorted.
 */
 template<typename int_type>
 double sparsedot(double* u, int_type* u_ind, int u_len,
		  double* v, int_type* v_ind, int v_len);
}//namespace EpetraExt

#endif