This file is indexed.

/usr/include/trilinos/Ifpack2_ILUT_def.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK2_ILUT_DEF_HPP
#define IFPACK2_ILUT_DEF_HPP

// disable clang warnings
#if defined (__clang__) && !defined (__INTEL_COMPILER)
#pragma clang system_header
#endif

#include "Ifpack2_Heap.hpp"
#include "Ifpack2_LocalFilter.hpp"
#include "Ifpack2_LocalSparseTriangularSolver_decl.hpp"
#include "Ifpack2_Parameters.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include "Teuchos_Time.hpp"
#include "Teuchos_TypeNameTraits.hpp"

namespace Ifpack2 {

  namespace {

    /// \brief Default drop tolerance for ILUT.
    ///
    /// \tparam ScalarType The "scalar type"; the type of entries in
    ///   the input sparse matrix to ILUT.  This is the same as the
    ///   scalar_type typedef of ILUT.
    ///
    /// \warning This is an implementation detail of Ifpack2.  Do NOT
    ///   depend on this function or use it in your code.  It may go
    ///   away entirely or change interface or behavior without
    ///   warning.
    ///
    /// This function preserves the previous default drop tolerance
    /// (1e-12, independent of scalar type), thus ensuring backwards
    /// compatibility for the common case of ScalarType=double.
    /// However, it provides a more reasonable default for other
    /// scalar types of possibly lower or higher precision than
    /// double.
    ///
    /// This function is templated on ScalarType, rather than its
    /// magnitude type, so that we can handle complex numbers
    /// specially if desired.
    ///
    /// In order to override the default, just specialize this
    /// function for your particular ScalarType.
    template<class ScalarType>
    inline typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
    ilutDefaultDropTolerance () {
      using Teuchos::as;
      typedef Teuchos::ScalarTraits<ScalarType> STS;
      typedef typename STS::magnitudeType magnitude_type;
      typedef Teuchos::ScalarTraits<magnitude_type> STM;

      // 1/2.  Hopefully this can be represented in magnitude_type.
      const magnitude_type oneHalf = STM::one() / (STM::one() + STM::one());

      // The min ensures that in case magnitude_type has very low
      // precision, we'll at least get some value strictly less than
      // one.
      return std::min (as<magnitude_type> (1000) * STS::magnitude (STS::eps ()), oneHalf);
    }

    // Full specialization for ScalarType = double.
    // This specialization preserves ILUT's previous default behavior.
    template<>
    inline Teuchos::ScalarTraits<double>::magnitudeType
    ilutDefaultDropTolerance<double> () {
      return 1e-12;
    }

  } // namespace (anonymous)


template <class MatrixType>
ILUT<MatrixType>::ILUT (const Teuchos::RCP<const row_matrix_type>& A) :
  A_ (A),
  Athresh_ (Teuchos::ScalarTraits<magnitude_type>::zero ()),
  Rthresh_ (Teuchos::ScalarTraits<magnitude_type>::one ()),
  RelaxValue_ (Teuchos::ScalarTraits<magnitude_type>::zero ()),
  LevelOfFill_ (1),
  DropTolerance_ (ilutDefaultDropTolerance<scalar_type> ()),
  InitializeTime_ (0.0),
  ComputeTime_ (0.0),
  ApplyTime_ (0.0),
  NumInitialize_ (0),
  NumCompute_ (0),
  NumApply_ (0),
  IsInitialized_ (false),
  IsComputed_ (false)
{}

template <class MatrixType>
ILUT<MatrixType>::~ILUT()
{}

template <class MatrixType>
void ILUT<MatrixType>::setParameters (const Teuchos::ParameterList& params)
{
  using Teuchos::as;
  using Teuchos::Exceptions::InvalidParameterName;
  using Teuchos::Exceptions::InvalidParameterType;

  // Default values of the various parameters.
  int fillLevel = 1;
  magnitude_type absThresh = STM::zero ();
  magnitude_type relThresh = STM::one ();
  magnitude_type relaxValue = STM::zero ();
  magnitude_type dropTol = ilutDefaultDropTolerance<scalar_type> ();

  bool gotFillLevel = false;
  try {
    // Try getting the fill level as an int.
    fillLevel = params.get<int> ("fact: ilut level-of-fill");
    gotFillLevel = true;
  }
  catch (InvalidParameterName&) {
    // We didn't really get it, but this tells us to stop looking.
    gotFillLevel = true;
  }
  catch (InvalidParameterType&) {
    // The name is right, but the type is wrong; try different types.
    // We don't have to check InvalidParameterName again, since we
    // checked it above, and it has nothing to do with the type.
  }

  if (! gotFillLevel) {
    // Try magnitude_type, for backwards compatibility.
    try {
      fillLevel = as<int> (params.get<magnitude_type> ("fact: ilut level-of-fill"));
    }
    catch (InvalidParameterType&) {}
  }
  if (! gotFillLevel) {
    // Try double, for backwards compatibility.
    try {
      fillLevel = as<int> (params.get<double> ("fact: ilut level-of-fill"));
    }
    catch (InvalidParameterType&) {}
  }
  // If none of the above attempts succeed, accept the default value.

  TEUCHOS_TEST_FOR_EXCEPTION(
    fillLevel <= 0, std::runtime_error,
    "Ifpack2::ILUT: The \"fact: ilut level-of-fill\" parameter must be "
    "strictly greater than zero, but you specified a value of " << fillLevel
    << ".  Remember that for ILUT, the fill level p means something different "
    "than it does for ILU(k).  ILU(0) produces factors with the same sparsity "
    "structure as the input matrix A; ILUT with p = 0 always produces a "
    "diagonal matrix, and is thus probably not what you want.");

  try {
    absThresh = params.get<magnitude_type> ("fact: absolute threshold");
  }
  catch (InvalidParameterType&) {
    // Try double, for backwards compatibility.
    // The cast from double to magnitude_type must succeed.
    absThresh = as<magnitude_type> (params.get<double> ("fact: absolute threshold"));
  }
  catch (InvalidParameterName&) {
    // Accept the default value.
  }

  try {
    relThresh = params.get<magnitude_type> ("fact: relative threshold");
  }
  catch (InvalidParameterType&) {
    // Try double, for backwards compatibility.
    // The cast from double to magnitude_type must succeed.
    relThresh = as<magnitude_type> (params.get<double> ("fact: relative threshold"));
  }
  catch (InvalidParameterName&) {
    // Accept the default value.
  }

  try {
    relaxValue = params.get<magnitude_type> ("fact: relax value");
  }
  catch (InvalidParameterType&) {
    // Try double, for backwards compatibility.
    // The cast from double to magnitude_type must succeed.
    relaxValue = as<magnitude_type> (params.get<double> ("fact: relax value"));
  }
  catch (InvalidParameterName&) {
    // Accept the default value.
  }

  try {
    dropTol = params.get<magnitude_type> ("fact: drop tolerance");
  }
  catch (InvalidParameterType&) {
    // Try double, for backwards compatibility.
    // The cast from double to magnitude_type must succeed.
    dropTol = as<magnitude_type> (params.get<double> ("fact: drop tolerance"));
  }
  catch (InvalidParameterName&) {
    // Accept the default value.
  }

  // "Commit" the values only after validating all of them.  This
  // ensures that there are no side effects if this routine throws an
  // exception.

  // mfh 28 Nov 2012: The previous code would not assign Athresh_,
  // Rthresh_, RelaxValue_, or DropTolerance_ if the read-in value was
  // -1.  I don't know if keeping this behavior is correct, but I'll
  // keep it just so as not to change previous behavior.

  LevelOfFill_ = fillLevel;
  if (absThresh != -STM::one ()) {
    Athresh_ = absThresh;
  }
  if (relThresh != -STM::one ()) {
    Rthresh_ = relThresh;
  }
  if (relaxValue != -STM::one ()) {
    RelaxValue_ = relaxValue;
  }
  if (dropTol != -STM::one ()) {
    DropTolerance_ = dropTol;
  }
}


template <class MatrixType>
Teuchos::RCP<const Teuchos::Comm<int> >
ILUT<MatrixType>::getComm () const {
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getComm: "
    "The matrix is null.  Please call setMatrix() with a nonnull input "
    "before calling this method.");
  return A_->getComm ();
}


template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::row_matrix_type>
ILUT<MatrixType>::getMatrix () const {
  return A_;
}


template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::map_type>
ILUT<MatrixType>::getDomainMap () const
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getDomainMap: "
    "The matrix is null.  Please call setMatrix() with a nonnull input "
    "before calling this method.");
  return A_->getDomainMap ();
}


template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::map_type>
ILUT<MatrixType>::getRangeMap () const
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getRangeMap: "
    "The matrix is null.  Please call setMatrix() with a nonnull input "
    "before calling this method.");
  return A_->getRangeMap ();
}


template <class MatrixType>
bool ILUT<MatrixType>::hasTransposeApply () const {
  return true;
}


template <class MatrixType>
int ILUT<MatrixType>::getNumInitialize () const {
  return NumInitialize_;
}


template <class MatrixType>
int ILUT<MatrixType>::getNumCompute () const {
  return NumCompute_;
}


template <class MatrixType>
int ILUT<MatrixType>::getNumApply () const {
  return NumApply_;
}


template <class MatrixType>
double ILUT<MatrixType>::getInitializeTime () const {
  return InitializeTime_;
}


template<class MatrixType>
double ILUT<MatrixType>::getComputeTime () const {
  return ComputeTime_;
}


template<class MatrixType>
double ILUT<MatrixType>::getApplyTime () const {
  return ApplyTime_;
}


template<class MatrixType>
size_t ILUT<MatrixType>::getNodeSmootherComplexity() const {
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getNodeSmootherComplexity: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix, then call compute(), before calling this method.");
  // ILUT methods cost roughly one apply + the nnz in the upper+lower triangles
  return A_->getNodeNumEntries() + getNodeNumEntries();
}


template<class MatrixType>
global_size_t ILUT<MatrixType>::getGlobalNumEntries () const {
  return L_->getGlobalNumEntries () + U_->getGlobalNumEntries ();
}


template<class MatrixType>
size_t ILUT<MatrixType>::getNodeNumEntries () const {
  return L_->getNodeNumEntries () + U_->getNodeNumEntries ();
}


template<class MatrixType>
void ILUT<MatrixType>::setMatrix (const Teuchos::RCP<const row_matrix_type>& A)
{
  if (A.getRawPtr () != A_.getRawPtr ()) {
    // Check in serial or one-process mode if the matrix is square.
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! A.is_null () && A->getComm ()->getSize () == 1 &&
      A->getNodeNumRows () != A->getNodeNumCols (),
      std::runtime_error, "Ifpack2::ILUT::setMatrix: If A's communicator only "
      "contains one process, then A must be square.  Instead, you provided a "
      "matrix A with " << A->getNodeNumRows () << " rows and "
      << A->getNodeNumCols () << " columns.");

    // It's legal for A to be null; in that case, you may not call
    // initialize() until calling setMatrix() with a nonnull input.
    // Regardless, setting the matrix invalidates any previous
    // factorization.
    IsInitialized_ = false;
    IsComputed_ = false;
    A_local_ = Teuchos::null;

    // The sparse triangular solvers get a triangular factor as their
    // input matrix.  The triangular factors L_ and U_ are getting
    // reset, so we reset the solvers' matrices to null.  Do that
    // before setting L_ and U_ to null, so that latter step actually
    // frees the factors.
    if (! L_solver_.is_null ()) {
      L_solver_->setMatrix (Teuchos::null);
    }
    if (! U_solver_.is_null ()) {
      U_solver_->setMatrix (Teuchos::null);
    }

    L_ = Teuchos::null;
    U_ = Teuchos::null;
    A_ = A;
  }
}


template<class MatrixType>
void ILUT<MatrixType>::initialize ()
{
  Teuchos::Time timer ("ILUT::initialize");
  {
    Teuchos::TimeMonitor timeMon (timer);

    // Check that the matrix is nonnull.
    TEUCHOS_TEST_FOR_EXCEPTION(
      A_.is_null (), std::runtime_error, "Ifpack2::ILUT::initialize: "
      "The matrix to precondition is null.  Please call setMatrix() with a "
      "nonnull input before calling this method.");

    // Clear any previous computations.
    IsInitialized_ = false;
    IsComputed_ = false;
    A_local_ = Teuchos::null;
    L_ = Teuchos::null;
    U_ = Teuchos::null;

    A_local_ = makeLocalFilter (A_); // Compute the local filter.

    IsInitialized_ = true;
    ++NumInitialize_;
  }
  InitializeTime_ += timer.totalElapsedTime ();
}


template<typename ScalarType>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
scalar_mag (const ScalarType& s)
{
  return Teuchos::ScalarTraits<ScalarType>::magnitude(s);
}


template<class MatrixType>
void ILUT<MatrixType>::compute ()
{
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::rcp;
  using Teuchos::reduceAll;

  //--------------------------------------------------------------------------
  // Ifpack2::ILUT is a translation of the Aztec ILUT implementation. The Aztec
  // ILUT implementation was written by Ray Tuminaro.
  //
  // This isn't an exact translation of the Aztec ILUT algorithm, for the
  // following reasons:
  // 1. Minor differences result from the fact that Aztec factors a MSR format
  // matrix in place, while the code below factors an input CrsMatrix which
  // remains untouched and stores the resulting factors in separate L and U
  // CrsMatrix objects.
  // Also, the Aztec code begins by shifting the matrix pointers back
  // by one, and the pointer contents back by one, and then using 1-based
  // Fortran-style indexing in the algorithm. This Ifpack2 code uses C-style
  // 0-based indexing throughout.
  // 2. Aztec stores the inverse of the diagonal of U. This Ifpack2 code
  // stores the non-inverted diagonal in U.
  // The triangular solves (in Ifpack2::ILUT::apply()) are performed by
  // calling the Tpetra::CrsMatrix::solve method on the L and U objects, and
  // this requires U to contain the non-inverted diagonal.
  //
  // ABW.
  //--------------------------------------------------------------------------

  // Don't count initialization in the compute() time.
  if (! isInitialized ()) {
    initialize ();
  }

  Teuchos::Time timer ("ILUT::compute");
  { // Timer scope for timing compute()
    Teuchos::TimeMonitor timeMon (timer, true);
    const scalar_type zero = STS::zero ();
    const scalar_type one  = STS::one ();

    const local_ordinal_type myNumRows = A_local_->getNodeNumRows ();
    L_ = rcp (new crs_matrix_type (A_local_->getRowMap (), A_local_->getColMap (), 0));
    U_ = rcp (new crs_matrix_type (A_local_->getRowMap (), A_local_->getColMap (), 0));

    // CGB: note, this caching approach may not be necessary anymore
    // We will store ArrayView objects that are views of the rows of U, so that
    // we don't have to repeatedly retrieve the view for each row. These will
    // be populated row by row as the factorization proceeds.
    Array<ArrayView<const local_ordinal_type> > Uindices (myNumRows);
    Array<ArrayView<const scalar_type> >       Ucoefs (myNumRows);

    // If this macro is defined, files containing the L and U factors
    // will be written. DON'T CHECK IN THE CODE WITH THIS MACRO ENABLED!!!
    // #define IFPACK2_WRITE_FACTORS
#ifdef IFPACK2_WRITE_FACTORS
    std::ofstream ofsL("L.tif.mtx", std::ios::out);
    std::ofstream ofsU("U.tif.mtx", std::ios::out);
#endif

    // The code here uses double for fill calculations, even though
    // the fill level is actually an integer.  The point is to avoid
    // rounding and overflow for integer calculations.  If int is <=
    // 32 bits, it can never overflow double, so this cast is always
    // OK as long as int has <= 32 bits.

    // Calculate how much fill will be allowed in addition to the
    // space that corresponds to the input matrix entries.
    double local_nnz = static_cast<double> (A_local_->getNodeNumEntries ());
    double fill;
    {
      const double fillLevel = as<double> (getLevelOfFill ());
      fill = ((fillLevel - 1) * local_nnz) / (2 * myNumRows);
    }

    // std::ceil gives the smallest integer larger than the argument.
    // this may give a slightly different result than Aztec's fill value in
    // some cases.
    double fill_ceil=std::ceil(fill);

    // Similarly to Aztec, we will allow the same amount of fill for each
    // row, half in L and half in U.
    size_type fillL = static_cast<size_type>(fill_ceil);
    size_type fillU = static_cast<size_type>(fill_ceil);

    Array<scalar_type> InvDiagU (myNumRows, zero);

    Array<local_ordinal_type> tmp_idx;
    Array<scalar_type> tmpv;

    enum { UNUSED, ORIG, FILL };
    local_ordinal_type max_col = myNumRows;

    Array<int> pattern(max_col, UNUSED);
    Array<scalar_type> cur_row(max_col, zero);
    Array<magnitude_type> unorm(max_col);
    magnitude_type rownorm;
    Array<local_ordinal_type> L_cols_heap;
    Array<local_ordinal_type> U_cols;
    Array<local_ordinal_type> L_vals_heap;
    Array<local_ordinal_type> U_vals_heap;

    // A comparison object which will be used to create 'heaps' of indices
    // that are ordered according to the corresponding values in the
    // 'cur_row' array.
    greater_indirect<scalar_type,local_ordinal_type> vals_comp(cur_row);

    // =================== //
    // start factorization //
    // =================== //

    ArrayRCP<local_ordinal_type> ColIndicesARCP;
    ArrayRCP<scalar_type>       ColValuesARCP;
    if (! A_local_->supportsRowViews ()) {
      const size_t maxnz = A_local_->getNodeMaxNumRowEntries ();
      ColIndicesARCP.resize (maxnz);
      ColValuesARCP.resize (maxnz);
    }

    for (local_ordinal_type row_i = 0 ; row_i < myNumRows ; ++row_i) {
      ArrayView<const local_ordinal_type> ColIndicesA;
      ArrayView<const scalar_type> ColValuesA;
      size_t RowNnz;

      if (A_local_->supportsRowViews ()) {
        A_local_->getLocalRowView (row_i, ColIndicesA, ColValuesA);
        RowNnz = ColIndicesA.size ();
      }
      else {
        A_local_->getLocalRowCopy (row_i, ColIndicesARCP (), ColValuesARCP (), RowNnz);
        ColIndicesA = ColIndicesARCP (0, RowNnz);
        ColValuesA = ColValuesARCP (0, RowNnz);
      }

      // Always include the diagonal in the U factor. The value should get
      // set in the next loop below.
      U_cols.push_back(row_i);
      cur_row[row_i] = zero;
      pattern[row_i] = ORIG;

      size_type L_cols_heaplen = 0;
      rownorm = STM::zero ();
      for (size_t i = 0; i < RowNnz; ++i) {
        if (ColIndicesA[i] < myNumRows) {
          if (ColIndicesA[i] < row_i) {
            add_to_heap(ColIndicesA[i], L_cols_heap, L_cols_heaplen);
          }
          else if (ColIndicesA[i] > row_i) {
            U_cols.push_back(ColIndicesA[i]);
          }

          cur_row[ColIndicesA[i]] = ColValuesA[i];
          pattern[ColIndicesA[i]] = ORIG;
          rownorm += scalar_mag(ColValuesA[i]);
        }
      }

      // Alter the diagonal according to the absolute-threshold and
      // relative-threshold values. If not set, those values default
      // to zero and one respectively.
      const magnitude_type rthresh = getRelativeThreshold();
      const scalar_type& v = cur_row[row_i];
      cur_row[row_i] = as<scalar_type> (getAbsoluteThreshold() * IFPACK2_SGN(v)) + rthresh*v;

      size_type orig_U_len = U_cols.size();
      RowNnz = L_cols_heap.size() + orig_U_len;
      rownorm = getDropTolerance() * rownorm/RowNnz;

      // The following while loop corresponds to the 'L30' goto's in Aztec.
      size_type L_vals_heaplen = 0;
      while (L_cols_heaplen > 0) {
        local_ordinal_type row_k = L_cols_heap.front();

        scalar_type multiplier = cur_row[row_k] * InvDiagU[row_k];
        cur_row[row_k] = multiplier;
        magnitude_type mag_mult = scalar_mag(multiplier);
        if (mag_mult*unorm[row_k] < rownorm) {
          pattern[row_k] = UNUSED;
          rm_heap_root(L_cols_heap, L_cols_heaplen);
          continue;
        }
        if (pattern[row_k] != ORIG) {
          if (L_vals_heaplen < fillL) {
            add_to_heap(row_k, L_vals_heap, L_vals_heaplen, vals_comp);
          }
          else if (L_vals_heaplen==0 ||
                   mag_mult < scalar_mag(cur_row[L_vals_heap.front()])) {
            pattern[row_k] = UNUSED;
            rm_heap_root(L_cols_heap, L_cols_heaplen);
            continue;
          }
          else {
            pattern[L_vals_heap.front()] = UNUSED;
            rm_heap_root(L_vals_heap, L_vals_heaplen, vals_comp);
            add_to_heap(row_k, L_vals_heap, L_vals_heaplen, vals_comp);
          }
        }

        /* Reduce current row */

        ArrayView<const local_ordinal_type>& ColIndicesU = Uindices[row_k];
        ArrayView<const scalar_type>& ColValuesU = Ucoefs[row_k];
        size_type ColNnzU = ColIndicesU.size();

        for(size_type j=0; j<ColNnzU; ++j) {
          if (ColIndicesU[j] > row_k) {
            scalar_type tmp = multiplier * ColValuesU[j];
            local_ordinal_type col_j = ColIndicesU[j];
            if (pattern[col_j] != UNUSED) {
              cur_row[col_j] -= tmp;
            }
            else if (scalar_mag(tmp) > rownorm) {
              cur_row[col_j] = -tmp;
              pattern[col_j] = FILL;
              if (col_j > row_i) {
                U_cols.push_back(col_j);
              }
              else {
                add_to_heap(col_j, L_cols_heap, L_cols_heaplen);
              }
            }
          }
        }

        rm_heap_root(L_cols_heap, L_cols_heaplen);
      }//end of while(L_cols_heaplen) loop


      // Put indices and values for L into arrays and then into the L_ matrix.

      //   first, the original entries from the L section of A:
      for (size_type i = 0; i < ColIndicesA.size (); ++i) {
        if (ColIndicesA[i] < row_i) {
          tmp_idx.push_back(ColIndicesA[i]);
          tmpv.push_back(cur_row[ColIndicesA[i]]);
          pattern[ColIndicesA[i]] = UNUSED;
        }
      }

      //   next, the L entries resulting from fill:
      for (size_type j = 0; j < L_vals_heaplen; ++j) {
        tmp_idx.push_back(L_vals_heap[j]);
        tmpv.push_back(cur_row[L_vals_heap[j]]);
        pattern[L_vals_heap[j]] = UNUSED;
      }

      // L has a one on the diagonal, but we don't explicitly store
      // it.  If we don't store it, then the kernel which performs the
      // triangular solve can assume a unit diagonal, take a short-cut
      // and perform faster.

      L_->insertLocalValues (row_i, tmp_idx (), tmpv ());
#ifdef IFPACK2_WRITE_FACTORS
      for (size_type ii = 0; ii < tmp_idx.size (); ++ii) {
        ofsL << row_i << " " << tmp_idx[ii] << " " << tmpv[ii] << std::endl;
      }
#endif

      tmp_idx.clear();
      tmpv.clear();

      // Pick out the diagonal element, store its reciprocal.
      if (cur_row[row_i] == zero) {
        std::cerr << "Ifpack2::ILUT::Compute: zero pivot encountered! Replacing with rownorm and continuing...(You may need to set the parameter 'fact: absolute threshold'.)" << std::endl;
        cur_row[row_i] = rownorm;
      }
      InvDiagU[row_i] = one / cur_row[row_i];

      // Non-inverted diagonal is stored for U:
      tmp_idx.push_back(row_i);
      tmpv.push_back(cur_row[row_i]);
      unorm[row_i] = scalar_mag(cur_row[row_i]);
      pattern[row_i] = UNUSED;

      // Now put indices and values for U into arrays and then into the U_ matrix.
      // The first entry in U_cols is the diagonal, which we just handled, so we'll
      // start our loop at j=1.

      size_type U_vals_heaplen = 0;
      for(size_type j=1; j<U_cols.size(); ++j) {
        local_ordinal_type col = U_cols[j];
        if (pattern[col] != ORIG) {
          if (U_vals_heaplen < fillU) {
            add_to_heap(col, U_vals_heap, U_vals_heaplen, vals_comp);
          }
          else if (U_vals_heaplen!=0 && scalar_mag(cur_row[col]) >
                   scalar_mag(cur_row[U_vals_heap.front()])) {
            rm_heap_root(U_vals_heap, U_vals_heaplen, vals_comp);
            add_to_heap(col, U_vals_heap, U_vals_heaplen, vals_comp);
          }
        }
        else {
          tmp_idx.push_back(col);
          tmpv.push_back(cur_row[col]);
          unorm[row_i] += scalar_mag(cur_row[col]);
        }
        pattern[col] = UNUSED;
      }

      for(size_type j=0; j<U_vals_heaplen; ++j) {
        tmp_idx.push_back(U_vals_heap[j]);
        tmpv.push_back(cur_row[U_vals_heap[j]]);
        unorm[row_i] += scalar_mag(cur_row[U_vals_heap[j]]);
      }

      unorm[row_i] /= (orig_U_len + U_vals_heaplen);

      U_->insertLocalValues(row_i, tmp_idx(), tmpv() );
#ifdef IFPACK2_WRITE_FACTORS
      for(int ii=0; ii<tmp_idx.size(); ++ii) {
        ofsU <<row_i<< " " <<tmp_idx[ii]<< " " <<tmpv[ii]<< std::endl;
      }
#endif
      tmp_idx.clear();
      tmpv.clear();

      U_->getLocalRowView(row_i, Uindices[row_i], Ucoefs[row_i] );

      L_cols_heap.clear();
      U_cols.clear();
      L_vals_heap.clear();
      U_vals_heap.clear();
    } // end of for(row_i) loop

    // FIXME (mfh 03 Apr 2013) Do we need to supply a domain and range Map?
    L_->fillComplete();
    U_->fillComplete();

    L_solver_ = Teuchos::rcp (new LocalSparseTriangularSolver<row_matrix_type> (L_));
    L_solver_->initialize ();
    L_solver_->compute ();

    U_solver_ = Teuchos::rcp (new LocalSparseTriangularSolver<row_matrix_type> (U_));
    U_solver_->initialize ();
    U_solver_->compute ();
  }
  ComputeTime_ += timer.totalElapsedTime ();
  IsComputed_ = true;
  ++NumCompute_;
}


template <class MatrixType>
void ILUT<MatrixType>::
apply (const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
       Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  typedef Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type> MV;

  Teuchos::Time timer ("ILUT::apply");
  { // Timer scope for timing apply()
    Teuchos::TimeMonitor timeMon (timer, true);

    TEUCHOS_TEST_FOR_EXCEPTION(
      ! isComputed (), std::runtime_error,
      "Ifpack2::ILUT::apply: You must call compute() to compute the incomplete "
      "factorization, before calling apply().");

    TEUCHOS_TEST_FOR_EXCEPTION(
      X.getNumVectors() != Y.getNumVectors(), std::runtime_error,
      "Ifpack2::ILUT::apply: X and Y must have the same number of columns.  "
      "X has " << X.getNumVectors () << " columns, but Y has "
      << Y.getNumVectors () << " columns.");

    if (alpha == Teuchos::ScalarTraits<scalar_type>::zero ()) {
      // alpha == 0, so we don't need to apply the operator.
      //
      // The special case for beta == 0 ensures that if Y contains Inf
      // or NaN values, we replace them with 0 (following BLAS
      // convention), rather than multiplying them by 0 to get NaN.
      if (beta == Teuchos::ScalarTraits<scalar_type>::zero ()) {
        Y.putScalar (beta);
      } else {
        Y.scale (beta);
      }
      return;
    }

    // If beta != 0, create a temporary multivector Y_temp to hold the
    // contents of alpha*M^{-1}*X.  Otherwise, alias Y_temp to Y.
    RCP<MV> Y_temp;
    if (beta == Teuchos::ScalarTraits<scalar_type>::zero ()) {
      Y_temp = rcpFromRef (Y);
    } else {
      Y_temp = rcp (new MV (Y.getMap (), Y.getNumVectors ()));
    }

    // If X and Y are pointing to the same memory location, create an
    // auxiliary vector, X_temp, so that we don't clobber the input
    // when computing the output.  Otherwise, alias X_temp to X.
    RCP<const MV> X_temp;
    {
      auto X_lcl_host = X.template getLocalView<Kokkos::HostSpace> ();
      auto Y_lcl_host = Y.template getLocalView<Kokkos::HostSpace> ();
      if (X_lcl_host.ptr_on_device () == Y_lcl_host.ptr_on_device ()) {
        X_temp = rcp (new MV (X, Teuchos::Copy));
      } else {
        X_temp = rcpFromRef (X);
      }
    }

    // Create a temporary multivector Y_mid to hold the intermediate
    // between the L and U (or U and L, for the transpose or conjugate
    // transpose case) solves.
    RCP<MV> Y_mid = rcp (new MV (Y.getMap (), Y.getNumVectors ()));

    if (mode == Teuchos::NO_TRANS) { // Solve L U Y = X
      L_solver_->apply (*X_temp, *Y_mid, mode);

      // FIXME (mfh 20 Aug 2013) Is it OK to use Y_temp for both the
      // input and the output?

      U_solver_->apply (*Y_mid, *Y_temp, mode);
    }
    else { // Solve U^* L^* Y = X
      U_solver_->apply (*X_temp, *Y_mid, mode);

      // FIXME (mfh 20 Aug 2013) Is it OK to use Y_temp for both the
      // input and the output?

      L_solver_->apply (*Y_mid, *Y_temp, mode);
    }

    if (beta == Teuchos::ScalarTraits<scalar_type>::zero ()) {
      Y.scale (alpha);
    } else { // beta != 0
      Y.update (alpha, *Y_temp, beta);
    }
  }
  ++NumApply_;
  ApplyTime_ += timer.totalElapsedTime ();
}


template <class MatrixType>
std::string ILUT<MatrixType>::description () const
{
  std::ostringstream os;

  // Output is a valid YAML dictionary in flow style.  If you don't
  // like everything on a single line, you should call describe()
  // instead.
  os << "\"Ifpack2::ILUT\": {";
  os << "Initialized: " << (isInitialized () ? "true" : "false") << ", "
     << "Computed: " << (isComputed () ? "true" : "false") << ", ";

  os << "Level-of-fill: " << getLevelOfFill() << ", "
     << "absolute threshold: " << getAbsoluteThreshold() << ", "
     << "relative threshold: " << getRelativeThreshold() << ", "
     << "relaxation value: " << getRelaxValue() << ", ";

  if (A_.is_null ()) {
    os << "Matrix: null";
  }
  else {
    os << "Global matrix dimensions: ["
       << A_->getGlobalNumRows () << ", " << A_->getGlobalNumCols () << "]"
       << ", Global nnz: " << A_->getGlobalNumEntries();
  }

  os << "}";
  return os.str ();
}


template <class MatrixType>
void
ILUT<MatrixType>::
describe (Teuchos::FancyOStream& out,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  using Teuchos::Comm;
  using Teuchos::OSTab;
  using Teuchos::RCP;
  using Teuchos::TypeNameTraits;
  using std::endl;
  using Teuchos::VERB_DEFAULT;
  using Teuchos::VERB_NONE;
  using Teuchos::VERB_LOW;
  using Teuchos::VERB_MEDIUM;
  using Teuchos::VERB_HIGH;
  using Teuchos::VERB_EXTREME;

  const Teuchos::EVerbosityLevel vl =
    (verbLevel == VERB_DEFAULT) ? VERB_LOW : verbLevel;
  OSTab tab0 (out);

  if (vl > VERB_NONE) {
    out << "\"Ifpack2::ILUT\":" << endl;
    OSTab tab1 (out);
    out << "MatrixType: " << TypeNameTraits<MatrixType>::name () << endl;
    if (this->getObjectLabel () != "") {
      out << "Label: \"" << this->getObjectLabel () << "\"" << endl;
    }
    out << "Initialized: " << (isInitialized () ? "true" : "false")
        << endl
        << "Computed: " << (isComputed () ? "true" : "false")
        << endl
        << "Level of fill: " << getLevelOfFill () << endl
        << "Absolute threshold: " << getAbsoluteThreshold () << endl
        << "Relative threshold: " << getRelativeThreshold () << endl
        << "Relax value: " << getRelaxValue () << endl;

    if (isComputed () && vl >= VERB_HIGH) {
      const double fillFraction =
        (double) getGlobalNumEntries () / (double) A_->getGlobalNumEntries ();
      const double nnzToRows =
        (double) getGlobalNumEntries () / (double) U_->getGlobalNumRows ();

      out << "Dimensions of L: [" << L_->getGlobalNumRows () << ", "
          << L_->getGlobalNumRows () << "]" << endl
          << "Dimensions of U: [" << U_->getGlobalNumRows () << ", "
          << U_->getGlobalNumRows () << "]" << endl
          << "Number of nonzeros in factors: " << getGlobalNumEntries () << endl
          << "Fill fraction of factors over A: " << fillFraction << endl
          << "Ratio of nonzeros to rows: " << nnzToRows << endl;
    }

    out << "Number of initialize calls: " << getNumInitialize () << endl
        << "Number of compute calls: " << getNumCompute () << endl
        << "Number of apply calls: " << getNumApply () << endl
        << "Total time in seconds for initialize: " << getInitializeTime () << endl
        << "Total time in seconds for compute: " << getComputeTime () << endl
        << "Total time in seconds for apply: " << getApplyTime () << endl;

    out << "Local matrix:" << endl;
    A_local_->describe (out, vl);
  }
}

template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::row_matrix_type>
ILUT<MatrixType>::makeLocalFilter (const Teuchos::RCP<const row_matrix_type>& A)
{
  if (A->getComm ()->getSize () > 1) {
    return Teuchos::rcp (new LocalFilter<row_matrix_type> (A));
  } else {
    return A;
  }
}

}//namespace Ifpack2


// FIXME (mfh 16 Sep 2014) We should really only use RowMatrix here!
// There's no need to instantiate for CrsMatrix too.  All Ifpack2
// preconditioners can and should do dynamic casts if they need a type
// more specific than RowMatrix.

#define IFPACK2_ILUT_INSTANT(S,LO,GO,N) \
  template class Ifpack2::ILUT< Tpetra::RowMatrix<S, LO, GO, N> >;

#endif /* IFPACK2_ILUT_DEF_HPP */