This file is indexed.

/usr/include/trilinos/Ifpack2_DenseContainer_def.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK2_DENSECONTAINER_DEF_HPP
#define IFPACK2_DENSECONTAINER_DEF_HPP

#include "Tpetra_CrsMatrix.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Tpetra_Experimental_BlockMultiVector.hpp"

#ifdef HAVE_MPI
#  include <mpi.h>
#  include "Teuchos_DefaultMpiComm.hpp"
#else
#  include "Teuchos_DefaultSerialComm.hpp"
#endif // HAVE_MPI

namespace Ifpack2 {

template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, true>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                const Teuchos::RCP<const import_type>& importer,
                int OverlapLevel,
                scalar_type DampingFactor) :
  Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
                         DampingFactor),
  scalars_ (nullptr),
  scalarOffsets_ (this->numBlocks_)
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::ptr;
  using Teuchos::toString;
  typedef typename ArrayView<const local_ordinal_type>::size_type size_type;
  TEUCHOS_TEST_FOR_EXCEPTION(
    !matrix->hasColMap(), std::invalid_argument, "Ifpack2::DenseContainer: "
    "The constructor's input matrix must have a column Map.");

  //compute scalarOffsets_
  global_ordinal_type totalScalars = 0;
  for(local_ordinal_type i = 0; i < this->numBlocks_; i++)
  {
    scalarOffsets_[i] = totalScalars;
    totalScalars += this->blockRows_[i] * this->blockRows_[i]
                    * this->bcrsBlockSize_ * this->bcrsBlockSize_;
  }
  scalars_ = new local_scalar_type[totalScalars];
  for(int i = 0; i < this->numBlocks_; i++)
  {
    int nnodes = this->blockRows_[i];
    int denseRows = nnodes * this->bcrsBlockSize_;
    //create square dense matrix (stride is same as rows and cols)
    diagBlocks_.emplace_back(Teuchos::View, scalars_ + scalarOffsets_[i], denseRows, denseRows, denseRows);
    diagBlocks_[i].putScalar(0);
  }

  ipiv_.resize(this->partitions_.size() * this->bcrsBlockSize_);

  for(int i = 0; i < this->numBlocks_; i++)
  {
    Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
    // Check whether the input set of local row indices is correct.
    const map_type& rowMap = * (matrix->getRowMap ());
    const size_type numRows = localRows.size ();
    bool rowIndicesValid = true;
    Array<local_ordinal_type> invalidLocalRowIndices;
    for(size_type j = 0; j < numRows; j++) {
      if(!rowMap.isNodeLocalElement(localRows[j])) {
        rowIndicesValid = false;
        invalidLocalRowIndices.push_back(localRows[j]);
        break;
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      !rowIndicesValid, std::invalid_argument, "Ifpack2::DenseContainer: "
      "On process " << rowMap.getComm()->getRank() << " of "
      << rowMap.getComm()->getSize() << ", in the given set of local row "
      "indices localRows = " << toString(localRows) << ", the following "
      "entries are not valid local row indices on the calling process: "
      << toString(invalidLocalRowIndices) << ".");
  }
  IsInitialized_ = false;
  IsComputed_ = false;
}

template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, true>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType>(matrix, localRows),
  scalars_(nullptr)
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::RCP;
  using Teuchos::rcp;
 using Teuchos::toString;
  typedef typename ArrayView<const local_ordinal_type>::size_type size_type;
  TEUCHOS_TEST_FOR_EXCEPTION(
    !matrix->hasColMap(), std::invalid_argument, "Ifpack2::DenseContainer: "
    "The constructor's input matrix must have a column Map.");
  diagBlocks_.emplace_back(this->blockRows_[0] * this->bcrsBlockSize_,
                           this->blockRows_[0] * this->bcrsBlockSize_);
  diagBlocks_[0].putScalar(0);

  ipiv_.resize(this->partitions_.size() * this->bcrsBlockSize_);

  for(int i = 0; i < this->numBlocks_; i++)
  {
    // Check whether the input set of local row indices is correct.
    const map_type& rowMap = *(matrix->getRowMap());
    const size_type numRows = localRows.size ();
    bool rowIndicesValid = true;
    Array<local_ordinal_type> invalidLocalRowIndices;
    for(size_type j = 0; j < numRows; j++)
    {
      if(!rowMap.isNodeLocalElement(localRows[j]))
      {
        rowIndicesValid = false;
        invalidLocalRowIndices.push_back(localRows[j]);
        break;
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      !rowIndicesValid, std::invalid_argument, "Ifpack2::DenseContainer: "
      "On process " << rowMap.getComm()->getRank() << " of "
      << rowMap.getComm()->getSize() << ", in the given set of local row "
      "indices localRows = " << toString (localRows) << ", the following "
      "entries are not valid local row indices on the calling process: "
      << toString(invalidLocalRowIndices) << ".");
  }
  // FIXME (mfh 25 Aug 2013) What if the matrix's row Map has a
  // different index base than zero?
  IsInitialized_ = false;
  IsComputed_ = false;
}

template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, true>::~DenseContainer()
{
  if(scalars_)
    delete[] scalars_;
}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, true>::
setParameters (const Teuchos::ParameterList& /* List */)
{
  // the solver doesn't currently take any parameters
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
initialize ()
{
  using Teuchos::null;
  using Teuchos::rcp;

  // We assume that if you called this method, you intend to recompute
  // everything.
  IsInitialized_ = false;
  IsComputed_ = false;

  // Fill the diagonal block and LU permutation array with zeros.
  for(int i = 0; i < this->numBlocks_; i++)
    diagBlocks_[i].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());
  std::fill (ipiv_.begin (), ipiv_.end (), 0);
  IsInitialized_ = true;
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
compute ()
{
// FIXME: I am commenting this out because it breaks block CRS support
//  TEUCHOS_TEST_FOR_EXCEPTION(
//    static_cast<size_t> (ipiv_.size ()) != numRows_, std::logic_error,
//    "Ifpack2::DenseContainer::compute: ipiv_ array has the wrong size.  "
//    "Please report this bug to the Ifpack2 developers.");

  IsComputed_ = false;
  if (! this->isInitialized ()) {
    this->initialize();
  }

  // Extract the submatrix.
  extract ();
  factor (); // factor the submatrices

  IsComputed_ = true;
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
factor ()
{
  Teuchos::LAPACK<int, local_scalar_type> lapack;
  for(int i = 0; i < this->numBlocks_; i++)
  {
    int INFO = 0;
    int* blockIpiv = ipiv_.getRawPtr() + this->partitionIndices_[i] * this->bcrsBlockSize_;
    lapack.GETRF(diagBlocks_[i].numRows(),
                 diagBlocks_[i].numCols(),
                 diagBlocks_[i].values(),
                 diagBlocks_[i].stride(),
                 blockIpiv, &INFO);
    // INFO < 0 is a bug.
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO < 0, std::logic_error, "Ifpack2::DenseContainer::factor: "
      "LAPACK's _GETRF (LU factorization with partial pivoting) was called "
      "incorrectly.  INFO = " << INFO << " < 0.  "
      "Please report this bug to the Ifpack2 developers.");
    // INFO > 0 means the matrix is singular.  This is probably an issue
    // either with the choice of rows the rows we extracted, or with the
    // input matrix itself.
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO > 0, std::runtime_error, "Ifpack2::DenseContainer::factor: "
      "LAPACK's _GETRF (LU factorization with partial pivoting) reports that the "
      "computed U factor is exactly singular.  U(" << INFO << "," << INFO << ") "
      "(one-based index i) is exactly zero.  This probably means that the input "
      "matrix has a singular diagonal block.");
  }
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
applyImplBlockCrs (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           local_scalar_type alpha,
           local_scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;

  typedef Teuchos::ScalarTraits<local_scalar_type> STS;
  const size_t numRows = X.dimension_0();
  const size_t numVecs = X.dimension_1();

  TEUCHOS_TEST_FOR_EXCEPTION(
    static_cast<size_t> (X.dimension_0 ()) != static_cast<size_t> (diagBlocks_[blockIndex].numRows ()),
    std::logic_error, "Ifpack2::DenseContainer::applyImpl: X and Y have "
    "different number of rows than block matrix (" << X.dimension_0() << " resp. "
    << diagBlocks_[blockIndex].numRows() << ").  Please report this bug to "
    "the Ifpack2 developers.");

  if (alpha == STS::zero ()) { // don't need to solve the linear system
    if (beta == STS::zero ()) {
      // Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
      // any Inf or NaN values in Y (rather than multiplying them by
      // zero, resulting in NaN values).
      for(size_t i = 0; i < numRows; i++)
        for(size_t j = 0; j < numVecs; j++)
          Y(i, j) = STS::zero();
    }
    else { // beta != 0
      for(size_t i = 0; i < numRows; i++)
        for(size_t j = 0; j < numVecs; j++)
          Y(i, j) *= beta;
    }
  }
  else { // alpha != 0; must solve the linear system
    Teuchos::LAPACK<int, local_scalar_type> lapack;
    // If beta is nonzero or Y is not constant stride, we have to use
    // a temporary output multivector.  It gets a (deep) copy of X,
    // since GETRS overwrites its (multi)vector input with its output.
    Ptr<HostViewLocal> Y_tmp;
    bool deleteYT = false;
    if (beta == STS::zero () ){
      Kokkos::deep_copy(Y, X);
      Y_tmp = ptr(&Y);
    }
    else {
      Y_tmp = ptr (new HostViewLocal ("", X.dimension_0(), X.dimension_1()));
      Kokkos::deep_copy(*Y_tmp, X);
      deleteYT = true;
    }
    local_scalar_type* const Y_ptr = (local_scalar_type*) Y_tmp->ptr_on_device();
    int INFO = 0;
    const char trans =
      (mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));
    int* blockIpiv = (int*) ipiv_.getRawPtr()
      + this->partitionIndices_[blockIndex] * this->bcrsBlockSize_;
    lapack.GETRS (trans,
                  diagBlocks_[blockIndex].numRows (),
                  numVecs,
                  diagBlocks_[blockIndex].values (),
                  diagBlocks_[blockIndex].stride (),
                  blockIpiv,
                  Y_ptr,
                  stride, &INFO);
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO != 0, std::runtime_error, "Ifpack2::DenseContainer::applyImpl: "
      "LAPACK's _GETRS (solve using LU factorization with partial pivoting) "
      "failed with INFO = " << INFO << " != 0.");

    if (beta != STS::zero ()) {
      for(size_t i = 0; i < Y.dimension_0(); i++)
      {
        for(size_t j = 0; j < Y.dimension_1(); j++)
        {
          Y(i, j) *= beta;
          Y(i, j) += alpha * (*Y_tmp)(i, j);
        }
      }
    }
    if(deleteYT)
      delete Y_tmp.get();
  }
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
applyImpl (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           local_scalar_type alpha,
           local_scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;

  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_0 () != Y.dimension_0 (),
    std::logic_error, "Ifpack2::DenseContainer::applyImpl: X and Y have "
    "incompatible dimensions (" << X.dimension_0 () << " resp. "
    << Y.dimension_0 () << ").  Please report this bug to "
    "the Ifpack2 developers.");

  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_1 () != Y.dimension_1(),
    std::logic_error, "Ifpack2::DenseContainer::applyImpl: X and Y have "
    "incompatible numbers of vectors (" << X.dimension_1 () << " resp. "
    << Y.dimension_1 () << ").  Please report this bug to "
    "the Ifpack2 developers.");

  if(this->hasBlockCrs_) {
    applyImplBlockCrs(X,Y,blockIndex,stride,mode,alpha,beta);
    return;
  }

  typedef Teuchos::ScalarTraits<local_scalar_type> STS;
  size_t numVecs = X.dimension_1();
  if(alpha == STS::zero()) { // don't need to solve the linear system
    if(beta == STS::zero()) {
      // Use BLAS AXPY semantics for beta == 0: overwrite, clobbering
      // any Inf or NaN values in Y (rather than multiplying them by
      // zero, resulting in NaN values).
      for(size_t i = 0; i < Y.dimension_0(); i++)
      {
        for(size_t j = 0; j < Y.dimension_1(); j++)
          Y(i, j) = STS::zero();
      }
    }
    else // beta != 0
      for(size_t i = 0; i < Y.dimension_0(); i++)
      {
        for(size_t j = 0; j < Y.dimension_1(); j++)
          Y(i, j) *= beta;
      }
  }
  else { // alpha != 0; must solve the linear system
    Teuchos::LAPACK<int, local_scalar_type> lapack;
    // If beta is nonzero or Y is not constant stride, we have to use
    // a temporary output multivector.  It gets a (deep) copy of X,
    // since GETRS overwrites its (multi)vector input with its output.
    Ptr<HostViewLocal> Y_tmp;
    bool deleteYT = false;
    if (beta == STS::zero () ){
      Kokkos::deep_copy (Y, X);
      Y_tmp = ptr (&Y);
    }
    else {
      Y_tmp = ptr (new HostViewLocal ("", Y.dimension_0(), Y.dimension_1()));
      Kokkos::deep_copy(*Y_tmp, X);
      deleteYT = true;
    }
    local_scalar_type* Y_ptr = (local_scalar_type*) Y_tmp->ptr_on_device();
    int INFO = 0;
    int* blockIpiv = (int*) ipiv_.getRawPtr() + this->partitionIndices_[blockIndex] * this->bcrsBlockSize_;
    const char trans =
      (mode == Teuchos::CONJ_TRANS ? 'C' : (mode == Teuchos::TRANS ? 'T' : 'N'));
    lapack.GETRS (trans,
                  diagBlocks_[blockIndex].numRows (),
                  numVecs,
                  diagBlocks_[blockIndex].values (),
                  diagBlocks_[blockIndex].stride (),
                  blockIpiv,
                  Y_ptr,
                  stride, &INFO);
    TEUCHOS_TEST_FOR_EXCEPTION(
      INFO != 0, std::runtime_error, "Ifpack2::DenseContainer::applyImpl: "
      "LAPACK's _GETRS (solve using LU factorization with partial pivoting) "
      "failed with INFO = " << INFO << " != 0.");

    if (beta != STS::zero ()) {
      for(size_t i = 0; i < Y.dimension_0(); i++)
      {
        for(size_t j = 0; j < Y.dimension_1(); j++)
          Y(i, j) = Y(i, j) * (local_impl_scalar_type) beta + (local_impl_scalar_type) alpha * (*Y_tmp)(i, j);
      }
    }
    if(deleteYT)
      delete Y_tmp.get();
  }
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
applyBlockCrs (HostView& XIn,
       HostView& YIn,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::ArrayView;
  using Teuchos::ArrayRCP;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;

  const size_t numRows = this->blockRows_[blockIndex];

  // The local operator might have a different Scalar type than
  // MatrixType.  This means that we might have to convert X and Y to
  // the Tpetra::MultiVector specialization that the local operator
  // wants.  This class' X_ and Y_ internal fields are of the right
  // type for the local operator, so we can use those as targets.

  const char prefix[] = "Ifpack2::DenseContainer::weightedApply: ";
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, prefix << "You must have called the "
    "compute() method before you may call this method.  You may call "
    "apply() as many times as you want after calling compute() once, "
    "but you must have called compute() at least once first.");
  const size_t numVecs = XIn.dimension_1 ();
  TEUCHOS_TEST_FOR_EXCEPTION(
    numVecs != YIn.dimension_1 (), std::runtime_error,
    prefix << "X and Y have different numbers of vectors (columns).  X has "
    << XIn.dimension_1 () << ", but Y has " << YIn.dimension_1 () << ".");

  if (numVecs == 0) {
    return; // done! nothing to do
  }

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local Inverse_
  // operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.

  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i] * this->bcrsBlockSize_, numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i] * this->bcrsBlockSize_, numVecs);
    }
  }
  HostViewLocal& XOut = X_local[blockIndex];
  HostViewLocal& YOut = Y_local[blockIndex];

  ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
  // Gather x
  for (size_t j = 0; j < numVecs; ++j) {
    for (size_t i = 0; i < numRows; ++i) {
      const size_t i_perm = localRows[i];
      for (int k = 0; k < this->bcrsBlockSize_; ++k)
        XOut(i*this->bcrsBlockSize_+k, j) = XIn(i_perm*this->bcrsBlockSize_+k, j);
    }
  }

  // We must gather the contents of the output multivector Y even on
  // input to applyImpl(), since the inverse operator might use it as
  // an initial guess for a linear solve.  We have no way of knowing
  // whether it does or does not.

  // gather Y
  for (size_t j = 0; j < numVecs; ++j) {
    for (size_t i = 0; i < numRows; ++i) {
      const size_t i_perm = localRows[i];
      for (int k = 0; k < this->bcrsBlockSize_; ++k)
        YOut(i*this->bcrsBlockSize_+k, j) = YIn(i_perm*this->bcrsBlockSize_+k, j);
    }
  }

  // Apply the local operator:
  // Y_local := beta*Y_local + alpha*M^{-1}*X_local
  this->applyImpl (XOut, YOut, blockIndex, stride, mode, as<local_scalar_type>(alpha),
                   as<local_scalar_type>(beta));

  // Scatter the permuted subset output vector Y_local back into the
  // original output multivector Y.
  for(size_t j = 0; j < numVecs; ++j) {
    for(size_t i = 0; i < numRows; ++i) {
      const size_t i_perm = localRows[i];
      for(int k = 0; k < this->bcrsBlockSize_; ++k)
        YIn(i_perm*this->bcrsBlockSize_+k, j) = YOut(i*this->bcrsBlockSize_+k, j);
    }
  }
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;

  // if we have a block CRS matrix, call the appropriate method
  if(this->hasBlockCrs_) {
    applyBlockCrs(X,Y,blockIndex,stride,mode,alpha,beta);
    return;
  }
  const size_t numVecs = X.dimension_1();

  // The local operator might have a different Scalar type than
  // MatrixType.  This means that we might have to convert X and Y to
  // the Tpetra::MultiVector specialization that the local operator
  // wants.  This class' X_ and Y_ internal fields are of the right
  // type for the local operator, so we can use those as targets.

  const char prefix[] = "Ifpack2::DenseContainer::weightedApply: ";
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, prefix << "You must have called the "
    "compute() method before you may call this method.  You may call "
    "apply() as many times as you want after calling compute() once, "
    "but you must have called compute() at least once first.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_1 () != Y.dimension_1 (), std::runtime_error,
    prefix << "X and Y have different numbers of vectors (columns).  X has "
    << X.dimension_1 () << ", but Y has " << Y.dimension_1 () << ".");

  if (numVecs == 0) {
    return; // done! nothing to do
  }

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local Inverse_
  // operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.

  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i], numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i], numVecs);
    }
  }

  const ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);

  Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
  mvgs.gatherViewToView (X_local[blockIndex], X, localRows);

  // We must gather the contents of the output multivector Y even on
  // input to applyImpl(), since the inverse operator might use it as
  // an initial guess for a linear solve.  We have no way of knowing
  // whether it does or does not.

  mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);

  // Apply the local operator:
  // Y_local := beta*Y_local + alpha*M^{-1}*X_local
  this->applyImpl (X_local[blockIndex], Y_local[blockIndex], blockIndex, stride, mode,
                   as<local_scalar_type>(alpha), as<local_scalar_type>(beta));

  // Scatter the permuted subset output vector Y_local back into the
  // original output multivector Y.
  mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, true>::
weightedApply (HostView& X,
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const
{
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::Range1D;
  using Teuchos::Ptr;
  using Teuchos::ptr;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcp_const_cast;
  using std::endl;
  typedef Teuchos::ScalarTraits<scalar_type> STS;

  // The local operator template parameter might have a different
  // Scalar type than MatrixType.  This means that we might have to
  // convert X and Y to the Tpetra::MultiVector specialization that
  // the local operator wants.  This class' X_ and Y_ internal fields
  // are of the right type for the local operator, so we can use those
  // as targets.

  const char prefix[] = "Ifpack2::DenseContainer::weightedApply: ";
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! IsComputed_, std::runtime_error, prefix << "You must have called the "
    "compute() method before you may call this method.  You may call "
    "weightedApply() as many times as you want after calling compute() once, "
    "but you must have called compute() at least once first.");

  const size_t numVecs = X.dimension_1();

  TEUCHOS_TEST_FOR_EXCEPTION(
    X.dimension_1() != Y.dimension_1(), std::runtime_error,
    prefix << "X and Y have different numbers of vectors (columns).  X has "
    << X.dimension_1() << ", but Y has " << Y.dimension_1() << ".");

  if(numVecs == 0) {
    return; // done! nothing to do
  }

  const size_t numRows = this->blockRows_[blockIndex];

  // The local operator works on a permuted subset of the local parts
  // of X and Y.  The subset and permutation are defined by the index
  // array returned by getLocalRows().  If the permutation is trivial
  // and the subset is exactly equal to the local indices, then we
  // could use the local parts of X and Y exactly, without needing to
  // permute.  Otherwise, we have to use temporary storage to permute
  // X and Y.  For now, we always use temporary storage.
  //
  // Create temporary permuted versions of the input and output.
  // (Re)allocate X_ and/or Y_ only if necessary.  We'll use them to
  // store the permuted versions of X resp. Y.  Note that X_local has
  // the domain Map of the operator, which may be a permuted subset of
  // the local Map corresponding to X.getMap().  Similarly, Y_local
  // has the range Map of the operator, which may be a permuted subset
  // of the local Map corresponding to Y.getMap().  numRows_ here
  // gives the number of rows in the row Map of the local operator.
  //
  // FIXME (mfh 20 Aug 2013) There might be an implicit assumption
  // here that the row Map and the range Map of that operator are
  // the same.
  //
  // FIXME (mfh 20 Aug 2013) This "local permutation" functionality
  // really belongs in Tpetra.

  if(X_local.size() == 0)
  {
    //create all X_local and Y_local managed Views at once, are
    //reused in subsequent apply() calls
    for(int i = 0; i < this->numBlocks_; i++)
    {
      X_local.emplace_back("", this->blockRows_[i], numVecs);
    }
    for(int i = 0; i < this->numBlocks_; i++)
    {
      Y_local.emplace_back("", this->blockRows_[i], numVecs);
    }
  }

  ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);

  Details::MultiVectorLocalGatherScatter<mv_type, local_mv_type> mvgs;
  mvgs.gatherViewToView (X_local[blockIndex], X, localRows);
  // We must gather the output multivector Y even on input to
  // applyImpl(), since the local operator might use it as an initial
  // guess for a linear solve.  We have no way of knowing whether it
  // does or does not.

  mvgs.gatherViewToView (Y_local[blockIndex], Y, localRows);

  // Apply the diagonal scaling D to the input X.  It's our choice
  // whether the result has the original input Map of X, or the
  // permuted subset Map of X_local.  If the latter, we also need to
  // gather D into the permuted subset Map.  We choose the latter, to
  // save memory and computation.  Thus, we do the following:
  //
  // 1. Gather D into a temporary vector D_local.
  // 2. Create a temporary X_scaled to hold diag(D_local) * X_local.
  // 3. Compute X_scaled := diag(D_loca) * X_local.

  HostViewLocal D_local("", numRows, 1);
  mvgs.gatherViewToView (D_local, D, localRows);
  HostViewLocal X_scaled("", numRows, numVecs);
  for(size_t j = 0; j < numVecs; j++)
    for(size_t i = 0; i < numRows; i++)
      X_scaled(i, j) = X_local[blockIndex](i, j) * D_local(i, 0);

  // Y_temp will hold the result of M^{-1}*X_scaled.  If beta == 0, we
  // can write the result of Inverse_->apply() directly to Y_local, so
  // Y_temp may alias Y_local.  Otherwise, if beta != 0, we need
  // temporary storage for M^{-1}*X_scaled, so Y_temp must be
  // different than Y_local.
  Ptr<HostViewLocal> Y_temp;
  bool deleteYT = false;
  if(beta == STS::zero())
  {
    Y_temp = ptr(&Y_local[blockIndex]);
  } else {
    Y_temp = ptr(new HostViewLocal("", numRows, numVecs));
    deleteYT = true;
  }

  // Apply the local operator: Y_temp := M^{-1} * X_scaled
  this->applyImpl (X_scaled, *Y_temp, blockIndex, stride, mode, STS::one(), STS::zero());
  // Y_local := beta * Y_local + alpha * diag(D_local) * Y_temp.
  //
  // Note that we still use the permuted subset scaling D_local here,
  // because Y_temp has the same permuted subset Map.  That's good, in
  // fact, because it's a subset: less data to read and multiply.
  for(size_t j = 0; j < numVecs; j++)
    for(size_t i = 0; i < numRows; i++)
      Y_local[blockIndex](i, j) = Y_local[blockIndex](i, j) * (local_impl_scalar_type) beta + (local_impl_scalar_type) alpha * (*Y_temp)(i, j) * D_local(i, 0);

  if(deleteYT)
    delete Y_temp.get();

  // Copy the permuted subset output vector Y_local into the original
  // output multivector Y.
  mvgs.scatterViewToView (Y, Y_local[blockIndex], localRows);
}

template<class MatrixType, class LocalScalarType>
std::ostream&
DenseContainer<MatrixType, LocalScalarType, true>::
print (std::ostream& os) const
{
  Teuchos::FancyOStream fos (Teuchos::rcpFromRef (os));
  fos.setOutputToRootOnly (0);
  this->describe (fos);
  return os;
}

template<class MatrixType, class LocalScalarType>
std::string
DenseContainer<MatrixType, LocalScalarType, true>::
description () const
{
  std::ostringstream oss;
  oss << "Ifpack::DenseContainer: ";
  if (isInitialized()) {
    if (isComputed()) {
      oss << "{status = initialized, computed";
    }
    else {
      oss << "{status = initialized, not computed";
    }
  }
  else {
    oss << "{status = not initialized, not computed";
  }

  oss << "}";
  return oss.str();
}

template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
describe (Teuchos::FancyOStream& os,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  using std::endl;
  if(verbLevel==Teuchos::VERB_NONE) return;
  os << "================================================================================" << endl;
  os << "Ifpack2::DenseContainer" << endl;
  for(int i = 0; i < this->numBlocks_; i++)
  {
    os << "Block " << i << " number of rows          = " << this->blockRows_[i] << endl;
  }
  os << "isInitialized()         = " << IsInitialized_ << endl;
  os << "isComputed()            = " << IsComputed_ << endl;
  os << "================================================================================" << endl;
  os << endl;
}


template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
extractBlockCrs ()
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::toString;
  auto& A = this->inputMatrix_;
  const size_t inputMatrixNumRows = A->getNodeNumRows();
  // We only use the rank of the calling process and the number of MPI
  // processes for generating error messages.  Extraction itself is
  // entirely local to each participating MPI process.
  const int myRank = A->getRowMap ()->getComm ()->getRank ();
  const int numProcs = A->getRowMap ()->getComm ()->getSize ();

  // Sanity check that the local row indices to extract fall within
  // the valid range of local row indices for the input matrix.
  for(int i = 0; i < this->numBlocks_; ++i) {
    ArrayView<const local_ordinal_type> localRows = this->getLocalRows(i);
    for(local_ordinal_type j = 0; j < this->blockRows_[i]; ++j) {
      TEUCHOS_TEST_FOR_EXCEPTION(
        localRows[j] < 0 ||
        static_cast<size_t>(localRows[j]) >= inputMatrixNumRows,
        std::runtime_error, "Ifpack2::DenseContainer::extract: On process " <<
        myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
        localRows[j] << ", which is out of the valid range of local row indices "
        "indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
    }
  }

  // Convert the local row indices we want into local column indices.
  // For every local row ii_local = localRows[i] we take, we also want
  // to take the corresponding column.  To find the corresponding
  // column, we use the row Map to convert the local row index
  // ii_local into a global index ii_global, and then use the column
  // Map to convert ii_global into a local column index jj_local.  If
  // the input matrix doesn't have a column Map, we need to be using
  // global indices anyway...

  // We use the domain Map to exclude off-process global entries.
  auto globalRowMap = A->getRowMap ();
  auto globalColMap = A->getColMap ();
  auto globalDomMap = A->getDomainMap ();

  for(int blockIndex = 0; blockIndex < this->numBlocks_; blockIndex++)
  {
    const local_ordinal_type numRows_ = this->blockRows_[blockIndex];
    Teuchos::ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
    bool rowIndsValid = true;
    bool colIndsValid = true;
    Array<local_ordinal_type> localCols(numRows_);
    // For error messages, collect the sets of invalid row indices and
    // invalid column indices.  They are otherwise not useful.
    Array<local_ordinal_type> invalidLocalRowInds;
    Array<global_ordinal_type> invalidGlobalColInds;
    for (local_ordinal_type i = 0; i < numRows_; i++)
    {
      // ii_local is the (local) row index we want to look up.
      const local_ordinal_type ii_local = localRows[i];
      // Find the global index jj_global corresponding to ii_local.
      // Global indices are the same (rather, are required to be the
      // same) in all three Maps, which is why we use jj (suggesting a
      // column index, which is how we will use it below).
      const global_ordinal_type jj_global = globalRowMap->getGlobalElement(ii_local);
      if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
      {
        // If ii_local is not a local index in the row Map on the
        // calling process, that means localRows is incorrect.  We've
        // already checked for this in the constructor, but we might as
        // well check again here, since it's cheap to do so (just an
        // integer comparison, since we need jj_global anyway).
        rowIndsValid = false;
        invalidLocalRowInds.push_back(ii_local);
        break;
      }
      // Exclude "off-process" entries: that is, those in the column Map
      // on this process that are not in the domain Map on this process.
      if(globalDomMap->isNodeGlobalElement(jj_global))
      {
        // jj_global is not an off-process entry.  Look up its local
        // index in the column Map; we want to extract this column index
        // from the input matrix.  If jj_global is _not_ in the column
        // Map on the calling process, that could mean that the column
        // in question is empty on this process.  That would be bad for
        // solving linear systems with the extract submatrix.  We could
        // solve the resulting singular linear systems in a minimum-norm
        // least-squares sense, but for now we simply raise an exception.
        const local_ordinal_type jj_local = globalColMap->getLocalElement(jj_global);
        if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
        {
          colIndsValid = false;
          invalidGlobalColInds.push_back(jj_global);
          break;
        }
        localCols[i] = jj_local;
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      !rowIndsValid, std::logic_error, "Ifpack2::DenseContainer::extract: "
      "On process " << myRank << ", at least one row index in the set of local "
      "row indices given to the constructor is not a valid local row index in "
      "the input matrix's row Map on this process.  This should be impossible "
      "because the constructor checks for this case.  Here is the complete set "
      "of invalid local row indices: " << toString(invalidLocalRowInds) << ".  "
      "Please report this bug to the Ifpack2 developers.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      !colIndsValid, std::runtime_error, "Ifpack2::DenseContainer::extract: "
      "On process " << myRank << ", "
      "At least one row index in the set of row indices given to the constructor "
      "does not have a corresponding column index in the input matrix's column "
      "Map.  This probably means that the column(s) in question is/are empty on "
      "this process, which would make the submatrix to extract structurally "
      "singular.  Here is the compete set of invalid global column indices: "
      << toString(invalidGlobalColInds) << ".");

    diagBlocks_[blockIndex].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());

    const size_t maxNumEntriesInRow = A->getNodeMaxNumRowEntries();
    Array<local_ordinal_type> ind(maxNumEntriesInRow);

    const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();

    Array<scalar_type> val(maxNumEntriesInRow * this->bcrsBlockSize_ * this->bcrsBlockSize_);
    for(local_ordinal_type i = 0; i < numRows_; i++)
    {
      const local_ordinal_type localRow = localRows[i];
      size_t numEntries;
      A->getLocalRowCopy(localRow, ind(), val(), numEntries);

      for(size_t k = 0; k < numEntries; k++)
      {
        const local_ordinal_type localCol = ind[k];
        // Skip off-process elements
        //
        // FIXME (mfh 24 Aug 2013) This assumes the following:
        //
        // 1. The column and row Maps begin with the same set of
        //    on-process entries, in the same order.  That is,
        //    on-process row and column indices are the same.
        // 2. All off-process indices in the column Map of the input
        //    matrix occur after that initial set.
        if(localCol >= 0 && static_cast<size_t> (localCol) < inputMatrixNumRows)
        {
          // for local column IDs, look for each ID in the list
          // of columns hosted by this object
          local_ordinal_type jj = INVALID;
          for(local_ordinal_type kk = 0; kk < numRows_; kk++)
          {
            if(localRows[kk] == localCol)
              jj = kk;
          }
          if(jj != INVALID)
          {
            // copy entire diagonal block
            for(local_ordinal_type c = 0; c < this->bcrsBlockSize_; c++)
            {
              for(local_ordinal_type r = 0; r < this->bcrsBlockSize_; r++)
                diagBlocks_[blockIndex](this->bcrsBlockSize_ * i + r,
                                        this->bcrsBlockSize_ * jj + c)
                  = val[k * (this->bcrsBlockSize_ * this->bcrsBlockSize_)
                    + (r + this->bcrsBlockSize_ * c)];
            }
          }
        }
      }
    }
  }
}


template<class MatrixType, class LocalScalarType>
void
DenseContainer<MatrixType, LocalScalarType, true>::
extract ()
{
  using Teuchos::Array;
  using Teuchos::ArrayView;
  using Teuchos::toString;
  auto& A = *this->inputMatrix_;
  const size_t inputMatrixNumRows = A.getNodeNumRows();
  // We only use the rank of the calling process and the number of MPI
  // processes for generating error messages.  Extraction itself is
  // entirely local to each participating MPI process.
  const int myRank = A.getRowMap ()->getComm ()->getRank ();
  const int numProcs = A.getRowMap ()->getComm ()->getSize ();

  for(int blockIndex = 0; blockIndex < this->numBlocks_; blockIndex++)
  {
    local_ordinal_type numRows_ = this->blockRows_[blockIndex];
    // If this is a block CRS matrix, call the appropriate function
    if(this->hasBlockCrs_)
    {
      extractBlockCrs();
      return;
    }

    // Sanity check that the local row indices to extract fall within
    // the valid range of local row indices for the input matrix.
    ArrayView<const local_ordinal_type> localRows = this->getLocalRows(blockIndex);
    for(local_ordinal_type j = 0; j < numRows_; j++)
    {
      TEUCHOS_TEST_FOR_EXCEPTION(
        localRows[j] < 0 ||
        static_cast<size_t> (localRows[j]) >= inputMatrixNumRows,
        std::runtime_error, "Ifpack2::DenseContainer::extract: On process " <<
        myRank << " of " << numProcs << ", localRows[j=" << j << "] = " <<
        localRows[j] << ", which is out of the valid range of local row indices "
        "indices [0, " << (inputMatrixNumRows - 1) << "] for the input matrix.");
    }

    // Convert the local row indices we want into local column indices.
    // For every local row ii_local = localRows[i] we take, we also want
    // to take the corresponding column.  To find the corresponding
    // column, we use the row Map to convert the local row index
    // ii_local into a global index ii_global, and then use the column
    // Map to convert ii_global into a local column index jj_local.  If
    // the input matrix doesn't have a column Map, we need to be using
    // global indices anyway...

    // We use the domain Map to exclude off-process global entries.
    const map_type& globalRowMap = * (A.getRowMap ());
    const map_type& globalColMap = * (A.getColMap ());
    const map_type& globalDomMap = * (A.getDomainMap ());

    bool rowIndsValid = true;
    bool colIndsValid = true;
    Array<local_ordinal_type> localCols(numRows_);
    // For error messages, collect the sets of invalid row indices and
    // invalid column indices.  They are otherwise not useful.
    Array<local_ordinal_type> invalidLocalRowInds;
    Array<global_ordinal_type> invalidGlobalColInds;
    for(local_ordinal_type i = 0; i < numRows_; i++)
    {
      // ii_local is the (local) row index we want to look up.
      const local_ordinal_type ii_local = localRows[i];
      // Find the global index jj_global corresponding to ii_local.
      // Global indices are the same (rather, are required to be the
      // same) in all three Maps, which is why we use jj (suggesting a
      // column index, which is how we will use it below).
      const global_ordinal_type jj_global = globalRowMap.getGlobalElement(ii_local);
      if(jj_global == Teuchos::OrdinalTraits<global_ordinal_type>::invalid())
      {
        // If ii_local is not a local index in the row Map on the
        // calling process, that means localRows is incorrect.  We've
        // already checked for this in the constructor, but we might as
        // well check again here, since it's cheap to do so (just an
        // integer comparison, since we need jj_global anyway).
        rowIndsValid = false;
        invalidLocalRowInds.push_back(ii_local);
        break;
      }
      // Exclude "off-process" entries: that is, those in the column Map
      // on this process that are not in the domain Map on this process.
      if(globalDomMap.isNodeGlobalElement(jj_global))
      {
        // jj_global is not an off-process entry.  Look up its local
        // index in the column Map; we want to extract this column index
        // from the input matrix.  If jj_global is _not_ in the column
        // Map on the calling process, that could mean that the column
        // in question is empty on this process.  That would be bad for
        // solving linear systems with the extract submatrix.  We could
        // solve the resulting singular linear systems in a minimum-norm
        // least-squares sense, but for now we simply raise an exception.
        const local_ordinal_type jj_local = globalColMap.getLocalElement(jj_global);
        if(jj_local == Teuchos::OrdinalTraits<local_ordinal_type>::invalid())
        {
          colIndsValid = false;
          invalidGlobalColInds.push_back(jj_global);
          break;
        }
        localCols[i] = jj_local;
      }
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
      !rowIndsValid, std::logic_error, "Ifpack2::DenseContainer::extract: "
      "On process " << myRank << ", at least one row index in the set of local "
      "row indices given to the constructor is not a valid local row index in "
      "the input matrix's row Map on this process.  This should be impossible "
      "because the constructor checks for this case.  Here is the complete set "
      "of invalid local row indices: " << toString(invalidLocalRowInds) << ".  "
      "Please report this bug to the Ifpack2 developers.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      !colIndsValid, std::runtime_error, "Ifpack2::DenseContainer::extract: "
      "On process " << myRank << ", "
      "At least one row index in the set of row indices given to the constructor "
      "does not have a corresponding column index in the input matrix's column "
      "Map.  This probably means that the column(s) in question is/are empty on "
      "this process, which would make the submatrix to extract structurally "
      "singular.  Here is the compete set of invalid global column indices: "
      << toString(invalidGlobalColInds) << ".");

    diagBlocks_[blockIndex].putScalar(Teuchos::ScalarTraits<local_scalar_type>::zero());

    const size_t maxNumEntriesInRow = A.getNodeMaxNumRowEntries();
    Array<local_ordinal_type> ind(maxNumEntriesInRow);

    const local_ordinal_type INVALID = Teuchos::OrdinalTraits<local_ordinal_type>::invalid();

    Array<scalar_type> val(maxNumEntriesInRow);
    for (local_ordinal_type i = 0; i < numRows_; i++)
    {
      const local_ordinal_type localRow = localRows[i];
      size_t numEntries;
      A.getLocalRowCopy(localRow, ind(), val(), numEntries);
      for (size_t k = 0; k < numEntries; ++k)
      {
        const local_ordinal_type localCol = ind[k];
        // Skip off-process elements
        //
        // FIXME (mfh 24 Aug 2013) This assumes the following:
        //
        // 1. The column and row Maps begin with the same set of
        //    on-process entries, in the same order.  That is,
        //    on-process row and column indices are the same.
        // 2. All off-process indices in the column Map of the input
        //    matrix occur after that initial set.
        if(localCol >= 0 && static_cast<size_t> (localCol) < inputMatrixNumRows)
        {
          // for local column IDs, look for each ID in the list
          // of columns hosted by this object
          local_ordinal_type jj = INVALID;
          for(local_ordinal_type kk = 0; kk < numRows_; kk++)
          {
            if(localRows[kk] == localCol)
              jj = kk;
          }
          if(jj != INVALID)
            diagBlocks_[blockIndex](i, jj) += val[k]; // ???
        }
      }
    }
  }
}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, true>::clearBlocks()
{
  std::vector<Teuchos::SerialDenseMatrix<int, local_scalar_type>> empty1;
  std::swap(diagBlocks_, empty1);
  Teuchos::Array<int> empty2;
  Teuchos::swap(ipiv_, empty2);
  std::vector<HostViewLocal> empty3;
  std::swap(X_local, empty3);
  std::vector<HostViewLocal> empty4;
  std::swap(Y_local, empty4);
  Container<MatrixType>::clearBlocks();
}

template<class MatrixType, class LocalScalarType>
std::string DenseContainer<MatrixType, LocalScalarType, true>::getName()
{
  return "Dense";
}

template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, false>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<Teuchos::Array<local_ordinal_type> >& partitions,
                const Teuchos::RCP<const import_type>& importer,
                int OverlapLevel,
                scalar_type DampingFactor) :
  Container<MatrixType> (matrix, partitions, importer, OverlapLevel,
                         DampingFactor)
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "Ifpack2::DenseContainer: Not implemented for "
     "LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
     << ".");
}

template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, false>::
DenseContainer (const Teuchos::RCP<const row_matrix_type>& matrix,
                const Teuchos::Array<local_ordinal_type>& localRows) :
  Container<MatrixType>(matrix, localRows)
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "Ifpack2::DenseContainer: Not implemented for "
     "LocalScalarType = " << Teuchos::TypeNameTraits<LocalScalarType>::name ()
     << ".");
}

template<class MatrixType, class LocalScalarType>
DenseContainer<MatrixType, LocalScalarType, false>::~DenseContainer() {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
setParameters (const Teuchos::ParameterList& /* List */) {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::initialize() {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::compute() {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::factor() {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
applyImplBlockCrs (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           local_scalar_type alpha,
           local_scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
applyImpl (HostViewLocal& X,
           HostViewLocal& Y,
           int blockIndex,
           int stride,
           Teuchos::ETransp mode,
           local_scalar_type alpha,
           local_scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
applyBlockCrs (HostView& XIn,
       HostView& YIn,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
apply (HostView& X,
       HostView& Y,
       int blockIndex,
       int stride,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
weightedApply (HostView& X,
               HostView& Y,
               HostView& D,
               int blockIndex,
               int stride,
               Teuchos::ETransp mode,
               scalar_type alpha,
               scalar_type beta) const {}

template<class MatrixType, class LocalScalarType>
std::ostream& DenseContainer<MatrixType, LocalScalarType, false>::
print (std::ostream& os) const
{
  return os;
}

template<class MatrixType, class LocalScalarType>
std::string DenseContainer<MatrixType, LocalScalarType, false>::
description () const
{
  return "";
}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
describe (Teuchos::FancyOStream& os,
          const Teuchos::EVerbosityLevel verbLevel) const {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
extractBlockCrs () {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::
extract () {}

template<class MatrixType, class LocalScalarType>
void DenseContainer<MatrixType, LocalScalarType, false>::clearBlocks() {}

template<class MatrixType, class LocalScalarType>
std::string DenseContainer<MatrixType, LocalScalarType, false>::getName()
{
  return "";
}

} // namespace Ifpack2

// There's no need to instantiate for CrsMatrix too.  All Ifpack2
// preconditioners can and should do dynamic casts if they need a type
// more specific than RowMatrix.

#define IFPACK2_DENSECONTAINER_INSTANT(S,LO,GO,N) \
  template class Ifpack2::DenseContainer< Tpetra::RowMatrix<S, LO, GO, N>, S >;

#endif // IFPACK2_DENSECONTAINER_DEF_HPP