This file is indexed.

/usr/include/trilinos/Ifpack2_BandedContainer_def.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK2_BANDEDCONTAINER_DEF_HPP
#define IFPACK2_BANDEDCONTAINER_DEF_HPP

#include "Teuchos_LAPACK.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include <iostream>
#include <sstream>

#ifdef HAVE_MPI
#  include <mpi.h>
#  include "Teuchos_DefaultMpiComm.hpp"
#else
#  include "Teuchos_DefaultSerialComm.hpp"
#endif // HAVE_MPI

namespace Ifpack2 {

template<class MatrixType, class LocalScalarType>
BandedContainer<MatrixType, LocalScalarType, true>::
BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                 const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                 const Teuchos::RCP<const import_type>& importer,
                 int OverlapLevel,
                 scalar_type DampingFactor) :
  Container<MatrixType>(matrix, partitions, importer, OverlapLevel, DampingFactor),
  ipiv_(this->partitions_.size()),
  kl_(this->numBlocks_, -1),
  ku_(this->numBlocks_, -1),
  scalars_(nullptr),
  scalarOffsets_(this->numBlocks_)
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! matrix->hasColMap (), std::invalid_argument, "Ifpack2::BandedContainer: "
    "The constructor's input matrix must have a column Map.");

  // Check whether the input set of local row indices is correct.
  const map_type& rowMap = * (matrix->getRowMap ());
  for(int i = 0; i < this->numBlocks_; i++)
  {
    Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
    for(local_ordinal_type j = 0; j < this->blockRows_[i]; j++)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(
        !rowMap.isNodeLocalElement(localRows[j]),
        std::invalid_argument, "Ifpack2::BandedContainer: "
        "On process " << rowMap.getComm ()->getRank () << " of "
        << rowMap.getComm ()->getSize () << ", in the given set of local row "
        "indices localRows = " << Teuchos::toString (localRows) << ", the following "
        "entry is not valid local row indices on the calling process: "
        << localRows[j] << ".");
    }
  }
  IsInitialized_ = false;
  IsComputed_ = false;
}

template<class MatrixType, class LocalScalarType>
BandedContainer<MatrixType, LocalScalarType, true>::
BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                 const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType>(matrix, localRows),
  ipiv_(this->blockRows_[0]),
  kl_(1, -1),
  ku_(1, -1),
  scalars_(nullptr),
  scalarOffsets_(1, 0)
{
  TEUCHOS_TEST_FOR_EXCEPTION(!matrix->hasColMap(), std::invalid_argument, "Ifpack2::BandedContainer: "
    "The constructor's input matrix must have a column Map.");

  // Check whether the input set of local row indices is correct.
  const map_type& rowMap = *(matrix->getRowMap());
  for(local_ordinal_type j = 0; j < this->blockRows_[0]; j++)
  {
    TEUCHOS_TEST_FOR_EXCEPTION(
      !rowMap.isNodeLocalElement(localRows[j]),
      std::invalid_argument, "Ifpack2::BandedContainer: "
      "On process " << rowMap.getComm()->getRank() << " of "
      << rowMap.getComm()->getSize() << ", in the given set of local row "
      "indices localRows = " << Teuchos::toString(localRows) << ", the following "
      "entry is not valid local row indices on the calling process: "
      << localRows[j] << ".");
  }
  IsInitialized_ = false;
  IsComputed_ = false;
}

template<class MatrixType, class LocalScalarType>
BandedContainer<MatrixType, LocalScalarType, true>::
~BandedContainer ()
{
  if(scalars_)
    delete[] scalars_;
}

template<class MatrixType, class LocalScalarType>
void BandedContainer<MatrixType, LocalScalarType, true>::
setParameters (const Teuchos::ParameterList& List)
{
  typedef typename Teuchos::ArrayView<const local_ordinal_type>::size_type size_type;
  if(List.isParameter("relaxation: banded container superdiagonals"))
    kl_[0] = List.get<int>("relaxation: banded container superdiagonals");
  if(List.isParameter("relaxation: banded container subdiagonals"))
    ku_[0] = List.get<int>("relaxation: banded container subdiagonals");

  for(local_ordinal_type b = 1; b < this->numBlocks_; b++)
  {
    kl_[b] = kl_[0];
    ku_[b] = ku_[0];
  }

  // The user provided insufficient information. If this is the case we check for the optimal values.
  // User information may be overwritten only if necessary.
  for(local_ordinal_type b = 0; b < this->numBlocks_; b++)
  {
    if (ku_[b] == -1 || kl_[b] == -1)
    {
      const Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(b);
      const size_type numRows = localRows.size();

      // loop over local rows in current block
      for(size_type i = 0; i < numRows; ++i)
      {
        Teuchos::ArrayView<const local_ordinal_type> indices;
        Teuchos::ArrayView<const scalar_type> values;
        this->inputMatrix_->getLocalRowView(localRows[i], indices, values);

        size_type min_col_it = numRows > 0 ? numRows - 1 : 0; // just a guess
        size_type max_col_it = 0;

        size_type cntCols = 0;

        // loop over all column entries
        for(size_type c = 0; c < indices.size(); c++)
        {
          const local_ordinal_type lColIdx = indices[c]; // current column idx
          // check whether lColIdx is contained in localRows[]
          for(size_type j = 0; j < numRows; j++)
          {
            if (localRows[j] == lColIdx)
            {
              if(localRows[min_col_it] > lColIdx)
                min_col_it = j;
              if(localRows[max_col_it] < lColIdx)
                max_col_it = j;
              cntCols++;
            }
          }
          if(cntCols == numRows)
            break; // skip remaining entries in column
        }
        ku_[b] = std::max(ku_[b], Teuchos::as<local_ordinal_type>(max_col_it - i));
        kl_[b] = std::max(kl_[b], Teuchos::as<local_ordinal_type>(i - min_col_it));
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION
      (kl_[b] == -1 || ku_[b] == -1, std::invalid_argument,
       "Ifpack2::BandedContainer::setParameters: the user must provide the number"
       " of sub- and superdiagonals in the 'kl' and 'ku' parameters.");
  }
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
initialize ()
{
  using Teuchos::null;
  using Teuchos::rcp;
  for(local_ordinal_type b = 0; b < this->numBlocks_; b++)
  {
    TEUCHOS_TEST_FOR_EXCEPTION
      (kl_[b] == -1 || ku_[b] == -1, std::invalid_argument,
       "Ifpack2::BandedContainer::initialize: the user must provide the number of"
       " sub- and superdiagonals in the 'kl' and 'ku' parameters. Make sure that "
       "you call BandedContainer<T>::setParameters!");
  }
  global_ordinal_type totalScalars = 0;
  for(local_ordinal_type b = 0; b < this->numBlocks_; b++)
  {
    local_ordinal_type stride = 2 * kl_[b] + ku_[b] + 1;
    scalarOffsets_[b] = totalScalars;
    totalScalars += stride * this->blockRows_[b];
  }
  scalars_ = new local_scalar_type[totalScalars];
  for(int b = 0; b < this->numBlocks_; b++)
  {
    local_ordinal_type nrows = this->blockRows_[b];
    diagBlocks_.emplace_back(Teuchos::View, scalars_ + scalarOffsets_[b], 2 * kl_[b] + ku_[b] + 1, nrows, nrows, kl_[b], kl_[b] + ku_[b]);
    diagBlocks_[b].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
  }
  // We assume that if you called this method, you intend to recompute
  // everything.
  IsInitialized_ = false;
  IsComputed_ = false;
  std::fill (ipiv_.begin (), ipiv_.end (), 0);
  IsInitialized_ = true;
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
compute ()
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    ipiv_.size () != this->partitions_.size(), std::logic_error,
    "Ifpack2::BandedContainer::compute: ipiv_ array has the wrong size.  "
    "Please report this bug to the Ifpack2 developers.");

  IsComputed_ = false;
  if (! this->isInitialized ()) {
    this->initialize ();
  }

  // Extract the submatrices from input matrix.
  extract ();
  factor (); // factor the submatrix

  IsComputed_ = true;
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
clearBlocks ()
{
  std::vector<HostViewLocal> empty1;
  std::swap(empty1, X_local);
  std::vector<HostViewLocal> empty2;
  std::swap(empty2, Y_local);
  Container<MatrixType>::clearBlocks ();
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
factor ()
{
  Teuchos::LAPACK<int, local_scalar_type> lapack;
  int INFO = 0;

  for(int i = 0; i < this->numBlocks_; i++)
  {
    // Plausibility checks for matrix
    TEUCHOS_TEST_FOR_EXCEPTION(diagBlocks_[i].values()==0, std::invalid_argument,
                       "BandedContainer<T>::factor: Diagonal block is an empty SerialBandDenseMatrix<T>!");
    TEUCHOS_TEST_FOR_EXCEPTION(diagBlocks_[i].upperBandwidth() < diagBlocks_[i].lowerBandwidth(), std::invalid_argument,
                       "BandedContainer<T>::factor: Diagonal block needs kl additional superdiagonals for factorization! However, the number of superdiagonals is smaller than the number of subdiagonals!");
    int* blockIpiv = &ipiv_[this->partitionIndices_[i]];
    lapack.GBTRF (diagBlocks_[i].numRows(),
        diagBlocks_[i].numCols(),
        diagBlocks_[i].lowerBandwidth(),
        diagBlocks_[i].upperBandwidth() - diagBlocks_[i].lowerBandwidth(), /* enter the real number of superdiagonals (see Teuchos_SerialBandDenseSolver)*/
        diagBlocks_[i].values(),
        diagBlocks_[i].stride(),
        blockIpiv,
        &INFO);

    // INFO < 0 is a bug.
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO < 0, std::logic_error, "Ifpack2::BandedContainer::factor: "
      "LAPACK's _GBTRF (LU factorization with partial pivoting) was called "
      "incorrectly.  INFO = " << INFO << " < 0.  "
      "Please report this bug to the Ifpack2 developers.");
    // INFO > 0 means the matrix is singular.  This is probably an issue
    // either with the choice of rows the rows we extracted, or with the
    // input matrix itself.
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO > 0, std::runtime_error, "Ifpack2::BandedContainer::factor: "
      "LAPACK's _GBTRF (LU factorization with partial pivoting) reports that the "
      "computed U factor is exactly singular.  U(" << INFO << "," << INFO << ") "
      "(one-based index i) is exactly zero.  This probably means that the input "
      "matrix has a singular diagonal block.");
  }
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
applyImpl (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           const local_scalar_type alpha,
           const local_scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;

  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_0 () != Y.dimension_0 (),
    std::logic_error, "Ifpack2::BandedContainer::applyImpl: X and Y have "
    "incompatible dimensions (" << X.dimension_0 () << " resp. "
    << Y.dimension_0 () << ").  Please report this bug to "
    "the Ifpack2 developers.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_0 () != static_cast<size_t> (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numCols() : diagBlocks_[blockIndex].numRows()),
    std::logic_error, "Ifpack2::BandedContainer::applyImpl: The input "
    "multivector X has incompatible dimensions from those of the "
    "inverse operator (" << X.dimension_0 () << " vs. "
    << (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numCols() : diagBlocks_[blockIndex].numRows())
    << ").  Please report this bug to the Ifpack2 developers.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    Y.dimension_0 () != static_cast<size_t> (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numRows() : diagBlocks_[blockIndex].numCols()),
    std::logic_error, "Ifpack2::BandedContainer::applyImpl: The output "
    "multivector Y has incompatible dimensions from those of the "
    "inverse operator (" << Y.dimension_0 () << " vs. "
    << (mode == Teuchos::NO_TRANS ? diagBlocks_[blockIndex].numRows() : diagBlocks_[blockIndex].numCols())
    << ").  Please report this bug to the Ifpack2 developers.");

  size_t numVecs = (int) X.dimension_1 ();

  auto zero = Teuchos::ScalarTraits<scalar_type>::zero ();
  if (alpha == zero) { // don't need to solve the linear system
    if (beta == zero) {
      // Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
      // any Inf or NaN values in Y (rather than multiplying them by
      // zero, resulting in NaN values).
      for(size_t j = 0; j < Y.dimension_0(); j++)
        for(size_t i = 0; i < Y.dimension_1(); i++)
          Y(i, j) = zero;
    }
    else { // beta != 0
      for(size_t j = 0; j < Y.dimension_0(); j++)
        for(size_t i = 0; i < Y.dimension_1(); i++)
          Y(i, j) *= beta;
    }
  }
  else { // alpha != 0; must solve the linear system
    Teuchos::LAPACK<int, local_scalar_type> lapack;
    // If beta is nonzero or Y is not constant stride, we have to use
    // a temporary output multivector.  It gets a copy of X, since
    // GBTRS overwrites its (multi)vector input with its output.
    Ptr<HostViewLocal> Y_tmp;
    bool deleteYT = false;
    if(beta == zero) {
      Y = X;
      Y_tmp = ptr(&Y);
    }
    else {
      Y_tmp = ptr (new HostViewLocal ("", X.dimension_0 (), X.dimension_1 ())); // constructor copies X
      deleteYT = true;
      Kokkos::deep_copy(*Y_tmp, X);
    }

    local_scalar_type* const Y_ptr = (local_scalar_type*) Y_tmp->ptr_on_device();

    int INFO = 0;
    const char trans =(mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));

    const int* blockIpiv = &ipiv_[this->partitionIndices_[blockIndex]];
    lapack.GBTRS(trans,
        diagBlocks_[blockIndex].numCols(),
        diagBlocks_[blockIndex].lowerBandwidth(),
        /* enter the real number of superdiagonals (see Teuchos_SerialBandDenseSolver)*/
        diagBlocks_[blockIndex].upperBandwidth() - diagBlocks_[blockIndex].lowerBandwidth(),
        numVecs,
        diagBlocks_[blockIndex].values(),
        diagBlocks_[blockIndex].stride(),
        blockIpiv,
        Y_ptr, stride, &INFO);

    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO != 0, std::runtime_error, "Ifpack2::BandedContainer::applyImpl: "
      "LAPACK's _GBTRS (solve using LU factorization with partial pivoting) "
      "failed with INFO = " << INFO << " != 0.");

    if (beta != zero) {
      for(size_t j = 0; j < Y.dimension_1(); j++)
        for(size_t i = 0; i < Y.dimension_0(); i++)
          Y(i, j) = beta * Y(i, j) + alpha * (*Y_tmp)(i, j);
    }
    if(deleteYT)
      delete Y_tmp.get();
  }
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;

  // The local operator might have a different Scalar type than
  // MatrixType.  This means that we might have to convert X and Y to
  // the Tpetra::MultiVector specialization that the local operator
  // wants.  This class' X_ and Y_ internal fields are of the right
  // type for the local operator, so we can use those as targets.

  // Tpetra::MultiVector specialization corresponding to MatrixType.
  Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
  const size_t numVecs = X.dimension_1();

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, "Ifpack2::BandedContainer::apply: "
    "You must have called the compute() method before you may call apply().  "
    "You may call the apply() method as many times as you want after calling "
    "compute() once, but you must have called compute() at least once.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_1() != Y.dimension_1(), std::runtime_error,
    "Ifpack2::BandedContainer::apply: X and Y have different numbers of "
    "vectors.  X has " << X.dimension_1()
    << ", but Y has " << Y.dimension_1() << ".");

  if (numVecs == 0) {
    return; // done! nothing to do
  }

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.

  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i], numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i], numVecs);
    }
  }

  ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);

  mvgs.gatherViewToView(X_local[blockIndex], X, localRows);

  // We must gather the contents of the output multivector Y even on
  // input to applyImpl(), since the inverse operator might use it as
  // an initial guess for a linear solve.  We have no way of knowing
  // whether it does or does not.

  mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);

  // Apply the local operator:
  // Y_local := beta*Y_local + alpha*M^{-1}*X_local
  this->applyImpl (X_local[blockIndex], Y_local[blockIndex], blockIndex, stride, mode, as<local_scalar_type>(alpha),
                   as<local_scalar_type>(beta));

  // Scatter the permuted subset output vector Y_local back into the
  // original output multivector Y.
  mvgs.scatterViewToView(Y, Y_local[blockIndex], localRows);
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
weightedApply (HostView& X,
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::Range1D;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcp_const_cast;
  using std::cerr;
  using std::endl;

  TEUCHOS_TEST_FOR_EXCEPTION(
      true, std::runtime_error, "Ifpack2::BandedContainer::"
      "weightedApply: This code is not tested and not used. Expect bugs.");

  // The local operator template parameter might have a different
  // Scalar type than MatrixType.  This means that we might have to
  // convert X and Y to the Tpetra::MultiVector specialization that
  // the local operator wants.  This class' X_ and Y_ internal fields
  // are of the right type for the local operator, so we can use those
  // as targets.

  auto zero = Teuchos::ScalarTraits<scalar_type>::zero ();
  auto one = Teuchos::ScalarTraits<scalar_type>::one ();
  // typedef Tpetra::Vector<local_scalar_type, local_ordinal_type, global_ordinal_type, node_type> LV; // unused

  Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
  const size_t numVecs = X.dimension_1();

  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, "Ifpack2::BandedContainer::"
    "weightedApply: You must have called the compute() method before you may "
    "call apply().  You may call the apply() method as many times as you want "
    "after calling compute() once, but you must have called compute() at least "
    "once.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    numVecs != Y.dimension_1(), std::runtime_error,
    "Ifpack2::BandedContainer::weightedApply: X and Y have different numbers "
    "of vectors.  X has " << X.dimension_1() << ", but Y has "
    << Y.dimension_1() << ".");

  if (numVecs == 0) {
    return; // done! nothing to do
  }

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.

  const size_t numRows = this->blockRows_[blockIndex];

  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i], numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i], numVecs);
    }
  }

  HostViewLocal D_local("", numRows, 1);
  HostViewLocal X_scaled("", numRows, numVecs);

  ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
  mvgs.gatherViewToView (X_local[blockIndex], X, localRows);

  // We must gather the output multivector Y even on input to
  // applyImpl(), since the local operator might use it as an initial
  // guess for a linear solve.  We have no way of knowing whether it
  // does or does not.

  mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);

  // Apply the diagonal scaling D to the input X.  It's our choice
  // whether the result has the original input Map of X, or the
  // permuted subset Map of X_local.  If the latter, we also need to
  // gather D into the permuted subset Map.  We choose the latter, to
  // save memory and computation.  Thus, we do the following:
  //
  // 1. Gather D into a temporary vector D_local.
  // 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
  // 3. Compute X_scaled := diag(D_loca) * X_local.

  mvgs.gatherViewToView (D_local, D, localRows);

  for(size_t j = 0; j < numVecs; j++)
    for(size_t i = 0; i < numRows; i++)
      X_scaled(i, j) = X_local[blockIndex](i, j) * D_local(i, 0);

  // Y_temp will hold the result of M^{-1}*X_scaled.  If beta == 0, we
  // can write the result of Inverse_->apply() directly to Y_local, so
  // Y_temp may alias Y_local.  Otherwise, if beta != 0, we need
  // temporary storage for M^{-1}*X_scaled, so Y_temp must be
  // different than Y_local.
  Ptr<HostViewLocal> Y_temp;
  bool deleteYT = false;
  if(beta == zero)
    Y_temp = ptr(&Y_local[blockIndex]);
  else
  {
    Y_temp = ptr(new HostViewLocal("", numRows, numVecs));
    deleteYT = true;
  }

  // Apply the local operator: Y_temp := M^{-1} * X_scaled
  applyImpl(X_scaled, *Y_temp, blockIndex, stride, mode, one, one);
  // Y_local := beta * Y_local + alpha * diag(D_local) * Y_temp.
  //
  // Note that we still use the permuted subset scaling D_local here,
  // because Y_temp has the same permuted subset Map.  That's good, in
  // fact, because it's a subset: less data to read and multiply.

  for(size_t j = 0; j < numVecs; j++)
    for(size_t i = 0; i < numRows; i++)
      Y_local[blockIndex](i, j) = Y_local[blockIndex](i, j) * (local_impl_scalar_type) beta + (local_impl_scalar_type) alpha * (*Y_temp)(i, j) * D_local(i, 0);

  if(deleteYT)
    delete Y_temp.get();

  // Copy the permuted subset output vector Y_local into the original
  // output multivector Y.
  mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}

template<class MatrixType, class LocalScalarType>
std::ostream&
BandedContainer<MatrixType, LocalScalarType, true>::
print (std::ostream& os) const
{
  Teuchos::FancyOStream fos (Teuchos::rcpFromRef (os));
  fos.setOutputToRootOnly (0);
  describe (fos);
  return os;
}

template<class MatrixType, class LocalScalarType>
std::string
BandedContainer<MatrixType, LocalScalarType, true>::
description () const
{
  std::ostringstream oss;
  oss << Teuchos::Describable::description();
  if (isInitialized()) {
    if (isComputed()) {
      oss << "{status = initialized, computed";
    }
    else {
      oss << "{status = initialized, not computed";
    }
  }
  else {
    oss << "{status = not initialized, not computed";
  }
  oss << "}";
  return oss.str();
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
describe (Teuchos::FancyOStream& os,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  if(verbLevel==Teuchos::VERB_NONE) return;
  os << "================================================================================" << std::endl;
  os << "Ifpack2::BandedContainer" << std::endl;
  for(int i = 0; i < this->numBlocks_; i++)
  {
    os << "Block " << i << ": Number of rows           = " << this->blockRows_[i] << std::endl;
    os << "Block " << i << ": Number of subdiagonals   = " << diagBlocks_[i].lowerBandwidth() << std::endl;
    os << "Block " << i << ": Number of superdiagonals = " << diagBlocks_[i].upperBandwidth() << std::endl;
  }
  os << "isInitialized()          = " << IsInitialized_ << std::endl;
  os << "isComputed()             = " << IsComputed_ << std::endl;
  os << "================================================================================" << std::endl;
  os << std::endl;
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, true>::
extract ()
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::toString;
  auto& A = *this->inputMatrix_;
  const size_t inputMatrixNumRows = A.getNodeNumRows ();
  // We only use the rank of the calling process and the number of MPI
  // processes for generating error messages.  Extraction itself is
  // entirely local to each participating MPI process.
  const int myRank = A.getRowMap()->getComm()->getRank();
  const int numProcs = A.getRowMap()->getComm()->getSize();

  for(int blockIndex = 0; blockIndex < this->numBlocks_; blockIndex++)
  {
    const local_ordinal_type numRows_ = this->blockRows_[blockIndex];
    // Sanity check that the local row indices to extract fall within
    // the valid range of local row indices for the input matrix.
    ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
    for(local_ordinal_type j = 0; j < numRows_; j++)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(
        localRows[j] < 0 ||
        static_cast<size_t> (localRows[j]) >= inputMatrixNumRows,
        std::runtime_error, "Ifpack2::BandedContainer::extract: On process " <<
        myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
        localRows[j] << ", which is out of the valid range of local row indices "
        "indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
    }

    // Convert the local row indices we want into local column indices.
    // For every local row ii_local = localRows[i] we take, we also want
    // to take the corresponding column.  To find the corresponding
    // column, we use the row Map to convert the local row index
    // ii_local into a global index ii_global, and then use the column
    // Map to convert ii_global into a local column index jj_local.  If
    // the input matrix doesn't have a column Map, we need to be using
    // global indices anyway...

    // We use the domain Map to exclude off-process global entries.
    const map_type& globalRowMap = *(A.getRowMap ());
    const map_type& globalColMap = *(A.getColMap ());
    const map_type& globalDomMap = *(A.getDomainMap ());

    bool rowIndsValid = true;
    bool colIndsValid = true;
    Array<local_ordinal_type> localCols (numRows_);
    // For error messages, collect the sets of invalid row indices and
    // invalid column indices.  They are otherwise not useful.
    Array<local_ordinal_type> invalidLocalRowInds;
    Array<global_ordinal_type> invalidGlobalColInds;
    for(local_ordinal_type i = 0; i < numRows_; i++)
    {
      // ii_local is the (local) row index we want to look up.
      const local_ordinal_type ii_local = localRows[i];
      // Find the global index jj_global corresponding to ii_local.
      // Global indices are the same (rather, are required to be the
      // same) in all three Maps, which is why we use jj (suggesting a
      // column index, which is how we will use it below).
      const global_ordinal_type jj_global = globalRowMap.getGlobalElement(ii_local);
      if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
      {
        // If ii_local is not a local index in the row Map on the
        // calling process, that means localRows is incorrect.  We've
        // already checked for this in the constructor, but we might as
        // well check again here, since it's cheap to do so (just an
        // integer comparison, since we need jj_global anyway).
        rowIndsValid = false;
        invalidLocalRowInds.push_back(ii_local);
        break;
      }
      // Exclude "off-process" entries: that is, those in the column Map
      // on this process that are not in the domain Map on this process.
      if(globalDomMap.isNodeGlobalElement(jj_global))
      {
        // jj_global is not an off-process entry.  Look up its local
        // index in the column Map; we want to extract this column index
        // from the input matrix.  If jj_global is _not_ in the column
        // Map on the calling process, that could mean that the column
        // in question is empty on this process.  That would be bad for
        // solving linear systems with the extract submatrix.  We could
        // solve the resulting singular linear systems in a minimum-norm
        // least-squares sense, but for now we simply raise an exception.
        const local_ordinal_type jj_local = globalColMap.getLocalElement(jj_global);
        if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
        {
          colIndsValid = false;
          invalidGlobalColInds.push_back(jj_global);
          break;
        }
        localCols[i] = jj_local;
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! rowIndsValid, std::logic_error, "Ifpack2::BandedContainer::extract: "
      "On process " << myRank << ", at least one row index in the set of local "
      "row indices given to the constructor is not a valid local row index in "
      "the input matrix's row Map on this process.  This should be impossible "
      "because the constructor checks for this case.  Here is the complete set "
      "of invalid local row indices: " << toString(invalidLocalRowInds) << ".  "
      "Please report this bug to the Ifpack2 developers.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! colIndsValid, std::runtime_error, "Ifpack2::BandedContainer::extract: "
      "On process " << myRank << ", "
      "At least one row index in the set of row indices given to the constructor "
      "does not have a corresponding column index in the input matrix's column "
      "Map.  This probably means that the column(s) in question is/are empty on "
      "this process, which would make the submatrix to extract structurally "
      "singular.  Here is the compete set of invalid global column indices: "
      << toString(invalidGlobalColInds) << ".");

    const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
    Array<scalar_type> val(maxNumEntriesInRow);
    Array<local_ordinal_type> ind(maxNumEntriesInRow);

    const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();
    for (local_ordinal_type i = 0; i < numRows_; i++)
    {
      const local_ordinal_type localRow = this->partitions_[this->partitionIndices_[blockIndex] + i];
      size_t numEntries;
      A.getLocalRowCopy(localRow, ind(), val(), numEntries);
      for (size_t k = 0; k < numEntries; ++k)
      {
        const local_ordinal_type localCol = ind[k];
        // Skip off-process elements
        //
        // FIXME (mfh 24 Aug 2013) This assumes the following:
        //
        // 1. The column and row Maps begin with the same set of
        //    on-process entries, in the same order.  That is,
        //    on-process row and column indices are the same.
        // 2. All off-process indices in the column Map of the input
        //    matrix occur after that initial set.
        if(localCol >= 0 && static_cast<size_t>(localCol) < inputMatrixNumRows)
        {
          // for local column IDs, look for each ID in the list
          // of columns hosted by this object
          local_ordinal_type jj = INVALID;
          for (size_t kk = 0; kk < (size_t) numRows_; kk++)
          {
            if(localRows[kk] == localCol)
              jj = kk;
          }
          if (jj != INVALID)
            diagBlocks_[blockIndex](i, jj) += val[k]; // ???
        }
      }
    }
  }
}

template<class MatrixType, class LocalScalarType>
std::string BandedContainer<MatrixType, LocalScalarType, true>::getName()
{
  return "Banded";
}

template<class MatrixType, class LocalScalarType>
BandedContainer<MatrixType, LocalScalarType, false>::
BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                 const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                 const Teuchos::RCP<const import_type>& importer,
                 int OverlapLevel,
                 scalar_type DampingFactor) :
  Container<MatrixType>(matrix, partitions, importer, OverlapLevel, DampingFactor)
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "Ifpack2::BandedContainer: Not implemented for "
     "LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
     << ".");
}

template<class MatrixType, class LocalScalarType>
BandedContainer<MatrixType, LocalScalarType, false>::
BandedContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                 const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType>(matrix, localRows)
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "Ifpack2::BandedContainer: Not implemented for "
     "LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
     << ".");
}

template<class MatrixType, class LocalScalarType>
BandedContainer<MatrixType, LocalScalarType, false>::
~BandedContainer () {}

template<class MatrixType, class LocalScalarType>
void BandedContainer<MatrixType, LocalScalarType, false>::
setParameters (const Teuchos::ParameterList& List) {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
initialize () {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
compute () {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
clearBlocks () {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
factor () {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
applyImpl (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           const local_scalar_type alpha,
           const local_scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
weightedApply (HostView& X,
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
std::ostream&
BandedContainer<MatrixType, LocalScalarType, false>::
print (std::ostream& os) const
{
  return os;
}

template<class MatrixType, class LocalScalarType>
std::string
BandedContainer<MatrixType, LocalScalarType, false>::
description () const
{
  return "";
}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
describe (Teuchos::FancyOStream& os,
          const Teuchos::EVerbosityLevel verbLevel) const {}

template<class MatrixType, class LocalScalarType>
void
BandedContainer<MatrixType, LocalScalarType, false>::
extract () {}

template<class MatrixType, class LocalScalarType>
std::string BandedContainer<MatrixType, LocalScalarType, false>::getName()
{
  return "";
}

} // namespace Ifpack2

#define IFPACK2_BANDEDCONTAINER_INSTANT(S,LO,GO,N) \
  template class Ifpack2::BandedContainer< Tpetra::RowMatrix<S, LO, GO, N>, S >;

#endif // IFPACK2_BANDEDCONTAINER_HPP