/usr/include/trilinos/Ifpack2_RILUK_decl.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | /*@HEADER
// ***********************************************************************
//
// Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
/// \file Ifpack2_RILUK_decl.hpp
/// \brief Declaration of RILUK interface
#ifndef IFPACK2_CRSRILUK_DECL_HPP
#define IFPACK2_CRSRILUK_DECL_HPP
#include "Ifpack2_Preconditioner.hpp"
#include "Ifpack2_Details_CanChangeMatrix.hpp"
#include "Tpetra_CrsMatrix_decl.hpp"
#include "Ifpack2_ScalingType.hpp"
#include "Ifpack2_IlukGraph.hpp"
#include "Ifpack2_LocalSparseTriangularSolver_decl.hpp"
#include <type_traits>
//Experimental Threaded ILUK with Basker
#ifdef IFPACK2_ILUK_EXPERIMENTAL
#include <Kokkos_Core.hpp>
#include <shylubasker_decl.hpp>
# ifdef IFPACK2_HTS_EXPERIMENTAL
# include <ShyLUHTS_config.h>
# include <shylu_hts_decl.hpp>
# endif
#endif
namespace Teuchos {
class ParameterList; // forward declaration
}
namespace Ifpack2 {
/** \class RILUK
\brief ILU(k) factorization of a given Tpetra::RowMatrix.
\tparam MatrixType A specialization of Tpetra::RowMatrix.
This class implements a "relaxed" incomplete ILU (ILU) factorization
with level k fill. It is based upon the ILU algorithms outlined in
Yousef Saad's "Iterative Methods for Sparse Linear Systems", 2nd
edition, Chapter 10.
\section Ifpack2_RILUK_Parameters Parameters
For a complete list of valid parameters, see the documentation of setParameters().
The computed factorization is a function of several parameters:
<ul>
<li>
The graph structure (sparsity pattern) of the matrix: All fill is
derived from the original matrix nonzero structure. Level zero fill
is defined as the original matrix pattern (nonzero structure), even if
the matrix value at an entry is stored as a zero. (Thus it is possible
to add entries to the ILU factors by adding zero entries to the
original matrix.)
</li>
<li>
Level of fill: Starting with the original matrix pattern as level
fill of zero, the next level of fill is determined by analyzing the
graph of the previous level and determining nonzero fill that is a
result of combining entries that were from previous level only (not
the current level). This rule limits fill to entries that are direct
decendents from the previous level graph. Fill for level k is
determined by applying this rule recursively. For sufficiently large
values of k, the fill would eventually be complete and an exact LU
factorization would be computed.
</li>
<li>
Fraction of relaxation: Ifpack2::RILUK computes the ILU factorization
row-by-row. As entries at a given row are computed, some number of
them will be dropped because they do match the prescribed sparsity
pattern. The relaxation factor determines how these dropped values
will be handled. If the factor is zero, then these extra entries will
by dropped. This is a classical ILU approach. If the RelaxValue is
1, then the sum of the extra entries will be added to the diagonal.
This is a classical Modified ILU (MILU) approach. If RelaxValue is
between 0 and 1, then the factor times the sum of extra entries will
be added to the diagonal.
For most situations, the relaxation factor should be set to zero. For
certain kinds of problems, e.g., reservoir modeling, there is a
conservation principle involved such that any operator should obey a
zero row-sum property. MILU was designed for these cases and you
should set the relaxation factor to 1. For other situations, setting
RelaxValue to some nonzero value may improve the stability of
factorization, and can be used if the computed ILU factors are poorly
conditioned.
</li>
<li>
Diagonal perturbation: Prior to computing the factorization, it is
possible to modify the diagonal entries of the matrix for which the
factorization will be computing. If the absolute and relative
perturbation values are zero and one, respectively, the factorization
will be compute for the original user matrix A. Otherwise, the
factorization will computed for a matrix that differs from the
original user matrix in the diagonal values only. Below we discuss
the details of diagonal perturbations.
</li>
</ul>
\section Ifpack2_RILUK_GlobalOrdering An important note about ordering
Note that the factorization is calculated based upon local ordering. This means
that the ordering of the GIDs in the row map is ignored.
Initial entries in \f$L\f$, the strictly lower triangular part of A, and \f$U\f$, the strictly upper
triangular part of A, are given by
\f$L(i,j) = A(i,j)\f$ if \f$j < i\f$, for local IDs \f$i\f$ and \f$j\f$, even if GID\f$(j)\f$ \f$>\f$ GID\f$(i)\f$,
and
\f$U(i,j) = A(i,j)\f$ if \f$i < j\f$, for local IDs \f$i\f$ and \f$j\f$, even if GID\f$(j)\f$ \f$<\f$ GID\f$(i)\f$.
In particular, if the row map GIDs are not in ascending
order on processor, then the incomplete factors will be different than those produced by ILU(k) using global IDs.
If the row map GIDs are in ascending order, then the factors produced based on LID and GID ordering are the same.
\section Ifpack2_RILUK_CondEst Estimating preconditioner condition numbers
For ill-conditioned matrices, we often have difficulty computing
usable incomplete factorizations. The most common source of problems
is that the factorization may encounter a small or zero pivot. In
that case, the factorization may fail. Even if the factorization
succeeds, the factors may be so poorly conditioned that use of them in
the iterative phase produces meaningless results. Before we can fix
this problem, we must be able to detect it. To this end, we use a
simple but effective condition number estimate for \f$(LU)^{-1}\f$.
The condition number of a matrix \f$B\f$, called \f$cond_p(B)\f$, is
defined as \f$cond_p(B) = \|B\|_p\|B^{-1}\|_p\f$ in some appropriate
norm \f$p\f$. \f$cond_p(B)\f$ gives some indication of how many
accurate floating point digits can be expected from operations
involving the matrix and its inverse. A condition number approaching
the accuracy of a given floating point number system, about 15 decimal
digits in IEEE double precision, means that any results involving
\f$B\f$ or \f$B^{-1}\f$ may be meaningless.
The \f$\infty\f$-norm of a vector \f$y\f$ is defined as the maximum of
the absolute values of the vector entries, and the \f$\infty\f$-norm
of a matrix C is defined as \f$\|C\|_\infty = \max_{\|y\|_\infty = 1}
\|Cy\|_\infty\f$. A crude lower bound for the \f$cond_\infty(C)\f$ is
\f$\|C^{-1}e\|_\infty\f$ where \f$e = (1, 1, \ldots, 1)^T\f$. It is a
lower bound because \f$cond_\infty(C) = \|C\|_\infty\|C^{-1}\|_\infty
\ge \|C^{-1}\|_\infty \ge |C^{-1}e\|_\infty\f$.
For our purposes, we want to estimate \f$cond_\infty(LU)\f$, where
\f$L\f$ and \f$U\f$ are our incomplete factors. Edmond in his
Ph.D. thesis demonstrates that \f$\|(LU)^{-1}e\|_\infty\f$ provides an
effective estimate for \f$cond_\infty(LU)\f$. Furthermore, since
finding \f$z\f$ such that \f$LUz = y\f$ is a basic kernel for applying
the preconditioner, computing this estimate of \f$cond_\infty(LU)\f$
is performed by setting \f$y = e\f$, calling the solve kernel to
compute \f$z\f$ and then computing \f$\|z\|_\infty\f$.
\section Ifpack2_RILUK_DiagPerturb A priori diagonal perturbations
If we detect using the above method that our factorization is too
ill-conditioned, we can improve the conditioning by perturbing the
matrix diagonal and restarting the factorization using this more
diagonally dominant matrix. In order to apply perturbation, prior to
starting the factorization, we compute a diagonal perturbation of our
matrix \f$A\f$ and perform the factorization on this perturbed matrix.
The overhead cost of perturbing the diagonal is minimal since the
first step in computing the incomplete factors is to copy the matrix
\f$A\f$ into the memory space for the incomplete factors. We simply
compute the perturbed diagonal at this point.
The actual perturbation values we use are the diagonal values \f$(d_1,
d_2, \ldots, d_n)\f$ with \f$d_i = sgn(d_i)\alpha + d_i\rho\f$,
\f$i=1, 2, \ldots, n\f$, where \f$n\f$ is the matrix dimension and
\f$sgn(d_i)\f$ returns the sign of the diagonal entry. This has the
effect of forcing the diagonal values to have minimal magnitude of
\f$\alpha\f$ and to increase each by an amount proportional to
\f$\rho\f$, and still keep the sign of the original diagonal entry.
\section Ifpack2_RILUK_Phases Phases of computation
Every Ifpack2 preconditioner has the following phases of computation:
<ol>
<li> initialize() </li>
<li> compute() </li>
<li> apply() </li>
</ol>
RILUK constructs the symbolic incomplete factorization (that is, the
structure of the incomplete factors) in the initialize() phase. It
computes the numerical incomplete factorization (that is, it fills in
the factors' entries with their correct values) in the compute()
phase. The apply() phase applies the incomplete factorization to a
given multivector using two triangular solves.
\section Ifpack2_RILUK_Measuring Measuring performance
Each RILUK object keeps track of both the time required for various
operations, and the number of times those operations have been applied
for that object. The operations tracked include:
- initialize() (via getNumInitialize() and getInitializeTime())
- compute() (via getNumCompute() and getComputeTime())
- apply() (via getNumApply() and getApplyTime())
The <tt>getNum*</tt> methods return the number of times that operation
was called. The <tt>get*Time</tt> methods return the total number of
seconds spent in <i>all</i> invocations of that operation. For
example, getApplyTime() returns the number of seconds spent in all
apply() calls. For an average time per apply() call, divide by
getNumApply(), the total number of calls to apply().
*/
template<class MatrixType>
class RILUK:
virtual public Ifpack2::Preconditioner<typename MatrixType::scalar_type,
typename MatrixType::local_ordinal_type,
typename MatrixType::global_ordinal_type,
typename MatrixType::node_type>,
virtual public Ifpack2::Details::CanChangeMatrix<Tpetra::RowMatrix<typename MatrixType::scalar_type,
typename MatrixType::local_ordinal_type,
typename MatrixType::global_ordinal_type,
typename MatrixType::node_type> >
{
public:
//! The type of the entries of the input MatrixType.
typedef typename MatrixType::scalar_type scalar_type;
//! The type of local indices in the input MatrixType.
typedef typename MatrixType::local_ordinal_type local_ordinal_type;
//! The type of global indices in the input MatrixType.
typedef typename MatrixType::global_ordinal_type global_ordinal_type;
//! The Node type used by the input MatrixType.
typedef typename MatrixType::node_type node_type;
//! The type of the magnitude (absolute value) of a matrix entry.
typedef typename Teuchos::ScalarTraits<scalar_type>::magnitudeType magnitude_type;
//! Tpetra::RowMatrix specialization used by this class.
typedef Tpetra::RowMatrix<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type> row_matrix_type;
static_assert(std::is_same<MatrixType, row_matrix_type>::value, "Ifpack2::RILUK: The template parameter MatrixType must be a Tpetra::RowMatrix specialization. Please don't use Tpetra::CrsMatrix (a subclass of Tpetra::RowMatrix) here anymore.");
//! Tpetra::CrsMatrix specialization used by this class for representing L and U.
typedef Tpetra::CrsMatrix<scalar_type,
local_ordinal_type,
global_ordinal_type,
node_type> crs_matrix_type;
template <class NewMatrixType> friend class RILUK;
/// \brief Constructor that takes a Tpetra::RowMatrix.
///
/// \param A_in [in] The input matrix.
RILUK (const Teuchos::RCP<const row_matrix_type>& A_in);
/// \brief Constructor that takes a Tpetra::CrsMatrix.
///
/// This constructor exists to avoid "ambiguous constructor"
/// warnings. It does the same thing as the constructor that takes
/// a Tpetra::RowMatrix.
///
/// \param A_in [in] The input matrix.
RILUK (const Teuchos::RCP<const crs_matrix_type>& A_in);
private:
/// \brief Copy constructor: declared private but not defined, so
/// that calling it is syntactically forbidden.
RILUK (const RILUK<MatrixType> & src);
public:
/// \brief Clone preconditioner to a new node type.
///
/// This method makes a deep copy of the original preconditioner
/// (and matrix), into objects with the Node type
/// <tt>NewMatrixType::node_type</tt>.
template <typename NewMatrixType>
Teuchos::RCP< RILUK< NewMatrixType > >
clone (const Teuchos::RCP<const NewMatrixType>& A_newnode) const;
//! Destructor (declared virtual for memory safety).
virtual ~RILUK ();
/// Set parameters for the incomplete factorization.
///
/// This preconditioner supports the following parameters:
/// - "fact: iluk level-of-fill" (int)
/// - "fact: absolute threshold" (magnitude_type)
/// - "fact: relative threshold" (magnitude_type)
/// - "fact: relax value" (magnitude_type)
void setParameters (const Teuchos::ParameterList& params);
//! Initialize by computing the symbolic incomplete factorization.
void initialize ();
/// \brief Compute the (numeric) incomplete factorization.
///
/// This function computes the RILU(k) factors L and U using the current:
/// - Ifpack2_IlukGraph specifying the structure of L and U.
/// - Value for the RILU(k) relaxation parameter.
/// - Value for the a priori diagonal threshold values.
///
/// initialize() must be called first, before this method may be called.
void compute ();
//! Whether initialize() has been called on this object.
bool isInitialized () const {
return isInitialized_;
}
//! Whether compute() has been called on this object.
bool isComputed () const {
return isComputed_;
}
//! Number of successful initialize() calls for this object.
int getNumInitialize () const {
return numInitialize_;
}
//! Number of successful compute() calls for this object.
int getNumCompute () const {
return numCompute_;
}
//! Number of successful apply() calls for this object.
int getNumApply () const {
return numApply_;
}
//! Total time in seconds taken by all successful initialize() calls for this object.
double getInitializeTime () const {
return initializeTime_;
}
//! Total time in seconds taken by all successful compute() calls for this object.
double getComputeTime () const {
return computeTime_;
}
//! Total time in seconds taken by all successful apply() calls for this object.
double getApplyTime () const {
return applyTime_;
}
//! \name Implementation of Ifpack2::Details::CanChangeMatrix
//@{
/// \brief Change the matrix to be preconditioned.
///
/// \param A [in] The new matrix.
///
/// \post <tt>! isInitialized ()</tt>
/// \post <tt>! isComputed ()</tt>
///
/// Calling this method resets the preconditioner's state. After
/// calling this method with a nonnull input, you must first call
/// initialize() and compute() (in that order) before you may call
/// apply().
///
/// You may call this method with a null input. If A is null, then
/// you may not call initialize() or compute() until you first call
/// this method again with a nonnull input. This method invalidates
/// any previous factorization whether or not A is null, so calling
/// setMatrix() with a null input is one way to clear the
/// preconditioner's state (and free any memory that it may be
/// using).
///
/// The new matrix A need not necessarily have the same Maps or even
/// the same communicator as the original matrix.
virtual void
setMatrix (const Teuchos::RCP<const row_matrix_type>& A);
//@}
//! @name Implementation of Teuchos::Describable interface
//@{
//! A one-line description of this object.
std::string description () const;
//@}
//! \name Implementation of Tpetra::Operator
//@{
//! Returns the Tpetra::Map object associated with the domain of this operator.
Teuchos::RCP<const Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type> >
getDomainMap () const;
//! Returns the Tpetra::Map object associated with the range of this operator.
Teuchos::RCP<const Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type> >
getRangeMap () const;
/// \brief Apply the (inverse of the) incomplete factorization to X, resulting in Y.
///
/// For an incomplete factorization \f$A \approx LDU\f$, this method
/// computes the following, depending on the value of \c mode:
/// <ul>
/// <li> If mode = Teuchos::NO_TRANS, it computes
/// <tt>Y = beta*Y + alpha*(U \ (D \ (L \ X)))</tt> </li>
/// <li> If mode = Teuchos::TRANS, it computes
/// <tt>Y = beta*Y + alpha*(L^T \ (D^T \ (U^T \ X)))</tt> </li>
/// <li> If mode = Teuchos::CONJ_TRANS, it computes
/// <tt>Y = beta*Y + alpha*(L^* \ (D^* \ (U^* \ X)))</tt>,
/// where the asterisk indicates the conjugate transpose. </li>
/// </ul>
/// If alpha is zero, then the result of applying the operator to a
/// vector is ignored. This matters because zero times NaN (not a
/// number) is NaN, not zero. Analogously, if beta is zero, then
/// any values in Y on input are ignored.
///
/// \param X [in] The input multivector.
///
/// \param Y [in/out] The output multivector.
///
/// \param mode [in] If Teuchos::TRANS resp. Teuchos::CONJ_TRANS,
/// apply the transpose resp. conjugate transpose of the incomplete
/// factorization. Otherwise, don't apply the tranpose.
///
/// \param alpha [in] Scaling factor for the result of applying the preconditioner.
///
/// \param beta [in] Scaling factor for the initial value of Y.
void
apply (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
scalar_type alpha = Teuchos::ScalarTraits<scalar_type>::one (),
scalar_type beta = Teuchos::ScalarTraits<scalar_type>::zero ()) const;
//@}
private:
/// \brief Apply the incomplete factorization (as a product) to X, resulting in Y.
///
/// Given an incomplete factorization is \f$A \approx LDU\f$, this
/// method computes the following, depending on the value of \c mode:
///
/// - If mode = Teuchos::NO_TRANS, it computes
/// <tt>Y = beta*Y + alpha*(L \ (D \ (U \ X)))</tt>
/// - If mode = Teuchos::TRANS, it computes
/// <tt>Y = beta*Y + alpha*(U^T \ (D^T \ (L^T \ X)))</tt>
/// - If mode = Teuchos::CONJ_TRANS, it computes
/// <tt>Y = beta*Y + alpha*(U^* \ (D^* \ (L^* \ X)))</tt>,
/// where the asterisk indicates the conjugate transpose.
///
/// \param X [in] The input multivector.
///
/// \param Y [in/out] The output multivector.
///
/// \param mode [in] If Teuchos::TRANS resp. Teuchos::CONJ_TRANS,
/// apply the transpose resp. conjugate transpose of the
/// incomplete factorization. Otherwise, don't apply the
/// transpose.
void
multiply (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y,
const Teuchos::ETransp mode = Teuchos::NO_TRANS) const;
public:
//! Get the input matrix.
Teuchos::RCP<const row_matrix_type> getMatrix () const;
// Attribute access functions
//! Get RILU(k) relaxation parameter
magnitude_type getRelaxValue () const { return RelaxValue_; }
//! Get absolute threshold value
magnitude_type getAbsoluteThreshold () const { return Athresh_; }
//! Get relative threshold value
magnitude_type getRelativeThreshold () const {return Rthresh_;}
//! Get level of fill (the "k" in ILU(k)).
int getLevelOfFill () const { return LevelOfFill_; }
//! Get overlap mode type
Tpetra::CombineMode getOverlapMode () {
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::logic_error, "Ifpack2::RILUK::SetOverlapMode: "
"RILUK no longer implements overlap on its own. "
"Use RILUK with AdditiveSchwarz if you want overlap.");
}
//! Returns the number of nonzero entries in the global graph.
Tpetra::global_size_t getGlobalNumEntries () const {
return getL ().getGlobalNumEntries () + getU ().getGlobalNumEntries ();
}
//! Return the Ifpack2::IlukGraph associated with this factored matrix.
Teuchos::RCP<Ifpack2::IlukGraph<Tpetra::CrsGraph<local_ordinal_type,global_ordinal_type,node_type> > > getGraph () const {
return Graph_;
}
//! Return the L factor of the ILU factorization.
const crs_matrix_type& getL () const;
//! Return the diagonal entries of the ILU factorization.
const Tpetra::Vector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>&
getD () const;
//! Return the U factor of the ILU factorization.
const crs_matrix_type& getU () const;
//! Return the input matrix A as a Tpetra::CrsMatrix, if possible; else throws.
Teuchos::RCP<const crs_matrix_type> getCrsMatrix () const;
private:
typedef Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> MV;
typedef Teuchos::ScalarTraits<scalar_type> STS;
typedef Teuchos::ScalarTraits<magnitude_type> STM;
void allocateSolvers ();
void allocate_L_and_U ();
static void checkOrderingConsistency (const row_matrix_type& A);
void initAllValues (const row_matrix_type& A);
/// \brief Return A, wrapped in a LocalFilter, if necessary.
///
/// "If necessary" means that if A is already a LocalFilter, or if
/// its communicator only has one process, then we don't need to
/// wrap it, so we just return A.
static Teuchos::RCP<const row_matrix_type>
makeLocalFilter (const Teuchos::RCP<const row_matrix_type>& A);
protected:
typedef Tpetra::Vector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> vec_type;
//! The (original) input matrix for which to compute ILU(k).
Teuchos::RCP<const row_matrix_type> A_;
//! The ILU(k) graph.
Teuchos::RCP<Ifpack2::IlukGraph<Tpetra::CrsGraph<local_ordinal_type,
global_ordinal_type,
node_type> > > Graph_;
/// \brief The matrix whos numbers are used to to compute ILU(k). The graph
/// may be computed using a crs_matrix_type that initialize() constructs
/// temporarily.
Teuchos::RCP<const row_matrix_type> A_local_;
//! The L (lower triangular) factor of ILU(k).
Teuchos::RCP<crs_matrix_type> L_;
//! Sparse triangular solver for L
Teuchos::RCP<LocalSparseTriangularSolver<row_matrix_type> > L_solver_;
//! The U (upper triangular) factor of ILU(k).
Teuchos::RCP<crs_matrix_type> U_;
//! Sparse triangular solver for U
Teuchos::RCP<LocalSparseTriangularSolver<row_matrix_type> > U_solver_;
//! The diagonal entries of the ILU(k) factorization.
Teuchos::RCP<vec_type> D_;
#ifdef IFPACK2_ILUK_EXPERIMENTAL
typedef typename node_type::device_type kokkos_device;
typedef typename kokkos_device::execution_space kokkos_exe;
static_assert( std::is_same< kokkos_exe,
Kokkos::OpenMP>::value,
"Kokkos node type not supported by exepertimentalthread basker RILUK decl");
// Basker needs the CRS matrix.
Teuchos::RCP<const crs_matrix_type> A_local_crs_;
// If the nonzero pattern is being reused, Basker needs A_local_ to be
// (possibly) copied or otherwise cast to a crs_matrix_type.
void initLocalCrs ();
Teuchos::RCP< BaskerNS::Basker<local_ordinal_type, scalar_type, Kokkos::OpenMP> >
myBasker;
local_ordinal_type basker_threads;
scalar_type basker_user_fill;
bool basker_reuse;
# ifdef IFPACK2_HTS_EXPERIMENTAL
bool use_hts_;
int hts_nthreads_;
typedef ::Experimental::HTS<local_ordinal_type, local_ordinal_type, scalar_type> HTST;
struct HTSData : public HTST::Deallocator {
local_ordinal_type n;
local_ordinal_type* jc, * ir;
scalar_type* v;
HTSData();
~HTSData();
virtual void free_CrsMatrix_data();
struct Entry {
bool operator< (const Entry& o) const { return j < o.j; }
local_ordinal_type j; scalar_type v;
};
void sort();
};
struct HTSManager {
typename HTST::Impl* Limpl, * Uimpl;
HTSManager();
~HTSManager();
};
Teuchos::RCP<HTSManager> hts_mgr_;
# endif
#endif
int LevelOfFill_;
bool isAllocated_;
bool isInitialized_;
bool isComputed_;
bool isExperimental_;
int numInitialize_;
int numCompute_;
mutable int numApply_;
double initializeTime_;
double computeTime_;
mutable double applyTime_;
magnitude_type RelaxValue_;
magnitude_type Athresh_;
magnitude_type Rthresh_;
};
// NOTE (mfh 11 Feb 2015) This used to exist in order to deal with
// different behavior of Tpetra::Crs{Graph,Matrix} for
// KokkosClassic::ThrustGPUNode. In particular, fillComplete on a
// CrsMatrix used to make the graph go away by default, so we had to
// pass in a parameter to keep a host copy of the graph. With the new
// (Kokkos refactor) version of Tpetra, this problem has gone away.
namespace detail {
template<class MatrixType, class NodeType>
struct setLocalSolveParams{
static Teuchos::RCP<Teuchos::ParameterList>
setParams (const Teuchos::RCP<Teuchos::ParameterList>& param) {
return param;
}
};
} // namespace detail
template <class MatrixType>
template <typename NewMatrixType>
Teuchos::RCP<RILUK<NewMatrixType> >
RILUK<MatrixType>::
clone (const Teuchos::RCP<const NewMatrixType>& A_newnode) const
{
using Teuchos::ParameterList;
using Teuchos::RCP;
using Teuchos::rcp;
typedef typename NewMatrixType::scalar_type new_scalar_type;
typedef typename NewMatrixType::local_ordinal_type new_local_ordinal_type;
typedef typename NewMatrixType::global_ordinal_type new_global_ordinal_type;
typedef typename NewMatrixType::node_type new_node_type;
typedef Tpetra::RowMatrix<new_scalar_type, new_local_ordinal_type,
new_global_ordinal_type, new_node_type> new_row_matrix_type;
typedef RILUK<new_row_matrix_type> new_riluk_type;
RCP<new_riluk_type> new_riluk = rcp (new new_riluk_type (A_newnode));
RCP<ParameterList> plClone = Teuchos::parameterList ();
plClone = detail::setLocalSolveParams<NewMatrixType, new_node_type>::setParams (plClone);
RCP<new_node_type> new_node = A_newnode->getNode ();
new_riluk->L_ = L_->clone (new_node, plClone);
new_riluk->U_ = U_->clone (new_node, plClone);
new_riluk->D_ = D_->clone (new_node);
new_riluk->LevelOfFill_ = LevelOfFill_;
new_riluk->isAllocated_ = isAllocated_;
new_riluk->isInitialized_ = isInitialized_;
new_riluk->isComputed_ = isComputed_;
new_riluk->numInitialize_ = numInitialize_;
new_riluk->numCompute_ = numCompute_;
new_riluk->numApply_ = numApply_;
new_riluk->RelaxValue_ = RelaxValue_;
new_riluk->Athresh_ = Athresh_;
new_riluk->Rthresh_ = Rthresh_;
return new_riluk;
}
} // namespace Ifpack2
#endif /* IFPACK2_CRSRILUK_DECL_HPP */
|