/usr/include/trilinos/Ifpack2_ILUT_def.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK2_ILUT_DEF_HPP
#define IFPACK2_ILUT_DEF_HPP
// disable clang warnings
#if defined (__clang__) && !defined (__INTEL_COMPILER)
#pragma clang system_header
#endif
#include "Ifpack2_Heap.hpp"
#include "Ifpack2_LocalFilter.hpp"
#include "Ifpack2_LocalSparseTriangularSolver_decl.hpp"
#include "Ifpack2_Parameters.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include "Teuchos_Time.hpp"
#include "Teuchos_TypeNameTraits.hpp"
namespace Ifpack2 {
namespace {
/// \brief Default drop tolerance for ILUT.
///
/// \tparam ScalarType The "scalar type"; the type of entries in
/// the input sparse matrix to ILUT. This is the same as the
/// scalar_type typedef of ILUT.
///
/// \warning This is an implementation detail of Ifpack2. Do NOT
/// depend on this function or use it in your code. It may go
/// away entirely or change interface or behavior without
/// warning.
///
/// This function preserves the previous default drop tolerance
/// (1e-12, independent of scalar type), thus ensuring backwards
/// compatibility for the common case of ScalarType=double.
/// However, it provides a more reasonable default for other
/// scalar types of possibly lower or higher precision than
/// double.
///
/// This function is templated on ScalarType, rather than its
/// magnitude type, so that we can handle complex numbers
/// specially if desired.
///
/// In order to override the default, just specialize this
/// function for your particular ScalarType.
template<class ScalarType>
inline typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
ilutDefaultDropTolerance () {
using Teuchos::as;
typedef Teuchos::ScalarTraits<ScalarType> STS;
typedef typename STS::magnitudeType magnitude_type;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
// 1/2. Hopefully this can be represented in magnitude_type.
const magnitude_type oneHalf = STM::one() / (STM::one() + STM::one());
// The min ensures that in case magnitude_type has very low
// precision, we'll at least get some value strictly less than
// one.
return std::min (as<magnitude_type> (1000) * STS::magnitude (STS::eps ()), oneHalf);
}
// Full specialization for ScalarType = double.
// This specialization preserves ILUT's previous default behavior.
template<>
inline Teuchos::ScalarTraits<double>::magnitudeType
ilutDefaultDropTolerance<double> () {
return 1e-12;
}
} // namespace (anonymous)
template <class MatrixType>
ILUT<MatrixType>::ILUT (const Teuchos::RCP<const row_matrix_type>& A) :
A_ (A),
Athresh_ (Teuchos::ScalarTraits<magnitude_type>::zero ()),
Rthresh_ (Teuchos::ScalarTraits<magnitude_type>::one ()),
RelaxValue_ (Teuchos::ScalarTraits<magnitude_type>::zero ()),
LevelOfFill_ (1),
DropTolerance_ (ilutDefaultDropTolerance<scalar_type> ()),
InitializeTime_ (0.0),
ComputeTime_ (0.0),
ApplyTime_ (0.0),
NumInitialize_ (0),
NumCompute_ (0),
NumApply_ (0),
IsInitialized_ (false),
IsComputed_ (false)
{}
template <class MatrixType>
ILUT<MatrixType>::~ILUT()
{}
template <class MatrixType>
void ILUT<MatrixType>::setParameters (const Teuchos::ParameterList& params)
{
using Teuchos::as;
using Teuchos::Exceptions::InvalidParameterName;
using Teuchos::Exceptions::InvalidParameterType;
// Default values of the various parameters.
int fillLevel = 1;
magnitude_type absThresh = STM::zero ();
magnitude_type relThresh = STM::one ();
magnitude_type relaxValue = STM::zero ();
magnitude_type dropTol = ilutDefaultDropTolerance<scalar_type> ();
bool gotFillLevel = false;
try {
// Try getting the fill level as an int.
fillLevel = params.get<int> ("fact: ilut level-of-fill");
gotFillLevel = true;
}
catch (InvalidParameterName&) {
// We didn't really get it, but this tells us to stop looking.
gotFillLevel = true;
}
catch (InvalidParameterType&) {
// The name is right, but the type is wrong; try different types.
// We don't have to check InvalidParameterName again, since we
// checked it above, and it has nothing to do with the type.
}
if (! gotFillLevel) {
// Try magnitude_type, for backwards compatibility.
try {
fillLevel = as<int> (params.get<magnitude_type> ("fact: ilut level-of-fill"));
}
catch (InvalidParameterType&) {}
}
if (! gotFillLevel) {
// Try double, for backwards compatibility.
try {
fillLevel = as<int> (params.get<double> ("fact: ilut level-of-fill"));
}
catch (InvalidParameterType&) {}
}
// If none of the above attempts succeed, accept the default value.
TEUCHOS_TEST_FOR_EXCEPTION(
fillLevel <= 0, std::runtime_error,
"Ifpack2::ILUT: The \"fact: ilut level-of-fill\" parameter must be "
"strictly greater than zero, but you specified a value of " << fillLevel
<< ". Remember that for ILUT, the fill level p means something different "
"than it does for ILU(k). ILU(0) produces factors with the same sparsity "
"structure as the input matrix A; ILUT with p = 0 always produces a "
"diagonal matrix, and is thus probably not what you want.");
try {
absThresh = params.get<magnitude_type> ("fact: absolute threshold");
}
catch (InvalidParameterType&) {
// Try double, for backwards compatibility.
// The cast from double to magnitude_type must succeed.
absThresh = as<magnitude_type> (params.get<double> ("fact: absolute threshold"));
}
catch (InvalidParameterName&) {
// Accept the default value.
}
try {
relThresh = params.get<magnitude_type> ("fact: relative threshold");
}
catch (InvalidParameterType&) {
// Try double, for backwards compatibility.
// The cast from double to magnitude_type must succeed.
relThresh = as<magnitude_type> (params.get<double> ("fact: relative threshold"));
}
catch (InvalidParameterName&) {
// Accept the default value.
}
try {
relaxValue = params.get<magnitude_type> ("fact: relax value");
}
catch (InvalidParameterType&) {
// Try double, for backwards compatibility.
// The cast from double to magnitude_type must succeed.
relaxValue = as<magnitude_type> (params.get<double> ("fact: relax value"));
}
catch (InvalidParameterName&) {
// Accept the default value.
}
try {
dropTol = params.get<magnitude_type> ("fact: drop tolerance");
}
catch (InvalidParameterType&) {
// Try double, for backwards compatibility.
// The cast from double to magnitude_type must succeed.
dropTol = as<magnitude_type> (params.get<double> ("fact: drop tolerance"));
}
catch (InvalidParameterName&) {
// Accept the default value.
}
// "Commit" the values only after validating all of them. This
// ensures that there are no side effects if this routine throws an
// exception.
// mfh 28 Nov 2012: The previous code would not assign Athresh_,
// Rthresh_, RelaxValue_, or DropTolerance_ if the read-in value was
// -1. I don't know if keeping this behavior is correct, but I'll
// keep it just so as not to change previous behavior.
LevelOfFill_ = fillLevel;
if (absThresh != -STM::one ()) {
Athresh_ = absThresh;
}
if (relThresh != -STM::one ()) {
Rthresh_ = relThresh;
}
if (relaxValue != -STM::one ()) {
RelaxValue_ = relaxValue;
}
if (dropTol != -STM::one ()) {
DropTolerance_ = dropTol;
}
}
template <class MatrixType>
Teuchos::RCP<const Teuchos::Comm<int> >
ILUT<MatrixType>::getComm () const {
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getComm: "
"The matrix is null. Please call setMatrix() with a nonnull input "
"before calling this method.");
return A_->getComm ();
}
template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::row_matrix_type>
ILUT<MatrixType>::getMatrix () const {
return A_;
}
template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::map_type>
ILUT<MatrixType>::getDomainMap () const
{
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getDomainMap: "
"The matrix is null. Please call setMatrix() with a nonnull input "
"before calling this method.");
return A_->getDomainMap ();
}
template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::map_type>
ILUT<MatrixType>::getRangeMap () const
{
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getRangeMap: "
"The matrix is null. Please call setMatrix() with a nonnull input "
"before calling this method.");
return A_->getRangeMap ();
}
template <class MatrixType>
bool ILUT<MatrixType>::hasTransposeApply () const {
return true;
}
template <class MatrixType>
int ILUT<MatrixType>::getNumInitialize () const {
return NumInitialize_;
}
template <class MatrixType>
int ILUT<MatrixType>::getNumCompute () const {
return NumCompute_;
}
template <class MatrixType>
int ILUT<MatrixType>::getNumApply () const {
return NumApply_;
}
template <class MatrixType>
double ILUT<MatrixType>::getInitializeTime () const {
return InitializeTime_;
}
template<class MatrixType>
double ILUT<MatrixType>::getComputeTime () const {
return ComputeTime_;
}
template<class MatrixType>
double ILUT<MatrixType>::getApplyTime () const {
return ApplyTime_;
}
template<class MatrixType>
size_t ILUT<MatrixType>::getNodeSmootherComplexity() const {
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::ILUT::getNodeSmootherComplexity: "
"The input matrix A is null. Please call setMatrix() with a nonnull "
"input matrix, then call compute(), before calling this method.");
// ILUT methods cost roughly one apply + the nnz in the upper+lower triangles
return A_->getNodeNumEntries() + getNodeNumEntries();
}
template<class MatrixType>
global_size_t ILUT<MatrixType>::getGlobalNumEntries () const {
return L_->getGlobalNumEntries () + U_->getGlobalNumEntries ();
}
template<class MatrixType>
size_t ILUT<MatrixType>::getNodeNumEntries () const {
return L_->getNodeNumEntries () + U_->getNodeNumEntries ();
}
template<class MatrixType>
void ILUT<MatrixType>::setMatrix (const Teuchos::RCP<const row_matrix_type>& A)
{
if (A.getRawPtr () != A_.getRawPtr ()) {
// Check in serial or one-process mode if the matrix is square.
TEUCHOS_TEST_FOR_EXCEPTION(
! A.is_null () && A->getComm ()->getSize () == 1 &&
A->getNodeNumRows () != A->getNodeNumCols (),
std::runtime_error, "Ifpack2::ILUT::setMatrix: If A's communicator only "
"contains one process, then A must be square. Instead, you provided a "
"matrix A with " << A->getNodeNumRows () << " rows and "
<< A->getNodeNumCols () << " columns.");
// It's legal for A to be null; in that case, you may not call
// initialize() until calling setMatrix() with a nonnull input.
// Regardless, setting the matrix invalidates any previous
// factorization.
IsInitialized_ = false;
IsComputed_ = false;
A_local_ = Teuchos::null;
// The sparse triangular solvers get a triangular factor as their
// input matrix. The triangular factors L_ and U_ are getting
// reset, so we reset the solvers' matrices to null. Do that
// before setting L_ and U_ to null, so that latter step actually
// frees the factors.
if (! L_solver_.is_null ()) {
L_solver_->setMatrix (Teuchos::null);
}
if (! U_solver_.is_null ()) {
U_solver_->setMatrix (Teuchos::null);
}
L_ = Teuchos::null;
U_ = Teuchos::null;
A_ = A;
}
}
template<class MatrixType>
void ILUT<MatrixType>::initialize ()
{
Teuchos::Time timer ("ILUT::initialize");
{
Teuchos::TimeMonitor timeMon (timer);
// Check that the matrix is nonnull.
TEUCHOS_TEST_FOR_EXCEPTION(
A_.is_null (), std::runtime_error, "Ifpack2::ILUT::initialize: "
"The matrix to precondition is null. Please call setMatrix() with a "
"nonnull input before calling this method.");
// Clear any previous computations.
IsInitialized_ = false;
IsComputed_ = false;
A_local_ = Teuchos::null;
L_ = Teuchos::null;
U_ = Teuchos::null;
A_local_ = makeLocalFilter (A_); // Compute the local filter.
IsInitialized_ = true;
++NumInitialize_;
}
InitializeTime_ += timer.totalElapsedTime ();
}
template<typename ScalarType>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
scalar_mag (const ScalarType& s)
{
return Teuchos::ScalarTraits<ScalarType>::magnitude(s);
}
template<class MatrixType>
void ILUT<MatrixType>::compute ()
{
using Teuchos::Array;
using Teuchos::ArrayRCP;
using Teuchos::ArrayView;
using Teuchos::as;
using Teuchos::rcp;
using Teuchos::reduceAll;
//--------------------------------------------------------------------------
// Ifpack2::ILUT is a translation of the Aztec ILUT implementation. The Aztec
// ILUT implementation was written by Ray Tuminaro.
//
// This isn't an exact translation of the Aztec ILUT algorithm, for the
// following reasons:
// 1. Minor differences result from the fact that Aztec factors a MSR format
// matrix in place, while the code below factors an input CrsMatrix which
// remains untouched and stores the resulting factors in separate L and U
// CrsMatrix objects.
// Also, the Aztec code begins by shifting the matrix pointers back
// by one, and the pointer contents back by one, and then using 1-based
// Fortran-style indexing in the algorithm. This Ifpack2 code uses C-style
// 0-based indexing throughout.
// 2. Aztec stores the inverse of the diagonal of U. This Ifpack2 code
// stores the non-inverted diagonal in U.
// The triangular solves (in Ifpack2::ILUT::apply()) are performed by
// calling the Tpetra::CrsMatrix::solve method on the L and U objects, and
// this requires U to contain the non-inverted diagonal.
//
// ABW.
//--------------------------------------------------------------------------
// Don't count initialization in the compute() time.
if (! isInitialized ()) {
initialize ();
}
Teuchos::Time timer ("ILUT::compute");
{ // Timer scope for timing compute()
Teuchos::TimeMonitor timeMon (timer, true);
const scalar_type zero = STS::zero ();
const scalar_type one = STS::one ();
const local_ordinal_type myNumRows = A_local_->getNodeNumRows ();
L_ = rcp (new crs_matrix_type (A_local_->getRowMap (), A_local_->getColMap (), 0));
U_ = rcp (new crs_matrix_type (A_local_->getRowMap (), A_local_->getColMap (), 0));
// CGB: note, this caching approach may not be necessary anymore
// We will store ArrayView objects that are views of the rows of U, so that
// we don't have to repeatedly retrieve the view for each row. These will
// be populated row by row as the factorization proceeds.
Array<ArrayView<const local_ordinal_type> > Uindices (myNumRows);
Array<ArrayView<const scalar_type> > Ucoefs (myNumRows);
// If this macro is defined, files containing the L and U factors
// will be written. DON'T CHECK IN THE CODE WITH THIS MACRO ENABLED!!!
// #define IFPACK2_WRITE_FACTORS
#ifdef IFPACK2_WRITE_FACTORS
std::ofstream ofsL("L.tif.mtx", std::ios::out);
std::ofstream ofsU("U.tif.mtx", std::ios::out);
#endif
// The code here uses double for fill calculations, even though
// the fill level is actually an integer. The point is to avoid
// rounding and overflow for integer calculations. If int is <=
// 32 bits, it can never overflow double, so this cast is always
// OK as long as int has <= 32 bits.
// Calculate how much fill will be allowed in addition to the
// space that corresponds to the input matrix entries.
double local_nnz = static_cast<double> (A_local_->getNodeNumEntries ());
double fill;
{
const double fillLevel = as<double> (getLevelOfFill ());
fill = ((fillLevel - 1) * local_nnz) / (2 * myNumRows);
}
// std::ceil gives the smallest integer larger than the argument.
// this may give a slightly different result than Aztec's fill value in
// some cases.
double fill_ceil=std::ceil(fill);
// Similarly to Aztec, we will allow the same amount of fill for each
// row, half in L and half in U.
size_type fillL = static_cast<size_type>(fill_ceil);
size_type fillU = static_cast<size_type>(fill_ceil);
Array<scalar_type> InvDiagU (myNumRows, zero);
Array<local_ordinal_type> tmp_idx;
Array<scalar_type> tmpv;
enum { UNUSED, ORIG, FILL };
local_ordinal_type max_col = myNumRows;
Array<int> pattern(max_col, UNUSED);
Array<scalar_type> cur_row(max_col, zero);
Array<magnitude_type> unorm(max_col);
magnitude_type rownorm;
Array<local_ordinal_type> L_cols_heap;
Array<local_ordinal_type> U_cols;
Array<local_ordinal_type> L_vals_heap;
Array<local_ordinal_type> U_vals_heap;
// A comparison object which will be used to create 'heaps' of indices
// that are ordered according to the corresponding values in the
// 'cur_row' array.
greater_indirect<scalar_type,local_ordinal_type> vals_comp(cur_row);
// =================== //
// start factorization //
// =================== //
ArrayRCP<local_ordinal_type> ColIndicesARCP;
ArrayRCP<scalar_type> ColValuesARCP;
if (! A_local_->supportsRowViews ()) {
const size_t maxnz = A_local_->getNodeMaxNumRowEntries ();
ColIndicesARCP.resize (maxnz);
ColValuesARCP.resize (maxnz);
}
for (local_ordinal_type row_i = 0 ; row_i < myNumRows ; ++row_i) {
ArrayView<const local_ordinal_type> ColIndicesA;
ArrayView<const scalar_type> ColValuesA;
size_t RowNnz;
if (A_local_->supportsRowViews ()) {
A_local_->getLocalRowView (row_i, ColIndicesA, ColValuesA);
RowNnz = ColIndicesA.size ();
}
else {
A_local_->getLocalRowCopy (row_i, ColIndicesARCP (), ColValuesARCP (), RowNnz);
ColIndicesA = ColIndicesARCP (0, RowNnz);
ColValuesA = ColValuesARCP (0, RowNnz);
}
// Always include the diagonal in the U factor. The value should get
// set in the next loop below.
U_cols.push_back(row_i);
cur_row[row_i] = zero;
pattern[row_i] = ORIG;
size_type L_cols_heaplen = 0;
rownorm = STM::zero ();
for (size_t i = 0; i < RowNnz; ++i) {
if (ColIndicesA[i] < myNumRows) {
if (ColIndicesA[i] < row_i) {
add_to_heap(ColIndicesA[i], L_cols_heap, L_cols_heaplen);
}
else if (ColIndicesA[i] > row_i) {
U_cols.push_back(ColIndicesA[i]);
}
cur_row[ColIndicesA[i]] = ColValuesA[i];
pattern[ColIndicesA[i]] = ORIG;
rownorm += scalar_mag(ColValuesA[i]);
}
}
// Alter the diagonal according to the absolute-threshold and
// relative-threshold values. If not set, those values default
// to zero and one respectively.
const magnitude_type rthresh = getRelativeThreshold();
const scalar_type& v = cur_row[row_i];
cur_row[row_i] = as<scalar_type> (getAbsoluteThreshold() * IFPACK2_SGN(v)) + rthresh*v;
size_type orig_U_len = U_cols.size();
RowNnz = L_cols_heap.size() + orig_U_len;
rownorm = getDropTolerance() * rownorm/RowNnz;
// The following while loop corresponds to the 'L30' goto's in Aztec.
size_type L_vals_heaplen = 0;
while (L_cols_heaplen > 0) {
local_ordinal_type row_k = L_cols_heap.front();
scalar_type multiplier = cur_row[row_k] * InvDiagU[row_k];
cur_row[row_k] = multiplier;
magnitude_type mag_mult = scalar_mag(multiplier);
if (mag_mult*unorm[row_k] < rownorm) {
pattern[row_k] = UNUSED;
rm_heap_root(L_cols_heap, L_cols_heaplen);
continue;
}
if (pattern[row_k] != ORIG) {
if (L_vals_heaplen < fillL) {
add_to_heap(row_k, L_vals_heap, L_vals_heaplen, vals_comp);
}
else if (L_vals_heaplen==0 ||
mag_mult < scalar_mag(cur_row[L_vals_heap.front()])) {
pattern[row_k] = UNUSED;
rm_heap_root(L_cols_heap, L_cols_heaplen);
continue;
}
else {
pattern[L_vals_heap.front()] = UNUSED;
rm_heap_root(L_vals_heap, L_vals_heaplen, vals_comp);
add_to_heap(row_k, L_vals_heap, L_vals_heaplen, vals_comp);
}
}
/* Reduce current row */
ArrayView<const local_ordinal_type>& ColIndicesU = Uindices[row_k];
ArrayView<const scalar_type>& ColValuesU = Ucoefs[row_k];
size_type ColNnzU = ColIndicesU.size();
for(size_type j=0; j<ColNnzU; ++j) {
if (ColIndicesU[j] > row_k) {
scalar_type tmp = multiplier * ColValuesU[j];
local_ordinal_type col_j = ColIndicesU[j];
if (pattern[col_j] != UNUSED) {
cur_row[col_j] -= tmp;
}
else if (scalar_mag(tmp) > rownorm) {
cur_row[col_j] = -tmp;
pattern[col_j] = FILL;
if (col_j > row_i) {
U_cols.push_back(col_j);
}
else {
add_to_heap(col_j, L_cols_heap, L_cols_heaplen);
}
}
}
}
rm_heap_root(L_cols_heap, L_cols_heaplen);
}//end of while(L_cols_heaplen) loop
// Put indices and values for L into arrays and then into the L_ matrix.
// first, the original entries from the L section of A:
for (size_type i = 0; i < ColIndicesA.size (); ++i) {
if (ColIndicesA[i] < row_i) {
tmp_idx.push_back(ColIndicesA[i]);
tmpv.push_back(cur_row[ColIndicesA[i]]);
pattern[ColIndicesA[i]] = UNUSED;
}
}
// next, the L entries resulting from fill:
for (size_type j = 0; j < L_vals_heaplen; ++j) {
tmp_idx.push_back(L_vals_heap[j]);
tmpv.push_back(cur_row[L_vals_heap[j]]);
pattern[L_vals_heap[j]] = UNUSED;
}
// L has a one on the diagonal, but we don't explicitly store
// it. If we don't store it, then the kernel which performs the
// triangular solve can assume a unit diagonal, take a short-cut
// and perform faster.
L_->insertLocalValues (row_i, tmp_idx (), tmpv ());
#ifdef IFPACK2_WRITE_FACTORS
for (size_type ii = 0; ii < tmp_idx.size (); ++ii) {
ofsL << row_i << " " << tmp_idx[ii] << " " << tmpv[ii] << std::endl;
}
#endif
tmp_idx.clear();
tmpv.clear();
// Pick out the diagonal element, store its reciprocal.
if (cur_row[row_i] == zero) {
std::cerr << "Ifpack2::ILUT::Compute: zero pivot encountered! Replacing with rownorm and continuing...(You may need to set the parameter 'fact: absolute threshold'.)" << std::endl;
cur_row[row_i] = rownorm;
}
InvDiagU[row_i] = one / cur_row[row_i];
// Non-inverted diagonal is stored for U:
tmp_idx.push_back(row_i);
tmpv.push_back(cur_row[row_i]);
unorm[row_i] = scalar_mag(cur_row[row_i]);
pattern[row_i] = UNUSED;
// Now put indices and values for U into arrays and then into the U_ matrix.
// The first entry in U_cols is the diagonal, which we just handled, so we'll
// start our loop at j=1.
size_type U_vals_heaplen = 0;
for(size_type j=1; j<U_cols.size(); ++j) {
local_ordinal_type col = U_cols[j];
if (pattern[col] != ORIG) {
if (U_vals_heaplen < fillU) {
add_to_heap(col, U_vals_heap, U_vals_heaplen, vals_comp);
}
else if (U_vals_heaplen!=0 && scalar_mag(cur_row[col]) >
scalar_mag(cur_row[U_vals_heap.front()])) {
rm_heap_root(U_vals_heap, U_vals_heaplen, vals_comp);
add_to_heap(col, U_vals_heap, U_vals_heaplen, vals_comp);
}
}
else {
tmp_idx.push_back(col);
tmpv.push_back(cur_row[col]);
unorm[row_i] += scalar_mag(cur_row[col]);
}
pattern[col] = UNUSED;
}
for(size_type j=0; j<U_vals_heaplen; ++j) {
tmp_idx.push_back(U_vals_heap[j]);
tmpv.push_back(cur_row[U_vals_heap[j]]);
unorm[row_i] += scalar_mag(cur_row[U_vals_heap[j]]);
}
unorm[row_i] /= (orig_U_len + U_vals_heaplen);
U_->insertLocalValues(row_i, tmp_idx(), tmpv() );
#ifdef IFPACK2_WRITE_FACTORS
for(int ii=0; ii<tmp_idx.size(); ++ii) {
ofsU <<row_i<< " " <<tmp_idx[ii]<< " " <<tmpv[ii]<< std::endl;
}
#endif
tmp_idx.clear();
tmpv.clear();
U_->getLocalRowView(row_i, Uindices[row_i], Ucoefs[row_i] );
L_cols_heap.clear();
U_cols.clear();
L_vals_heap.clear();
U_vals_heap.clear();
} // end of for(row_i) loop
// FIXME (mfh 03 Apr 2013) Do we need to supply a domain and range Map?
L_->fillComplete();
U_->fillComplete();
L_solver_ = Teuchos::rcp (new LocalSparseTriangularSolver<row_matrix_type> (L_));
L_solver_->initialize ();
L_solver_->compute ();
U_solver_ = Teuchos::rcp (new LocalSparseTriangularSolver<row_matrix_type> (U_));
U_solver_->initialize ();
U_solver_->compute ();
}
ComputeTime_ += timer.totalElapsedTime ();
IsComputed_ = true;
++NumCompute_;
}
template <class MatrixType>
void ILUT<MatrixType>::
apply (const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
Teuchos::ETransp mode,
scalar_type alpha,
scalar_type beta) const
{
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
typedef Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type> MV;
Teuchos::Time timer ("ILUT::apply");
{ // Timer scope for timing apply()
Teuchos::TimeMonitor timeMon (timer, true);
TEUCHOS_TEST_FOR_EXCEPTION(
! isComputed (), std::runtime_error,
"Ifpack2::ILUT::apply: You must call compute() to compute the incomplete "
"factorization, before calling apply().");
TEUCHOS_TEST_FOR_EXCEPTION(
X.getNumVectors() != Y.getNumVectors(), std::runtime_error,
"Ifpack2::ILUT::apply: X and Y must have the same number of columns. "
"X has " << X.getNumVectors () << " columns, but Y has "
<< Y.getNumVectors () << " columns.");
if (alpha == Teuchos::ScalarTraits<scalar_type>::zero ()) {
// alpha == 0, so we don't need to apply the operator.
//
// The special case for beta == 0 ensures that if Y contains Inf
// or NaN values, we replace them with 0 (following BLAS
// convention), rather than multiplying them by 0 to get NaN.
if (beta == Teuchos::ScalarTraits<scalar_type>::zero ()) {
Y.putScalar (beta);
} else {
Y.scale (beta);
}
return;
}
// If beta != 0, create a temporary multivector Y_temp to hold the
// contents of alpha*M^{-1}*X. Otherwise, alias Y_temp to Y.
RCP<MV> Y_temp;
if (beta == Teuchos::ScalarTraits<scalar_type>::zero ()) {
Y_temp = rcpFromRef (Y);
} else {
Y_temp = rcp (new MV (Y.getMap (), Y.getNumVectors ()));
}
// If X and Y are pointing to the same memory location, create an
// auxiliary vector, X_temp, so that we don't clobber the input
// when computing the output. Otherwise, alias X_temp to X.
RCP<const MV> X_temp;
{
auto X_lcl_host = X.template getLocalView<Kokkos::HostSpace> ();
auto Y_lcl_host = Y.template getLocalView<Kokkos::HostSpace> ();
if (X_lcl_host.ptr_on_device () == Y_lcl_host.ptr_on_device ()) {
X_temp = rcp (new MV (X, Teuchos::Copy));
} else {
X_temp = rcpFromRef (X);
}
}
// Create a temporary multivector Y_mid to hold the intermediate
// between the L and U (or U and L, for the transpose or conjugate
// transpose case) solves.
RCP<MV> Y_mid = rcp (new MV (Y.getMap (), Y.getNumVectors ()));
if (mode == Teuchos::NO_TRANS) { // Solve L U Y = X
L_solver_->apply (*X_temp, *Y_mid, mode);
// FIXME (mfh 20 Aug 2013) Is it OK to use Y_temp for both the
// input and the output?
U_solver_->apply (*Y_mid, *Y_temp, mode);
}
else { // Solve U^* L^* Y = X
U_solver_->apply (*X_temp, *Y_mid, mode);
// FIXME (mfh 20 Aug 2013) Is it OK to use Y_temp for both the
// input and the output?
L_solver_->apply (*Y_mid, *Y_temp, mode);
}
if (beta == Teuchos::ScalarTraits<scalar_type>::zero ()) {
Y.scale (alpha);
} else { // beta != 0
Y.update (alpha, *Y_temp, beta);
}
}
++NumApply_;
ApplyTime_ += timer.totalElapsedTime ();
}
template <class MatrixType>
std::string ILUT<MatrixType>::description () const
{
std::ostringstream os;
// Output is a valid YAML dictionary in flow style. If you don't
// like everything on a single line, you should call describe()
// instead.
os << "\"Ifpack2::ILUT\": {";
os << "Initialized: " << (isInitialized () ? "true" : "false") << ", "
<< "Computed: " << (isComputed () ? "true" : "false") << ", ";
os << "Level-of-fill: " << getLevelOfFill() << ", "
<< "absolute threshold: " << getAbsoluteThreshold() << ", "
<< "relative threshold: " << getRelativeThreshold() << ", "
<< "relaxation value: " << getRelaxValue() << ", ";
if (A_.is_null ()) {
os << "Matrix: null";
}
else {
os << "Global matrix dimensions: ["
<< A_->getGlobalNumRows () << ", " << A_->getGlobalNumCols () << "]"
<< ", Global nnz: " << A_->getGlobalNumEntries();
}
os << "}";
return os.str ();
}
template <class MatrixType>
void
ILUT<MatrixType>::
describe (Teuchos::FancyOStream& out,
const Teuchos::EVerbosityLevel verbLevel) const
{
using Teuchos::Comm;
using Teuchos::OSTab;
using Teuchos::RCP;
using Teuchos::TypeNameTraits;
using std::endl;
using Teuchos::VERB_DEFAULT;
using Teuchos::VERB_NONE;
using Teuchos::VERB_LOW;
using Teuchos::VERB_MEDIUM;
using Teuchos::VERB_HIGH;
using Teuchos::VERB_EXTREME;
const Teuchos::EVerbosityLevel vl =
(verbLevel == VERB_DEFAULT) ? VERB_LOW : verbLevel;
OSTab tab0 (out);
if (vl > VERB_NONE) {
out << "\"Ifpack2::ILUT\":" << endl;
OSTab tab1 (out);
out << "MatrixType: " << TypeNameTraits<MatrixType>::name () << endl;
if (this->getObjectLabel () != "") {
out << "Label: \"" << this->getObjectLabel () << "\"" << endl;
}
out << "Initialized: " << (isInitialized () ? "true" : "false")
<< endl
<< "Computed: " << (isComputed () ? "true" : "false")
<< endl
<< "Level of fill: " << getLevelOfFill () << endl
<< "Absolute threshold: " << getAbsoluteThreshold () << endl
<< "Relative threshold: " << getRelativeThreshold () << endl
<< "Relax value: " << getRelaxValue () << endl;
if (isComputed () && vl >= VERB_HIGH) {
const double fillFraction =
(double) getGlobalNumEntries () / (double) A_->getGlobalNumEntries ();
const double nnzToRows =
(double) getGlobalNumEntries () / (double) U_->getGlobalNumRows ();
out << "Dimensions of L: [" << L_->getGlobalNumRows () << ", "
<< L_->getGlobalNumRows () << "]" << endl
<< "Dimensions of U: [" << U_->getGlobalNumRows () << ", "
<< U_->getGlobalNumRows () << "]" << endl
<< "Number of nonzeros in factors: " << getGlobalNumEntries () << endl
<< "Fill fraction of factors over A: " << fillFraction << endl
<< "Ratio of nonzeros to rows: " << nnzToRows << endl;
}
out << "Number of initialize calls: " << getNumInitialize () << endl
<< "Number of compute calls: " << getNumCompute () << endl
<< "Number of apply calls: " << getNumApply () << endl
<< "Total time in seconds for initialize: " << getInitializeTime () << endl
<< "Total time in seconds for compute: " << getComputeTime () << endl
<< "Total time in seconds for apply: " << getApplyTime () << endl;
out << "Local matrix:" << endl;
A_local_->describe (out, vl);
}
}
template <class MatrixType>
Teuchos::RCP<const typename ILUT<MatrixType>::row_matrix_type>
ILUT<MatrixType>::makeLocalFilter (const Teuchos::RCP<const row_matrix_type>& A)
{
if (A->getComm ()->getSize () > 1) {
return Teuchos::rcp (new LocalFilter<row_matrix_type> (A));
} else {
return A;
}
}
}//namespace Ifpack2
// FIXME (mfh 16 Sep 2014) We should really only use RowMatrix here!
// There's no need to instantiate for CrsMatrix too. All Ifpack2
// preconditioners can and should do dynamic casts if they need a type
// more specific than RowMatrix.
#define IFPACK2_ILUT_INSTANT(S,LO,GO,N) \
template class Ifpack2::ILUT< Tpetra::RowMatrix<S, LO, GO, N> >;
#endif /* IFPACK2_ILUT_DEF_HPP */
|