This file is indexed.

/usr/include/trilinos/Ifpack2_AdditiveSchwarz_decl.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

/// \file Ifpack2_AdditiveSchwarz_decl.hpp
/// \brief Declaration of Ifpack2::AdditiveSchwarz, which implements
///   additive Schwarz preconditioning with an arbitrary subdomain
///   solver.
///
/// If you want to use Ifpack2::AdditiveSchwarz directly in your
/// application, please include the automatically generated header
/// file Ifpack2_AdditiveSchwarz.hpp.

#ifndef IFPACK2_ADDITIVESCHWARZ_DECL_HPP
#define IFPACK2_ADDITIVESCHWARZ_DECL_HPP

#include "Ifpack2_ConfigDefs.hpp"
#include "Ifpack2_Preconditioner.hpp"
#include "Ifpack2_Details_CanChangeMatrix.hpp"
#include "Ifpack2_Details_NestedPreconditioner.hpp"
#include "Tpetra_Map.hpp"
#include "Tpetra_MultiVector.hpp"
#include "Tpetra_RowMatrix.hpp"
#include <type_traits>

namespace Trilinos {
namespace Details {
template<class MV, class OP, class NormType>
class LinearSolver; // forward declaration
} // namespace Details
} // namespace Trilinos


namespace Ifpack2 {

/** \class AdditiveSchwarz
\brief Additive Schwarz domain decomposition for Tpetra sparse matrices
\tparam MatrixType A specialization of Tpetra::RowMatrix
\tparam LocalInverseType The type of the solver for the local
  (subdomain) problem.  DO NOT USE ANY TYPE HERE OTHER THAN
  Ifpack2::Preconditioner.  The default is perfectly fine.  This
  template parameter only exists for backwards compatibility.

\section Ifpack2_AdditiveSchwarz_Summary Summary

This class implements Additive Schwarz domain decomposition, with
optional overlap.  It operates on a given Tpetra::RowMatrix.  Each
subdomain corresponds to exactly one MPI process in the given matrix's
MPI communicator.  For nonoverlapping domain decomposition
<i>within</i> an MPI process, please use BlockRelaxation.

This class is a subclass of Tpetra::Operator, like all other
subclasses of Preconditioner.  Thus, the apply() method applies the
preconditioner to a multivector.

\section Ifpack2_AdditiveSchwarz_Alg Algorithm

One-level overlapping domain decomposition preconditioners use local
solvers of Dirichlet type. This means that the inverse of the local
matrix (possibly with overlap) is applied to the residual to be
preconditioned.

The preconditioner can be written as:
\f[
P_{AS}^{-1} = \sum_{i=1}^M P_i A_i^{-1} R_i,
\f]
where \f$M\f$ is the number of subdomains (in this case, the number of
(MPI) processes in the computation), \f$R_i\f$ is an operator that
restricts the global vector to the vector lying on subdomain \f$i\f$,
\f$P_i\f$ is the prolongator operator, and
\f[
A_i = R_i A P_i.
\f]

Constructing a Schwarz preconditioner takes two steps:
<ol>
<li> Definition of the restriction and prolongation operators </li>
<li> Definition of a solver for linear systems involving \f$A_i\f$ </li>
</ol>

The definition of the restriction and prolongation operators \f$R_i\f$
and \f$R_i^T\f$ depends on the level of overlap.  If the overlap level
is zero (no overlap), their implementation is trivial; \f$R_i\f$ will
return all the local components.  For nonzero overlap, Tpetra's data
redistribution facilities (Tpetra::Import) will be used to bring in
the required data.  Users may control how these data are combined with
existing data, by setting the combine mode parameter.  Valid combine
modes include "ADD", "INSERT", "REPLACE", "ABSMAX", and "ZERO".  These
correspond to the valid values of Tpetra::CombineMode.

To solve linear systems involving \f$A_i\f$ on each subdomain, the
user can adopt any subclass of Preconditioner.  Users must set this at
run time by specifying the inner solver in the ParameterList, or by
setting the inner solver instance explicitly.

The local matrix \f$A_i\f$ can be filtered, to eliminate singletons,
and reordered. At the present time, the only available reordering
algorithm is RCM (reverse Cuthill-Mckee). Other orderings
will be supported by the Zoltan2 package in the future.

\section Additive Schwarz algorithms supported

The default is Restricted Additive Schwarz
(RAS), which uses CombineMode Zero, see discussion below. Note that RAS
does not preserve symmetry, so is generally not suitable as
a preconditioner for CG.
Classical Additive Schwarz is supported by setting the
CombineMode to Add.

\section Ifpack2_AdditiveSchwarz_CombineMode Combine modes

AdditiveSchwarz supports different <i>combine modes</i>.  These are
rules for combining overlapping entries from the subdomain solves'
results, to form the final additive Schwarz result.  The two modes
that users will likely find most useful are "Add" and "Zero".  "Add"
sums overlapping results, and "Zero" ignores them.

The Zero combine mode can be a bit confusing.  It helps to compare the
Add combine mode without overlap, to the Zero combine mode with overlap.
Consider the following 4 x 4 linear system \f$Ax = b\f$, where
\f[
A =
\left(
\begin{array}{rrrr}
  2 & -1 &  0 &  0 \\
 -1 &  2 & -1 &  0 \\
  0 & -1 &  2 & -1 \\
  0 &  0 & -1 &  2
\end{array} \right)
\f]
and
\f[
b =
\left(
\begin{array}{rrrr}
  1 \\
  4 \\
  9 \\
 16
\end{array} \right)
.
\f]
Suppose that we give the first two rows of A and b to Process 0, and
the last two rows of A and b to Process 1.

If we use additive Schwarz without overlap, and use the Add
combine mode, then each process must solve a linear system with the
following 2 x 2 matrix:
\f[
A_{local} =
\left(
\begin{array}{rr}
  2 & -1 \\
 -1 &  2
\end{array} \right).
\f]
The inverse of this matrix is
\f[
A_{local}^{-1} =
\frac{1}{3} \cdot
\left(
\begin{array}{rr}
  2 &  1 \\
  1 &  2
\end{array} \right).
\f]

Process 0 gets the right-hand side \f$(1, 4)^T\f$ and thus the local
solution \f$(2, 3)^T\f$.  Process 1 gets the right-hand side \f$(9,
16)^T\f$ and thus the local solution \f$(34/3, 41/3)^T\f$.  The Add
combine mode sums entries corresponding to overlap, but in this case
there is no overlap, so we just concatenate the local results.  Thus,
the result of applying additive Schwarz once is
\f[
x_{Add} =
\begin{array}{r}
   2 \\
   3 \\
34/3 \\
41/3
\end{array}.
\f]

If we introduce one level of overlap on each of these processes, and
use the Zero combine mode with additive Schwarz, then each process has
to solve a linear system with the following 3 x 3 matrix:
\f[
A_{local} =
\left(
\begin{array}{rrr}
  2 & -1 &  0 \\
 -1 &  2 & -1 \\
  0 & -1 &  2
\end{array} \right).
\f]
The inverse of this matrix is
\f[
A_{local}^{-1} =
\frac{1}{4} \cdot
\left(
\begin{array}{rrr}
  3 &  2 &  1 \\
  2 &  4 &  2 \\
  1 &  2 &  3
\end{array} \right).
\f]
Process 0 gets the right-hand side \f$(1, 4, 9)^T\f$ and thus the
local solution \f$(5, 9, 9)^T\f$.  Process 1 gets the right-hand side
\f$(4, 9, 16)^T\f$ and thus the local solution \f$(23/2, 19,
35/2)^T\f$.  The Zero combine mode ignores "remote entries," so that
the result of applying additive Schwarz once is
\f[
x_{Zero} =
\begin{array}{r}
   5 \\
   9 \\
  19 \\
35/2
\end{array}.
\f]

Even though both of the above examples combine the local results in
the same way, Zero produces a different final result than Add, because
the Zero example uses overlap 1, whereas the Add example uses overlap 0.

\section Ifpack2_AdditiveSchwarz_subdomain Subdomain solver

This class gives you two ways to specify the subdomain solver.  First,
you may set the "subdomain solver name" or "inner preconditioner name"
parameters in the input to setParameters() or setParameterList().
Second, you may construct the subdomain solver yourself, as an
Ifpack2::Preconditioner instance, and give it to setInnerPreconditioner().

Please refer to the documentation of setParameters for a complete
discussion of subdomain solvers and their parameters.
*/
template<class MatrixType,
         class LocalInverseType =
         Preconditioner<typename MatrixType::scalar_type,
                        typename MatrixType::local_ordinal_type,
                        typename MatrixType::global_ordinal_type,
                        typename MatrixType::node_type> >
class AdditiveSchwarz :
    virtual public Preconditioner<typename MatrixType::scalar_type,
                                  typename MatrixType::local_ordinal_type,
                                  typename MatrixType::global_ordinal_type,
                                  typename MatrixType::node_type>,
    virtual public Details::CanChangeMatrix<Tpetra::RowMatrix<typename MatrixType::scalar_type,
                                                              typename MatrixType::local_ordinal_type,
                                                              typename MatrixType::global_ordinal_type,
                                                              typename MatrixType::node_type> >,
    virtual public Details::NestedPreconditioner<Preconditioner<typename MatrixType::scalar_type,
                                                                typename MatrixType::local_ordinal_type,
                                                                typename MatrixType::global_ordinal_type,
                                                                typename MatrixType::node_type> >
{
public:
  static_assert(std::is_same<LocalInverseType,
                  Preconditioner<typename MatrixType::scalar_type,
                    typename MatrixType::local_ordinal_type,
                    typename MatrixType::global_ordinal_type,
                    typename MatrixType::node_type> >::value, "Ifpack2::AdditiveSchwarz: You are not allowed to use nondefault values for the LocalInverseType template parameter.  Please stop specifying this explicitly.  The default template parameter is perfectly fine.");

  static_assert(std::is_same<MatrixType,
                  Tpetra::RowMatrix<typename MatrixType::scalar_type,
                    typename MatrixType::local_ordinal_type,
                    typename MatrixType::global_ordinal_type,
                    typename MatrixType::node_type> >::value, "Ifpack2::AdditiveSchwarz: Please use MatrixType = Tpetra::RowMatrix instead of MatrixType = Tpetra::CrsMatrix.  Don't worry, AdditiveSchwarz's constructor can take either type of matrix; it does a dynamic cast if necessary inside.  Restricting the set of allowed types here will improve build times and reduce library and executable sizes.");

  //! \name Typedefs
  //@{

  //! The type of the entries of the input MatrixType.
  typedef typename MatrixType::scalar_type scalar_type;

  //! The type of local indices in the input MatrixType.
  typedef typename MatrixType::local_ordinal_type local_ordinal_type;

  //! The type of global indices in the input MatrixType.
  typedef typename MatrixType::global_ordinal_type global_ordinal_type;

  //! The Node type used by the input MatrixType.
  typedef typename MatrixType::node_type node_type;

  //! The type of the magnitude (absolute value) of a matrix entry.
  typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;

  //! The Tpetra::RowMatrix specialization matching MatrixType.
  typedef Tpetra::RowMatrix<scalar_type,
                            local_ordinal_type,
                            global_ordinal_type,
                            node_type> row_matrix_type;

  //@}
  // \name Constructors and destructor
  //@{

  /// \brief Constructor that takes a matrix.
  ///
  /// \param A [in] The matrix to be preconditioned.
  AdditiveSchwarz (const Teuchos::RCP<const row_matrix_type>& A);

  /// \brief Constructor that takes a matrix and the level of overlap.
  ///
  /// \warning This version of the constructor is DEPRECATED, because
  ///   the single-argument version suffices; users may specify the
  ///   overlap level via the "schwarz: overlap level" parameter.
  ///
  /// \param A [in] The matrix to be preconditioned.
  /// \param overlapLevel [in] The level of overlap.  Must be
  ///   nonnegative.  Zero means no overlap.
  AdditiveSchwarz (const Teuchos::RCP<const row_matrix_type>& A,
                   const int overlapLevel);

  //! Destructor
  virtual ~AdditiveSchwarz();

  //@}
  //! \name Implementation of Tpetra::Operator
  //@{

  //! The domain Map of this operator.
  virtual Teuchos::RCP<const Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type> > getDomainMap() const;

  //! The range Map of this operator.
  virtual Teuchos::RCP<const Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type> > getRangeMap() const;

  //! Apply the preconditioner to X, putting the result in Y.
  virtual void
  apply (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> &X,
         Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> &Y,
         Teuchos::ETransp mode = Teuchos::NO_TRANS,
         scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one(),
         scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero()) const;

  //@}
  //! \name Implementation of Ifpack2::Details::NestedPreconditioner
  //@{

  /// \brief Set the inner preconditioner.
  ///
  /// Most users do not need to call this method.  Factory will handle
  /// calling this method if necessary.  One case in which users might
  /// need to call this method, is if they implement their own
  /// subdomain solver as a subclass of Preconditioner, and want to
  /// use that subdomain solver in this class.
  ///
  /// \param innerPrec [in/out] The inner preconditioner.  Its matrix
  ///   (if it has one) may be replaced by a matrix specified by the
  ///   outer (this) preconditioner.
  ///
  /// \warning CYCLIC DEPENDENCIES ARE FORBIDDEN.  You may NOT give
  ///   this object (<tt>*this</tt>) to itself as an inner solver, or
  ///   otherwise set up a cyclic dependency between preconditioner
  ///   instances.  You MAY use an inner solver of the same TYPE as
  ///   this object (as long as this makes sense mathematically), but
  ///   it must be a different instance of that type.
  ///
  /// It does not make sense to nest different instances of
  /// AdditiveSchwarz, since it currently only sets up one subdomain
  /// per MPI process in the input matrix's communicator.  Thus, if
  /// you were to use another AdditiveSchwarz instance as the inner
  /// preconditioner for AdditiveSchwarz, it would not do anything,
  /// since the inner preconditioner's input matrix would only have
  /// one process in its communicator.  (AdditiveSchwarz does nothing
  /// in that case.)
  ///
  /// \pre <tt>&*innerPrec != this</tt>.
  ///
  /// This method has collective semantics, because it may call
  /// initialize() or compute() on \c innerPrec, in order to
  /// synchronize the inner preconditioner's state with that of the
  /// AdditiveSchwarz instance.
  virtual void
  setInnerPreconditioner (const Teuchos::RCP<Preconditioner<scalar_type,
                                                            local_ordinal_type,
                                                            global_ordinal_type,
                                                            node_type> >& innerPrec);

  //@}
  //! \name Implementation of Ifpack2::Details::CanChangeMatrix
  //@{

  /// \brief Change the matrix to be preconditioned.
  ///
  /// \param[in] A The new matrix.
  ///
  /// \post <tt>! isInitialized ()</tt>
  /// \post <tt>! isComputed ()</tt>
  ///
  /// Calling this method resets the preconditioner's state.  After
  /// calling this method with a nonnull input, you must first call
  /// initialize() and compute() (in that order) before you may call
  /// apply().
  ///
  /// You may call this method with a null input.  If A is null, then
  /// you may not call initialize() or compute() until you first call
  /// this method again with a nonnull input.  This method invalidates
  /// any previous factorization whether or not A is null, so calling
  /// setMatrix() with a null input is one way to clear the
  /// preconditioner's state (and free any memory that it may be
  /// using).
  ///
  /// The new matrix A need not necessarily have the same Maps or even
  /// the same communicator as the original matrix.
  virtual void
  setMatrix (const Teuchos::RCP<const row_matrix_type>& A);
  //@}

  //! The input matrix.
  virtual Teuchos::RCP<const row_matrix_type> getMatrix() const;

  /// \brief Set the preconditioner's parameters.
  ///
  /// \param plist [in] List of parameters.
  ///
  /// This version of the method takes a const list, as required by
  /// the Preconditioner interface.  setParameterList() takes a
  /// nonconst pointer to a list, in order to match the
  /// Teuchos::ParameterListAcceptor interface.
  ///
  /// Both this method and setParameterList() have "delta" behavior.
  /// That is, if called twice with two different lists, any
  /// unspecified parameters in the new list retain their values in
  /// the old list.
  ///
  /// In many cases, calling this method may require calling
  /// initialize() and compute() to recompute the preconditioner.
  ///
  /// Accepted parameters include the following:
  ///   - "inner preconditioner name" or "subdomain solver name" or
  ///     "schwarz: subdomain solver name" or "schwarz: inner
  ///     preconditioner name" (\c std::string): the name of the
  ///     subdomain solver.  See discussion below.
  ///   - "inner preconditioner parameters" or "subdomain solver
  ///     parameters" or "schwarz: subdomain solver parameters" or
  ///     "schwarz: inner preconditioner parameters" (sublist):
  ///     parameters for the subdomain solver.  If not provided, the
  ///     subdomain solver will use its specific default parameters.
  ///     See discussion below.
  ///   - "schwarz: combine mode" (\c std::string): The rule for
  ///     combining incoming data with existing data in overlap
  ///     regions.  Valid values include "ADD", "INSERT", "REPLACE",
  ///     "ABSMAX", and "ZERO".  These correspond to the valid values
  ///     of Tpetra::CombineMode.  The default combine mode is "ZERO",
  ///     meaning that overlapping incoming entries from different
  ///     processes are not combined.  (See the class documentation
  ///     for an explanation and example of the "ZERO" vs. "ADD"
  ///     combine modes.)
  ///   - "schwarz: overlap level" (\c int): The level of overlap.
  ///     The default is zero, meaning no overlap.
  ///   - "schwarz: use reordering" (\c bool): Whether to use Zoltan2
  ///     to do reordering.  If true, then Trilinos must have been
  ///     built with Zoltan2 and Xpetra enabled.  Default is false.
  ///   - "schwarz: subdomain id" (\c int): This option does not
  ///     currently work.
  ///   - "schwarz: filter singletons" (\c bool): If true, exclude
  ///     rows with just a single entry on the calling process.
  ///     Default is false.
  ///   - "schwarz: num iterations" (\c int): Numter of iterations to
  ///     perform. Default is 1.
  ///
  /// \section Ifpack2_AS_setParams_subd Subdomain solver parameters
  ///
  /// \subsection Ifpack2_AS_setParams_subd_dflt Default subdomain solver
  ///
  /// This class lets users specify any subdomain solver they want, by
  /// calling setInnerPreconditioner().  However, users may instead
  /// specify the subdomain solver by setting the "inner
  /// preconditioner name" parameter (or any of its aliases).  If they
  /// choose to do so, they may use any Ifpack2 preconditioner.  These
  /// include but are not necessarily limited to the following:
  ///
  ///   - "AMESOS2": Use Amesos2's interface to sparse direct solvers.
  ///     This is only allowed if Trilinos was built with the Amesos2
  ///     package enabled.  Otherwise, AdditiveSchwarz will throw an
  ///     exception with an informative message.
  ///   - "CHEBYSHEV": Chebyshev iteration, implemented with
  ///     Ifpack::Chebyshev.  WARNING: This currently only works if
  ///     the subdomain problem is real and symmetric positive
  ///     definite.
  ///   - "DENSE" or "LAPACK": Convert the subdomain matrix to a dense
  ///     matrix, and use LAPACK's LU factorization with partial
  ///     pivoting to factor it and solve subdomain problems.
  ///     WARNING: This will take a lot of memory if the subdomain
  ///     problem is large!
  ///   - "DIAGONAL": Diagonal scaling, implemented through
  ///     Ifpack2::Diagonal
  ///   - "ILUT": ILUT (incomplete LU with threshold), implemented
  ///     with Ifpack2::ILUT
  ///   - "RELAXATION": Point relaxation (Jacobi, Gauss-Seidel, or
  ///     symmetric Gauss-Seidel), implemented with
  ///     Ifpack2::Relaxation
  ///   - "RILUK": ILU(k) (incomplete LU with fill level k),
  ///     implemented with Ifpack2::RILUK
  ///
  /// This name <i>need not necessarily</i> correspond with
  /// <tt>LocalInverseType</tt>.  If the user does <i>not</i> specify
  /// this parameter, the following procedure specifies the default:
  /// <ol>
  /// <li> If <tt>LocalInverseType</tt> is just Preconditioner, then
  ///      this class uses a default, which is currently "ILUT". </li>
  /// <li> If <tt>LocalInverseType</tt> is a concrete Preconditioner
  ///      subclass, and if that subclass is in the above supported
  ///      list of subdomain solver types, then this class uses that
  ///      subclass as the subdomain solver. </li>
  /// <li> If <tt>LocalInverseType</tt> is a concrete Preconditioner
  ///      subclass, and if that subclass is <i>not</i> in the above
  ///      supported list of subdomain solver types, then users have
  ///      one of two options, both of which we discuss below. </li>
  /// </ol>
  ///
  /// The subdomain solver names "INVALID" and "CUSTOM" are reserved
  /// for internal use.
  ///
  /// \subsection Ifpack2_AS_setParams_subd_arb Arbitrary subdomain solvers
  ///
  /// AdditiveSchwarz only knows, on its own, how to create
  /// "non-nested" preconditioners as inner preconditioners (i.e.,
  /// subdomain solvers).  It can't create nested preconditioners
  /// (e.g., AdditiveSchwarz and SupportGraph) on its own as inner
  /// preconditioners, and it doesn't know how to create arbitrary
  /// subclasses of Ifpack2::Preconditioner unless Ifpack2::Factory
  /// knows how to create them.
  ///
  /// This leaves users two options in order to have any
  /// preconditioner as AdditiveSchwarz's inner preconditioner:
  /// <ol>
  /// <li> If Ifpack2::Factory knows how to create a preconditioner
  ///      whose string name is \c prec, then users who don't want to
  ///      create the inner preconditioner themselves must create
  ///      AdditiveSchwarz using Factory, <i>not</i> by invoking
  ///      AdditiveSchwarz's constructor themselves.  Factory will set
  ///      up the inner preconditioner for them before it returns the
  ///      AdditiveSchwarz instance. </li>
  /// <li> If Ifpack2::Factory does <i>not</i> know how to create a
  ///      preconditioner \c prec (for example, if it is not even
  ///      implemented in Ifpack2), then users must create the inner
  ///      preconditioner instance themselves, and give it to
  ///      AdditiveSchwarz using setInnerPreconditioner.  In this
  ///      case, AdditiveSchwarz's ParameterList must not specify the
  ///      inner preconditioner's name. </li>
  /// </ol>
  ///
  /// \subsection Ifpack2_AS_setParams_subd_inner Subdomain solver parameters and setInnerPreconditioner
  ///
  /// Users are responsible for ensuring that the parameters they
  /// provide to setParameters() are up to date.  For example, if the
  /// users first set an inner preconditioner using
  /// setInnerPreconditioner(), and then call setParameters() with the
  /// "inner preconditioner name" parameter set, AdditiveSchwarz will
  /// get rid of the users' inner preconditioner and attempt to create
  /// a new inner preconditioner itself.  Remember that
  /// AdditiveSchwarz's ParameterList has "delta" (relative)
  /// semantics!  If you don't specify a parameter, the current state
  /// is not changed.
  ///
  /// If you specify a sublist of parameters to give to the subdomain
  /// solver, setInnerPreconditioner() does <i>not</i> pass that
  /// sublist to its argument.  This is because we presume that if you
  /// call setInnerPreconditioner(), the input subdomain solver
  /// probably has a type that AdditiveSchwarz does not know how to
  /// create by itself, so the existing parameter list cannot apply.
  ///
  /// On the other hand, if, after calling setInnerPreconditioner(),
  /// you then call setParameters(), we <i>do</i> pass any provided
  /// sublist of subdomain solver parameters to the inner solver.  If
  /// no such sublist was provided, we do <i>not</i> call
  /// setParameters() on the inner solver.
  ///
  /// The reason the last sentence matters is because not every inner
  /// solver necessarily has "delta" semantics for setParameters().
  /// "Delta" or "relative" semantics means that an empty input
  /// ParameterList doesn't change any existing parameters.
  /// "Non-delta" or "absolute" semantics means that an empty input
  /// ParameterList causes all parameters to be set to their default
  /// values.  (The difference matters if the user has called
  /// setParameters() before on the subdomain solver, with nondefault
  /// values.)  If the user didn't specify a sublist for the inner
  /// solver, we assume that the user doesn't want to change the inner
  /// solver's parameters.
  virtual void setParameters (const Teuchos::ParameterList& plist);

  /// \brief Set the preconditioner's parameters.
  ///
  /// This version of the method takes a nonconst pointer to a list,
  /// in order to match the Teuchos::ParameterListAcceptor interface.
  /// setParameters() takes a const list, as required by the
  /// Preconditioner interface.
  ///
  /// Both this method and setParameterList() have "delta" behavior.
  /// That is, if called twice with two different lists, any
  /// unspecified parameters in the new list retain their values in
  /// the old list.
  ///
  /// In many cases, calling this method may require calling
  /// initialize() and compute() to recompute the preconditioner.
  ///
  /// \param plist [in/out] On input: List of parameters, or
  ///   Teuchos::null (meaning "do not change the current parameter
  ///   values").  On output: If nonnull, any missing parameters are
  ///   filled in with their current values (or their default values,
  ///   if they have not yet been set).
  ///
  /// See the documentation of setParameters() for a list of the
  /// parameters this method accepts, and their default values.
  void
  setParameterList (const Teuchos::RCP<Teuchos::ParameterList>& plist);

  /// \brief Get a list of the preconditioner's default parameters.
  ///
  /// See the documentation of setParameters() for a list of the
  /// parameters that AdditiveSchwarz accepts.
  Teuchos::RCP<const Teuchos::ParameterList> getValidParameters () const;

  //! Computes all (graph-related) data necessary to initialize the preconditioner.
  virtual void initialize();

  //! Returns true if the  preconditioner has been successfully initialized, false otherwise.
  virtual bool isInitialized() const;

  //! Computes all (coefficient) data necessary to apply the preconditioner.
  virtual void compute();

  //! Returns true if the  preconditioner has been successfully computed, false otherwise.
  virtual bool isComputed() const;

  //! Returns the number of calls to initialize().
  virtual int getNumInitialize() const;

  //! Returns the number of calls to compute().
  virtual int getNumCompute() const;

  //! Returns the number of calls to apply().
  virtual int getNumApply() const;

  //! Returns the time spent in initialize().
  virtual double getInitializeTime() const;

  //! Returns the time spent in compute().
  virtual double getComputeTime() const;

  //! Returns the time spent in apply().
  virtual double getApplyTime() const;

  //! \name Implementation of Teuchos::Describable
  //@{

  /** \brief Return a simple one-line description of this object. */
  std::string description() const;

  /** \brief Print the object with some verbosity level to an FancyOStream object. */
  void describe(Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const;

  //@}

  //! Prints basic information on iostream. This function is used by operator<<.
  virtual std::ostream& print(std::ostream& os) const;

  //! Returns the level of overlap.
  virtual int getOverlapLevel() const;


private:
  //! Specialization of Tpetra::Map.
  typedef Tpetra::Map<local_ordinal_type,
                      global_ordinal_type,
                      node_type> map_type;
  //! Specialization of Tpetra::Import.
  typedef Tpetra::Import<local_ordinal_type,
                         global_ordinal_type,
                         node_type> import_type;
  //! Specialization of Tpetra::MultiVector.
  typedef Tpetra::MultiVector<scalar_type,
                              local_ordinal_type,
                              global_ordinal_type,
                              node_type> MV;
  //! Specialization of Tpetra::Operator.
  typedef Tpetra::Operator<scalar_type,
                           local_ordinal_type,
                           global_ordinal_type,
                           node_type> OP;
  //! Specialization of Preconditioner.
  typedef Preconditioner<scalar_type,
                         local_ordinal_type,
                         global_ordinal_type,
                         node_type> prec_type;

  //! Type of the inner (subdomain) solver.
  typedef Trilinos::Details::LinearSolver<MV, OP, typename MV::mag_type> inner_solver_type;

  //! Copy constructor (unimplemented; do not use)
  AdditiveSchwarz (const AdditiveSchwarz& RHS);

  //! Set up the localized matrix and the singleton filter.
  void setup ();

  //! Local portion of the apply.
  void localApply(MV &OverlappingX, MV &OverlappingY) const;

  /// \brief Whether the current ParameterList has a parameter for the
  ///   inner preconditioner's name.
  bool hasInnerPrecName () const;


  //! The current inner preconditioner name.
  std::string innerPrecName () const;

  /// \brief Remove the inner preconditioner name parameter, if it
  ///   exists, from the current ParameterList.
  void removeInnerPrecName ();

  /// \brief Parameters to give to the inner preconditioner.
  ///
  /// \return The parameters, and whether the current ParameterList
  ///   actually has a sublist for the inner preconditioner's
  ///   parameters.  That sublist may be empty.
  std::pair<Teuchos::ParameterList, bool> innerPrecParams () const;

  /// \brief Remove the inner preconditioner's sublist of parameters,
  ///   if it exists, from the current ParameterList.
  void removeInnerPrecParams ();

  //! The default inner preconditioner name.
  static std::string defaultInnerPrecName ();

  /// \brief The matrix to be preconditioned.
  ///
  /// This is the same matrix as the input argument to this class' constructor.
  Teuchos::RCP<const row_matrix_type> Matrix_;

  /// \brief The overlapping matrix.
  ///
  /// If nonnull, this is an instance of OverlappingRowMatrix<row_matrix_type>.
  Teuchos::RCP<row_matrix_type> OverlappingMatrix_;

  //! The reordered matrix.
  Teuchos::RCP<row_matrix_type> ReorderedLocalizedMatrix_;

  //! The "inner matrix" given to the inner (subdomain) solver.
  Teuchos::RCP<row_matrix_type> innerMatrix_;

  //! If true, the preconditioner has been successfully initialized.
  bool IsInitialized_;
  //! If true, the preconditioner has been successfully computed.
  bool IsComputed_;
  //! If true, overlapping is used
  bool IsOverlapping_;
  //! Level of overlap among the processors.
  int OverlapLevel_;

  /// \brief A (deep) copy of the list given to setParameters().
  ///
  /// We need to keep this, because Inverse_ may not exist (may be
  /// null) when setParameters() or setParameterList() is called.
  /// Inverse_ needs a sublist containing its own parameters.
  Teuchos::ParameterList List_;

  //! Valid (default) parameters; computed and cached in getValidParameters().
  mutable Teuchos::RCP<const Teuchos::ParameterList> validParams_;

  //! Combine mode for off-process elements (only if overlap is used)
  Tpetra::CombineMode CombineMode_;
  //! If \c true, reorder the local matrix.
  bool UseReordering_;
  //! Record reordering for output purposes.
  std::string ReorderingAlgorithm_;
  //! Whether to filter singleton rows.
  bool FilterSingletons_;
  //! Matrix from which singleton rows have been filtered.
  Teuchos::RCP<row_matrix_type> SingletonMatrix_;
  //! The number of iterations to be done.
  int NumIterations_;
  //! True if and only if the initial guess is zero.
  bool ZeroStartingSolution_;

  //! The total number of successful calls to initialize().
  int NumInitialize_;
  //! The total number of successful calls to compute().
  int NumCompute_;
  //! The total number of successful calls to apply().
  mutable int NumApply_;
  //! The total time in seconds of all successful calls to initialize().
  double InitializeTime_;
  //! The total time in seconds of all successful calls to compute().
  double ComputeTime_;
  //! The total time in seconds of all successful calls to apply().
  mutable double ApplyTime_;
  //! The total number of floating-point operations over all initialize() calls.
  double InitializeFlops_;
  //! The total number of floating-point operations over all compute() calls.
  double ComputeFlops_;
  //! The total number of floating-point operations over all apply() calls.
  mutable double ApplyFlops_;
  //! The inner (that is, per subdomain local) solver.
  Teuchos::RCP<inner_solver_type> Inverse_;
  //! Local distributed map for filtering multivector with no overlap.
  Teuchos::RCP<const map_type> localMap_;

  /// \brief Import object used in apply().
  ///
  /// Import object from the domain Map of this operator to
  /// DistributedMap_ (see above).  This is used in apply(), where it
  /// is created on demand if necessary.  This explains why this is
  /// marked \c mutable.
  mutable Teuchos::RCP<const import_type> DistributedImporter_;
}; // class AdditiveSchwarz

}// end namespace

#endif // IFPACK2_ADDITIVESCHWARZ_DECL_HPP