This file is indexed.

/usr/include/trilinos/Ifpack2_Relaxation_def.hpp is in libtrilinos-ifpack2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
/*@HEADER
// ***********************************************************************
//
//       Ifpack2: Tempated Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK2_RELAXATION_DEF_HPP
#define IFPACK2_RELAXATION_DEF_HPP

#include "Teuchos_StandardParameterEntryValidators.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Tpetra_CrsMatrix.hpp"
#include "Tpetra_Experimental_BlockCrsMatrix.hpp"
#include "Ifpack2_Utilities.hpp"
#include "Ifpack2_Relaxation_decl.hpp"

#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
#  include "KokkosKernels_GaussSeidel.hpp"
#endif // HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES

#ifdef HAVE_IFPACK2_DUMP_MTX_MATRIX
#  include "MatrixMarket_Tpetra.hpp"
#endif

// mfh 28 Mar 2013: Uncomment out these three lines to compute
// statistics on diagonal entries in compute().
// #ifndef IFPACK2_RELAXATION_COMPUTE_DIAGONAL_STATS
// #  define IFPACK2_RELAXATION_COMPUTE_DIAGONAL_STATS 1
// #endif // IFPACK2_RELAXATION_COMPUTE_DIAGONAL_STATS

namespace {
  // Validate that a given int is nonnegative.
  class NonnegativeIntValidator : public Teuchos::ParameterEntryValidator {
  public:
    // Constructor (does nothing).
    NonnegativeIntValidator () {}

    // ParameterEntryValidator wants this method.
    Teuchos::ParameterEntryValidator::ValidStringsList validStringValues () const {
      return Teuchos::null;
    }

    // Actually validate the parameter's value.
    void
    validate (const Teuchos::ParameterEntry& entry,
              const std::string& paramName,
              const std::string& sublistName) const
    {
      using std::endl;
      Teuchos::any anyVal = entry.getAny (true);
      const std::string entryName = entry.getAny (false).typeName ();

      TEUCHOS_TEST_FOR_EXCEPTION(
        anyVal.type () != typeid (int),
        Teuchos::Exceptions::InvalidParameterType,
        "Parameter \"" << paramName << "\" in sublist \"" << sublistName
        << "\" has the wrong type." << endl << "Parameter: " << paramName
        << endl << "Type specified: " << entryName << endl
        << "Type required: int" << endl);

      const int val = Teuchos::any_cast<int> (anyVal);
      TEUCHOS_TEST_FOR_EXCEPTION(
        val < 0, Teuchos::Exceptions::InvalidParameterValue,
        "Parameter \"" << paramName << "\" in sublist \"" << sublistName
        << "\" is negative." << endl << "Parameter: " << paramName
        << endl << "Value specified: " << val << endl
        << "Required range: [0, INT_MAX]" << endl);
    }

    // ParameterEntryValidator wants this method.
    const std::string getXMLTypeName () const {
      return "NonnegativeIntValidator";
    }

    // ParameterEntryValidator wants this method.
    void
    printDoc (const std::string& docString,
              std::ostream &out) const
    {
      Teuchos::StrUtils::printLines (out, "# ", docString);
      out << "#\tValidator Used: " << std::endl;
      out << "#\t\tNonnegativeIntValidator" << std::endl;
    }
  };

  // A way to get a small positive number (eps() for floating-point
  // types, or 1 for integer types) when Teuchos::ScalarTraits doesn't
  // define it (for example, for integer values).
  template<class Scalar, const bool isOrdinal=Teuchos::ScalarTraits<Scalar>::isOrdinal>
  class SmallTraits {
  public:
    // Return eps if Scalar is a floating-point type, else return 1.
    static const Scalar eps ();
  };

  // Partial specialization for when Scalar is not a floating-point type.
  template<class Scalar>
  class SmallTraits<Scalar, true> {
  public:
    static const Scalar eps () {
      return Teuchos::ScalarTraits<Scalar>::one ();
    }
  };

  // Partial specialization for when Scalar is a floating-point type.
  template<class Scalar>
  class SmallTraits<Scalar, false> {
  public:
    static const Scalar eps () {
      return Teuchos::ScalarTraits<Scalar>::eps ();
    }
  };
} // namespace (anonymous)

namespace Ifpack2 {

template<class MatrixType>
void Relaxation<MatrixType>::
setMatrix (const Teuchos::RCP<const row_matrix_type>& A)
{
  if (A.getRawPtr () != A_.getRawPtr ()) { // it's a different matrix
    Importer_ = Teuchos::null;
    Diagonal_ = Teuchos::null; // ??? what if this comes from the user???
    isInitialized_ = false;
    IsComputed_ = false;
    diagOffsets_ = Kokkos::View<size_t*, typename node_type::device_type> ();
    savedDiagOffsets_ = false;
    hasBlockCrsMatrix_ = false;
    if (! A.is_null ()) {
      IsParallel_ = (A->getRowMap ()->getComm ()->getSize () > 1);
    }
    A_ = A;
  }
}


template<class MatrixType>
Relaxation<MatrixType>::
Relaxation (const Teuchos::RCP<const row_matrix_type>& A)
: A_ (A),
  Time_ (Teuchos::rcp (new Teuchos::Time ("Ifpack2::Relaxation"))),
  NumSweeps_ (1),
  PrecType_ (Ifpack2::Details::JACOBI),
  DampingFactor_ (STS::one ()),
  IsParallel_ ((A.is_null () || A->getRowMap ().is_null () || A->getRowMap ()->getComm ().is_null ()) ?
               false : // a reasonable default if there's no communicator
               A->getRowMap ()->getComm ()->getSize () > 1),
  ZeroStartingSolution_ (true),
  DoBackwardGS_ (false),
  DoL1Method_ (false),
  L1Eta_ (Teuchos::as<magnitude_type> (1.5)),
  MinDiagonalValue_ (STS::zero ()),
  fixTinyDiagEntries_ (false),
  checkDiagEntries_ (false),
  isInitialized_ (false),
  IsComputed_ (false),
  NumInitialize_ (0),
  NumCompute_ (0),
  NumApply_ (0),
  InitializeTime_ (0.0), // Times are double anyway, so no need for ScalarTraits.
  ComputeTime_ (0.0),
  ApplyTime_ (0.0),
  ComputeFlops_ (0.0),
  ApplyFlops_ (0.0),
  globalMinMagDiagEntryMag_ (STM::zero ()),
  globalMaxMagDiagEntryMag_ (STM::zero ()),
  globalNumSmallDiagEntries_ (0),
  globalNumZeroDiagEntries_ (0),
  globalNumNegDiagEntries_ (0),
  globalDiagNormDiff_(Teuchos::ScalarTraits<magnitude_type>::zero()),
  savedDiagOffsets_ (false),
  hasBlockCrsMatrix_ (false)
{
  this->setObjectLabel ("Ifpack2::Relaxation");
}

//==========================================================================
template<class MatrixType>
Relaxation<MatrixType>::~Relaxation() {
}

template<class MatrixType>
Teuchos::RCP<const Teuchos::ParameterList>
Relaxation<MatrixType>::getValidParameters () const
{
  using Teuchos::Array;
  using Teuchos::ParameterList;
  using Teuchos::parameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcp_const_cast;
  using Teuchos::rcp_implicit_cast;
  using Teuchos::setStringToIntegralParameter;
  typedef Teuchos::ParameterEntryValidator PEV;

  if (validParams_.is_null ()) {
    RCP<ParameterList> pl = parameterList ("Ifpack2::Relaxation");

    // Set a validator that automatically converts from the valid
    // string options to their enum values.
    Array<std::string> precTypes (5);
    precTypes[0] = "Jacobi";
    precTypes[1] = "Gauss-Seidel";
    precTypes[2] = "Symmetric Gauss-Seidel";
    precTypes[3] = "MT Gauss-Seidel";
    precTypes[4] = "MT Symmetric Gauss-Seidel";
    Array<Details::RelaxationType> precTypeEnums (5);
    precTypeEnums[0] = Details::JACOBI;
    precTypeEnums[1] = Details::GS;
    precTypeEnums[2] = Details::SGS;
    precTypeEnums[3] = Details::MTGS;
    precTypeEnums[4] = Details::MTSGS;
    const std::string defaultPrecType ("Jacobi");
    setStringToIntegralParameter<Details::RelaxationType> ("relaxation: type",
      defaultPrecType, "Relaxation method", precTypes (), precTypeEnums (),
      pl.getRawPtr ());

    const int numSweeps = 1;
    RCP<PEV> numSweepsValidator =
      rcp_implicit_cast<PEV> (rcp (new NonnegativeIntValidator));
    pl->set ("relaxation: sweeps", numSweeps, "Number of relaxation sweeps",
             rcp_const_cast<const PEV> (numSweepsValidator));

    const scalar_type dampingFactor = STS::one ();
    pl->set ("relaxation: damping factor", dampingFactor);

    const bool zeroStartingSolution = true;
    pl->set ("relaxation: zero starting solution", zeroStartingSolution);

    const bool doBackwardGS = false;
    pl->set ("relaxation: backward mode", doBackwardGS);

    const bool doL1Method = false;
    pl->set ("relaxation: use l1", doL1Method);

    const magnitude_type l1eta = (STM::one() + STM::one() + STM::one()) /
      (STM::one() + STM::one()); // 1.5
    pl->set ("relaxation: l1 eta", l1eta);

    const scalar_type minDiagonalValue = STS::zero ();
    pl->set ("relaxation: min diagonal value", minDiagonalValue);

    const bool fixTinyDiagEntries = false;
    pl->set ("relaxation: fix tiny diagonal entries", fixTinyDiagEntries);

    const bool checkDiagEntries = false;
    pl->set ("relaxation: check diagonal entries", checkDiagEntries);

    Teuchos::ArrayRCP<local_ordinal_type> localSmoothingIndices = Teuchos::null;
    pl->set("relaxation: local smoothing indices", localSmoothingIndices);

    validParams_ = rcp_const_cast<const ParameterList> (pl);
  }
  return validParams_;
}


template<class MatrixType>
void Relaxation<MatrixType>::setParametersImpl (Teuchos::ParameterList& pl)
{
  using Teuchos::getIntegralValue;
  using Teuchos::ParameterList;
  using Teuchos::RCP;
  typedef scalar_type ST; // just to make code below shorter

  pl.validateParametersAndSetDefaults (* getValidParameters ());

  const Details::RelaxationType precType =
    getIntegralValue<Details::RelaxationType> (pl, "relaxation: type");
  const int numSweeps = pl.get<int> ("relaxation: sweeps");
  const ST dampingFactor = pl.get<ST> ("relaxation: damping factor");
  const bool zeroStartSol = pl.get<bool> ("relaxation: zero starting solution");
  const bool doBackwardGS = pl.get<bool> ("relaxation: backward mode");
  const bool doL1Method = pl.get<bool> ("relaxation: use l1");
  const magnitude_type l1Eta = pl.get<magnitude_type> ("relaxation: l1 eta");
  const ST minDiagonalValue = pl.get<ST> ("relaxation: min diagonal value");
  const bool fixTinyDiagEntries = pl.get<bool> ("relaxation: fix tiny diagonal entries");
  const bool checkDiagEntries = pl.get<bool> ("relaxation: check diagonal entries");
  Teuchos::ArrayRCP<local_ordinal_type> localSmoothingIndices = pl.get<Teuchos::ArrayRCP<local_ordinal_type> >("relaxation: local smoothing indices");


  // "Commit" the changes, now that we've validated everything.
  PrecType_              = precType;
  NumSweeps_             = numSweeps;
  DampingFactor_         = dampingFactor;
  ZeroStartingSolution_  = zeroStartSol;
  DoBackwardGS_          = doBackwardGS;
  DoL1Method_            = doL1Method;
  L1Eta_                 = l1Eta;
  MinDiagonalValue_      = minDiagonalValue;
  fixTinyDiagEntries_    = fixTinyDiagEntries;
  checkDiagEntries_      = checkDiagEntries;
  localSmoothingIndices_ = localSmoothingIndices;
}


template<class MatrixType>
void Relaxation<MatrixType>::setParameters (const Teuchos::ParameterList& pl)
{
  // FIXME (aprokop 18 Oct 2013) Casting away const is bad here.
  // but otherwise, we will get [unused] in pl
  this->setParametersImpl(const_cast<Teuchos::ParameterList&>(pl));
}


template<class MatrixType>
Teuchos::RCP<const Teuchos::Comm<int> >
Relaxation<MatrixType>::getComm() const {
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getComm: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix before calling this method.");
  return A_->getRowMap ()->getComm ();
}


template<class MatrixType>
Teuchos::RCP<const typename Relaxation<MatrixType>::row_matrix_type>
Relaxation<MatrixType>::getMatrix () const {
  return A_;
}


template<class MatrixType>
Teuchos::RCP<const Tpetra::Map<typename MatrixType::local_ordinal_type,
                               typename MatrixType::global_ordinal_type,
                               typename MatrixType::node_type> >
Relaxation<MatrixType>::getDomainMap () const {
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getDomainMap: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix before calling this method.");
  return A_->getDomainMap ();
}


template<class MatrixType>
Teuchos::RCP<const Tpetra::Map<typename MatrixType::local_ordinal_type,
                               typename MatrixType::global_ordinal_type,
                               typename MatrixType::node_type> >
Relaxation<MatrixType>::getRangeMap () const {
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getRangeMap: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix before calling this method.");
  return A_->getRangeMap ();
}


template<class MatrixType>
bool Relaxation<MatrixType>::hasTransposeApply () const {
  return true;
}


template<class MatrixType>
int Relaxation<MatrixType>::getNumInitialize() const {
  return(NumInitialize_);
}


template<class MatrixType>
int Relaxation<MatrixType>::getNumCompute() const {
  return(NumCompute_);
}


template<class MatrixType>
int Relaxation<MatrixType>::getNumApply() const {
  return(NumApply_);
}


template<class MatrixType>
double Relaxation<MatrixType>::getInitializeTime() const {
  return(InitializeTime_);
}


template<class MatrixType>
double Relaxation<MatrixType>::getComputeTime() const {
  return(ComputeTime_);
}


template<class MatrixType>
double Relaxation<MatrixType>::getApplyTime() const {
  return(ApplyTime_);
}


template<class MatrixType>
double Relaxation<MatrixType>::getComputeFlops() const {
  return(ComputeFlops_);
}


template<class MatrixType>
double Relaxation<MatrixType>::getApplyFlops() const {
  return(ApplyFlops_);
}



template<class MatrixType>
size_t Relaxation<MatrixType>::getNodeSmootherComplexity() const {
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::getNodeSmootherComplexity: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix, then call compute(), before calling this method.");
  // Relaxation methods cost roughly one apply + one diagonal inverse per iteration
  return A_->getNodeNumRows() + A_->getNodeNumEntries();
}


template<class MatrixType>
void
Relaxation<MatrixType>::
apply (const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
       Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
       Teuchos::ETransp mode,
       scalar_type alpha,
       scalar_type beta) const
{
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  typedef Tpetra::MultiVector<scalar_type, local_ordinal_type,
                              global_ordinal_type, node_type> MV;
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::apply: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix, then call compute(), before calling this method.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! isComputed (),
    std::runtime_error,
    "Ifpack2::Relaxation::apply: You must call compute() on this Ifpack2 "
    "preconditioner instance before you may call apply().  You may call "
    "isComputed() to find out if compute() has been called already.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.getNumVectors() != Y.getNumVectors(),
    std::runtime_error,
    "Ifpack2::Relaxation::apply: X and Y have different numbers of columns.  "
    "X has " << X.getNumVectors() << " columns, but Y has "
    << Y.getNumVectors() << " columns.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    beta != STS::zero (), std::logic_error,
    "Ifpack2::Relaxation::apply: beta = " << beta << " != 0 case not "
    "implemented.");
  {
    // Reset the timer each time, since Relaxation uses the same Time
    // object to track times for different methods.
    Teuchos::TimeMonitor timeMon (*Time_, true);

    // Special case: alpha == 0.
    if (alpha == STS::zero ()) {
      // No floating-point operations, so no need to update a count.
      Y.putScalar (STS::zero ());
    }
    else {
      // If X and Y alias one another, then we need to create an
      // auxiliary vector, Xcopy (a deep copy of X).
      RCP<const MV> Xcopy;
      // FIXME (mfh 12 Sep 2014) This test for aliasing is incomplete.
      {
        auto X_lcl_host = X.template getLocalView<Kokkos::HostSpace> ();
        auto Y_lcl_host = Y.template getLocalView<Kokkos::HostSpace> ();
        if (X_lcl_host.ptr_on_device () == Y_lcl_host.ptr_on_device ()) {
          Xcopy = rcp (new MV (X, Teuchos::Copy));
        } else {
          Xcopy = rcpFromRef (X);
        }
      }

      // Each of the following methods updates the flop count itself.
      // All implementations handle zeroing out the starting solution
      // (if necessary) themselves.
      switch (PrecType_) {
      case Ifpack2::Details::JACOBI:
        ApplyInverseJacobi(*Xcopy,Y);
        break;
      case Ifpack2::Details::GS:
        ApplyInverseGS(*Xcopy,Y);
        break;
      case Ifpack2::Details::SGS:
        ApplyInverseSGS(*Xcopy,Y);
        break;
      case Ifpack2::Details::MTSGS:
        ApplyInverseMTSGS_CrsMatrix(*Xcopy,Y);
        break;
      case Ifpack2::Details::MTGS:
        ApplyInverseMTGS_CrsMatrix(*Xcopy,Y);
        break;

      default:
        TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,
          "Ifpack2::Relaxation::apply: Invalid preconditioner type enum value "
          << PrecType_ << ".  Please report this bug to the Ifpack2 developers.");
      }
      if (alpha != STS::one ()) {
        Y.scale (alpha);
        const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
        const double numVectors = as<double> (Y.getNumVectors ());
        ApplyFlops_ += numGlobalRows * numVectors;
      }
    }
  }
  ApplyTime_ += Time_->totalElapsedTime ();
  ++NumApply_;
}


template<class MatrixType>
void
Relaxation<MatrixType>::
applyMat (const Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& X,
          Tpetra::MultiVector<scalar_type, local_ordinal_type, global_ordinal_type, node_type>& Y,
          Teuchos::ETransp mode) const
{
  TEUCHOS_TEST_FOR_EXCEPTION(
    A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::applyMat: "
    "The input matrix A is null.  Please call setMatrix() with a nonnull "
    "input matrix, then call compute(), before calling this method.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! isComputed (), std::runtime_error, "Ifpack2::Relaxation::applyMat: "
    "isComputed() must be true before you may call applyMat().  "
    "Please call compute() before calling this method.");
  TEUCHOS_TEST_FOR_EXCEPTION(
    X.getNumVectors () != Y.getNumVectors (), std::invalid_argument,
    "Ifpack2::Relaxation::applyMat: X.getNumVectors() = " << X.getNumVectors ()
    << " != Y.getNumVectors() = " << Y.getNumVectors () << ".");
  A_->apply (X, Y, mode);
}


template<class MatrixType>
void Relaxation<MatrixType>::initialize ()
{
  TEUCHOS_TEST_FOR_EXCEPTION
    (A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::initialize: "
     "The input matrix A is null.  Please call setMatrix() with a nonnull "
     "input matrix before calling this method.");
  Teuchos::TimeMonitor timeMon (*Time_, true);

  if (A_.is_null ()) {
    hasBlockCrsMatrix_ = false;
  }
  else { // A_ is not null
    Teuchos::RCP<const block_crs_matrix_type> A_bcrs =
      Teuchos::rcp_dynamic_cast<const block_crs_matrix_type> (A_);
    if (A_bcrs.is_null ()) {
      hasBlockCrsMatrix_ = false;
    }
    else { // A_ is a block_crs_matrix_type
      hasBlockCrsMatrix_ = true;
    }
  }

  if (PrecType_ == Ifpack2::Details::MTGS || PrecType_ == Ifpack2::Details::MTSGS) {
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
    const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
    TEUCHOS_TEST_FOR_EXCEPTION
      (crsMat == NULL, std::logic_error, "Ifpack2::Relaxation::initialize: "
       "Multithreaded Gauss-Seidel methods currently only work when the input "
       "matrix is a Tpetra::CrsMatrix.");

#ifdef HAVE_IFPACK2_DUMP_MTX_MATRIX
    Tpetra::MatrixMarket::Writer<crs_matrix_type> crs_writer;
    std::string file_name = "Ifpack2_MT_GS.mtx";
    Teuchos::RCP<const crs_matrix_type> rcp_crs_mat = Teuchos::rcp_dynamic_cast<const crs_matrix_type> (A_);
    crs_writer.writeSparseFile(file_name, rcp_crs_mat);
#endif

    this->mtKernelHandle_ = Teuchos::rcp (new mt_kernel_handle_type ());
    if (mtKernelHandle_->get_gs_handle () == NULL) {
      mtKernelHandle_->create_gs_handle ();
    }
    local_matrix_type kcsr = crsMat->getLocalMatrix ();

    const bool is_symmetric = (PrecType_ == Ifpack2::Details::MTSGS);
    using KokkosKernels::Experimental::Graph::gauss_seidel_symbolic;
    gauss_seidel_symbolic<mt_kernel_handle_type,
      lno_row_view_t,
      lno_nonzero_view_t> (mtKernelHandle_.getRawPtr (),
                           A_->getNodeNumRows (),
                           A_->getNodeNumCols (),
                           kcsr.graph.row_map,
                           kcsr.graph.entries,
                           is_symmetric);
#else // HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "The multithreaded implementation of Gauss-Seidel "
     "is not enabled.  Please talk to the Ifpack2 developers about how to "
     "enable this method.");
#endif // HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
  }


  InitializeTime_ += Time_->totalElapsedTime ();
  ++NumInitialize_;
  isInitialized_ = true;
}

namespace Impl {
template <typename BlockDiagView>
struct InvertDiagBlocks {
  typedef int value_type;
  typedef typename BlockDiagView::size_type Size;

private:
  typedef Kokkos::MemoryTraits<Kokkos::Unmanaged> Unmanaged;
  template <typename View>
  using UnmanagedView = Kokkos::View<typename View::data_type, typename View::array_layout,
                                     typename View::device_type, Unmanaged>;

  typedef typename BlockDiagView::non_const_value_type Scalar;
  typedef typename BlockDiagView::device_type Device;
  typedef Kokkos::View<Scalar**, Kokkos::LayoutRight, Device> RWrk;
  typedef Kokkos::View<int**, Kokkos::LayoutRight, Device> IWrk;

  UnmanagedView<BlockDiagView> block_diag_;
  // TODO Use thread team and scratch memory space. In this first
  // pass, provide workspace for each block.
  RWrk rwrk_buf_;
  UnmanagedView<RWrk> rwrk_;
  IWrk iwrk_buf_;
  UnmanagedView<IWrk> iwrk_;

public:
  InvertDiagBlocks (BlockDiagView& block_diag)
    : block_diag_(block_diag)
  {
    const auto blksz = block_diag.dimension_1();
    Kokkos::resize(rwrk_buf_, block_diag_.dimension_0(), blksz);
    rwrk_ = rwrk_buf_;
    Kokkos::resize(iwrk_buf_, block_diag_.dimension_0(), blksz);
    iwrk_ = iwrk_buf_;
  }

  KOKKOS_INLINE_FUNCTION
  void operator() (const Size i, int& jinfo) const {
    auto D_cur = Kokkos::subview(block_diag_, i, Kokkos::ALL(), Kokkos::ALL());
    auto ipiv = Kokkos::subview(iwrk_, i, Kokkos::ALL());
    auto work = Kokkos::subview(rwrk_, i, Kokkos::ALL());
    int info = 0;
    Tpetra::Experimental::GETF2(D_cur, ipiv, info);
    if (info) {
      ++jinfo;
      return;
    }
    Tpetra::Experimental::GETRI(D_cur, ipiv, work, info);
    if (info) ++jinfo;
  }

  // Report the number of blocks with errors.
  KOKKOS_INLINE_FUNCTION
  void join (volatile value_type& dst, volatile value_type const& src) const { dst += src; }
};
}

template<class MatrixType>
void Relaxation<MatrixType>::computeBlockCrs ()
{
  using Kokkos::ALL;
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::Comm;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::REDUCE_MAX;
  using Teuchos::REDUCE_MIN;
  using Teuchos::REDUCE_SUM;
  using Teuchos::rcp_dynamic_cast;
  using Teuchos::reduceAll;
  typedef local_ordinal_type LO;
  typedef typename node_type::device_type device_type;

  {
    // Reset the timer each time, since Relaxation uses the same Time
    // object to track times for different methods.
    Teuchos::TimeMonitor timeMon (*Time_, true);

    TEUCHOS_TEST_FOR_EXCEPTION(
      A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::"
      "computeBlockCrs: The input matrix A is null.  Please call setMatrix() "
      "with a nonnull input matrix, then call initialize(), before calling "
      "this method.");
    const block_crs_matrix_type* blockCrsA =
      dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr ());
    TEUCHOS_TEST_FOR_EXCEPTION(
      blockCrsA == NULL, std::logic_error, "Ifpack2::Relaxation::"
      "computeBlockCrs: A_ is not a BlockCrsMatrix, but it should be if we "
      "got this far.  Please report this bug to the Ifpack2 developers.");

    const scalar_type one = STS::one ();

    // Reset state.
    IsComputed_ = false;

    const LO lclNumMeshRows =
      blockCrsA->getCrsGraph ().getNodeNumRows ();
    const LO blockSize = blockCrsA->getBlockSize ();

    if (! savedDiagOffsets_) {
      blockDiag_ = block_diag_type (); // clear it before reallocating
      blockDiag_ = block_diag_type ("Ifpack2::Relaxation::blockDiag_",
                                    lclNumMeshRows, blockSize, blockSize);
      if (Teuchos::as<LO>(diagOffsets_.dimension_0 () ) < lclNumMeshRows) {
        // Clear diagOffsets_ first (by assigning an empty View to it)
        // to save memory, before reallocating.
        diagOffsets_ = Kokkos::View<size_t*, device_type> ();
        diagOffsets_ = Kokkos::View<size_t*, device_type> ("offsets", lclNumMeshRows);
      }
      blockCrsA->getCrsGraph ().getLocalDiagOffsets (diagOffsets_);
      TEUCHOS_TEST_FOR_EXCEPTION
        (static_cast<size_t> (diagOffsets_.dimension_0 ()) !=
         static_cast<size_t> (blockDiag_.dimension_0 ()),
         std::logic_error, "diagOffsets_.dimension_0() = " <<
         diagOffsets_.dimension_0 () << " != blockDiag_.dimension_0() = "
         << blockDiag_.dimension_0 () <<
         ".  Please report this bug to the Ifpack2 developers.");
      savedDiagOffsets_ = true;
    }
    blockCrsA->getLocalDiagCopy (blockDiag_, diagOffsets_);

    // Use an unmanaged View in this method, so that when we take
    // subviews of it (to get each diagonal block), we don't have to
    // touch the reference count.  Reference count updates are a
    // thread scalability bottleneck and have a performance cost even
    // without using threads.
    unmanaged_block_diag_type blockDiag = blockDiag_;

    if (DoL1Method_ && IsParallel_) {
      const scalar_type two = one + one;
      const size_t maxLength = A_->getNodeMaxNumRowEntries ();
      Array<LO> indices (maxLength);
      Array<scalar_type> values (maxLength * blockSize * blockSize);
      size_t numEntries = 0;

      for (LO i = 0; i < lclNumMeshRows; ++i) {
        // FIXME (mfh 16 Dec 2015) Get views instead of copies.
        blockCrsA->getLocalRowCopy (i, indices (), values (), numEntries);

        auto diagBlock = Kokkos::subview (blockDiag, i, ALL (), ALL ());
        for (LO subRow = 0; subRow < blockSize; ++subRow) {
          magnitude_type diagonal_boost = STM::zero ();
          for (size_t k = 0 ; k < numEntries ; ++k) {
            if (indices[k] > lclNumMeshRows) {
              const size_t offset = blockSize*blockSize*k + subRow*blockSize;
              for (LO subCol = 0; subCol < blockSize; ++subCol) {
                diagonal_boost += STS::magnitude (values[offset+subCol] / two);
              }
            }
          }
          if (STS::magnitude (diagBlock(subRow, subRow)) < L1Eta_ * diagonal_boost) {
            diagBlock(subRow, subRow) += diagonal_boost;
          }
        }
      }
    }

    int info = 0;
    {
      Impl::InvertDiagBlocks<unmanaged_block_diag_type> idb(blockDiag);
      typedef typename unmanaged_block_diag_type::execution_space exec_space;
      typedef Kokkos::RangePolicy<exec_space, LO> range_type;

      Kokkos::parallel_reduce (range_type (0, lclNumMeshRows), idb, info);
      // FIXME (mfh 19 May 2017) Different processes may not
      // necessarily have this error all at the same time, so it would
      // be better just to preserve a local error state and let users
      // check.
      TEUCHOS_TEST_FOR_EXCEPTION
        (info > 0, std::runtime_error, "GETF2 or GETRI failed on = " << info
         << " diagonal blocks.");
    }

    // In a debug build, do an extra test to make sure that all the
    // factorizations were computed correctly.
#ifdef HAVE_IFPACK2_DEBUG
    const int numResults = 2;
    // Use "max = -min" trick to get min and max in a single all-reduce.
    int lclResults[2], gblResults[2];
    lclResults[0] = info;
    lclResults[1] = -info;
    gblResults[0] = 0;
    gblResults[1] = 0;
    reduceAll<int, int> (* (A_->getGraph ()->getComm ()), REDUCE_MIN,
                         numResults, lclResults, gblResults);
    TEUCHOS_TEST_FOR_EXCEPTION
      (gblResults[0] != 0 || gblResults[1] != 0, std::runtime_error,
       "Ifpack2::Relaxation::compute: When processing the input "
       "Tpetra::BlockCrsMatrix, one or more diagonal block LU factorizations "
       "failed on one or more (MPI) processes.");
#endif // HAVE_IFPACK2_DEBUG

    Importer_ = A_->getGraph ()->getImporter ();
  } // end TimeMonitor scope

  ComputeTime_ += Time_->totalElapsedTime ();
  ++NumCompute_;
  IsComputed_ = true;
}

template<class MatrixType>
void Relaxation<MatrixType>::compute ()
{
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::Comm;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::REDUCE_MAX;
  using Teuchos::REDUCE_MIN;
  using Teuchos::REDUCE_SUM;
  using Teuchos::rcp_dynamic_cast;
  using Teuchos::reduceAll;
  typedef Tpetra::Vector<scalar_type, local_ordinal_type,
                         global_ordinal_type, node_type> vector_type;
  typedef typename vector_type::device_type device_type;
  const scalar_type zero = STS::zero ();
  const scalar_type one = STS::one ();

  // We don't count initialization in compute() time.
  if (! isInitialized ()) {
    initialize ();
  }

  if (hasBlockCrsMatrix_) {
    computeBlockCrs ();
    return;
  }



  {
    // Reset the timer each time, since Relaxation uses the same Time
    // object to track times for different methods.
    Teuchos::TimeMonitor timeMon (*Time_, true);

    TEUCHOS_TEST_FOR_EXCEPTION(
      A_.is_null (), std::runtime_error, "Ifpack2::Relaxation::compute: "
      "The input matrix A is null.  Please call setMatrix() with a nonnull "
      "input matrix, then call initialize(), before calling this method.");

    // Reset state.
    IsComputed_ = false;

    TEUCHOS_TEST_FOR_EXCEPTION(
      NumSweeps_ < 0, std::logic_error,
      "Ifpack2::Relaxation::compute: NumSweeps_ = " << NumSweeps_ << " < 0.  "
      "Please report this bug to the Ifpack2 developers.");

    Diagonal_ = rcp (new vector_type (A_->getRowMap ()));

    // Extract the diagonal entries.  The CrsMatrix static graph
    // version is faster for subsequent calls to compute(), since it
    // caches the diagonal offsets.
    //
    // isStaticGraph() == true means that the matrix was created with
    // a const graph.  The only requirement is that the structure of
    // the matrix never changes, so isStaticGraph() == true is a bit
    // more conservative than we need.  However, Tpetra doesn't (as of
    // 05 Apr 2013) have a way to tell if the graph hasn't changed
    // since the last time we used it.
    {
      // NOTE (mfh 07 Jul 2013): We must cast here to CrsMatrix
      // instead of MatrixType, because isStaticGraph is a CrsMatrix
      // method (not inherited from RowMatrix's interface).  It's
      // perfectly valid to do relaxation on a RowMatrix which is not
      // a CrsMatrix.
      const crs_matrix_type* crsMat =
        dynamic_cast<const crs_matrix_type*> (A_.getRawPtr ());
      if (crsMat == NULL || ! crsMat->isStaticGraph ()) {
        A_->getLocalDiagCopy (*Diagonal_); // slow path
      } else {
        if (! savedDiagOffsets_) { // we haven't precomputed offsets
          const size_t lclNumRows = A_->getRowMap ()->getNodeNumElements ();
          if (diagOffsets_.dimension_0 () < lclNumRows) {
            typedef typename node_type::device_type DT;
            diagOffsets_ = Kokkos::View<size_t*, DT> (); // clear 1st to save mem
            diagOffsets_ = Kokkos::View<size_t*, DT> ("offsets", lclNumRows);
          }
          crsMat->getCrsGraph ()->getLocalDiagOffsets (diagOffsets_);
          savedDiagOffsets_ = true;
        }
        crsMat->getLocalDiagCopy (*Diagonal_, diagOffsets_);
#ifdef HAVE_IFPACK2_DEBUG
        // Validate the fast-path diagonal against the slow-path diagonal.
        vector_type D_copy (A_->getRowMap ());
        A_->getLocalDiagCopy (D_copy);
        D_copy.update (STS::one (), *Diagonal_, -STS::one ());
        const magnitude_type err = D_copy.normInf ();
        // The two diagonals should be exactly the same, so their
        // difference should be exactly zero.
        TEUCHOS_TEST_FOR_EXCEPTION(
          err != STM::zero(), std::logic_error, "Ifpack2::Relaxation::compute: "
          "\"fast-path\" diagonal computation failed.  \\|D1 - D2\\|_inf = "
          << err << ".");
#endif // HAVE_IFPACK2_DEBUG
      }
    }

    // If we're checking the computed inverse diagonal, then keep a
    // copy of the original diagonal entries for later comparison.
    RCP<vector_type> origDiag;
    if (checkDiagEntries_) {
      origDiag = rcp (new vector_type (A_->getRowMap ()));
      Tpetra::deep_copy (*origDiag, *Diagonal_);
    }

    const size_t numMyRows = A_->getNodeNumRows ();

    // We're about to read and write diagonal entries on the host.
    Diagonal_->template sync<Kokkos::HostSpace> ();
    Diagonal_->template modify<Kokkos::HostSpace> ();
    auto diag_2d = Diagonal_->template getLocalView<Kokkos::HostSpace> ();
    auto diag_1d = Kokkos::subview (diag_2d, Kokkos::ALL (), 0);
    // FIXME (mfh 12 Jan 2016) temp fix for Kokkos::complex vs. std::complex.
    scalar_type* const diag = reinterpret_cast<scalar_type*> (diag_1d.ptr_on_device ());

    // Setup for L1 Methods.
    // Here we add half the value of the off-processor entries in the row,
    // but only if diagonal isn't sufficiently large.
    //
    // This follows from Equation (6.5) in: Baker, Falgout, Kolev and
    // Yang.  "Multigrid Smoothers for Ultraparallel Computing."  SIAM
    // J. Sci. Comput., Vol. 33, No. 5. (2011), pp. 2864-2887.
    if (DoL1Method_ && IsParallel_) {
      const scalar_type two = one + one;
      const size_t maxLength = A_->getNodeMaxNumRowEntries ();
      Array<local_ordinal_type> indices (maxLength);
      Array<scalar_type> values (maxLength);
      size_t numEntries;

      for (size_t i = 0; i < numMyRows; ++i) {
        A_->getLocalRowCopy (i, indices (), values (), numEntries);
        magnitude_type diagonal_boost = STM::zero ();
        for (size_t k = 0 ; k < numEntries ; ++k) {
          if (static_cast<size_t> (indices[k]) > numMyRows) {
            diagonal_boost += STS::magnitude (values[k] / two);
          }
        }
        if (STS::magnitude (diag[i]) < L1Eta_ * diagonal_boost) {
          diag[i] += diagonal_boost;
        }
      }
    }

    //
    // Invert the diagonal entries of the matrix (not in place).
    //

    // Precompute some quantities for "fixing" zero or tiny diagonal
    // entries.  We'll only use them if this "fixing" is enabled.
    //
    // SmallTraits covers for the lack of eps() in
    // Teuchos::ScalarTraits when its template parameter is not a
    // floating-point type.  (Ifpack2 sometimes gets instantiated for
    // integer Scalar types.)
    const scalar_type oneOverMinDiagVal = (MinDiagonalValue_ == zero) ?
      one / SmallTraits<scalar_type>::eps () :
      one / MinDiagonalValue_;
    // It's helpful not to have to recompute this magnitude each time.
    const magnitude_type minDiagValMag = STS::magnitude (MinDiagonalValue_);

    if (checkDiagEntries_) {
      //
      // Check diagonal elements, replace zero elements with the minimum
      // diagonal value, and store their inverses.  Count the number of
      // "small" and zero diagonal entries while we're at it.
      //
      size_t numSmallDiagEntries = 0; // "small" includes zero
      size_t numZeroDiagEntries = 0; // # zero diagonal entries
      size_t numNegDiagEntries = 0; // # negative (real parts of) diagonal entries

      // As we go, keep track of the diagonal entries with the least and
      // greatest magnitude.  We could use the trick of starting the min
      // with +Inf and the max with -Inf, but that doesn't work if
      // scalar_type is a built-in integer type.  Thus, we have to start
      // by reading the first diagonal entry redundantly.
      // scalar_type minMagDiagEntry = zero;
      // scalar_type maxMagDiagEntry = zero;
      magnitude_type minMagDiagEntryMag = STM::zero ();
      magnitude_type maxMagDiagEntryMag = STM::zero ();
      if (numMyRows > 0) {
        const scalar_type d_0 = diag[0];
        const magnitude_type d_0_mag = STS::magnitude (d_0);
        // minMagDiagEntry = d_0;
        // maxMagDiagEntry = d_0;
        minMagDiagEntryMag = d_0_mag;
        maxMagDiagEntryMag = d_0_mag;
      }

      // Go through all the diagonal entries.  Compute counts of
      // small-magnitude, zero, and negative-real-part entries.  Invert
      // the diagonal entries that aren't too small.  For those that are
      // too small in magnitude, replace them with 1/MinDiagonalValue_
      // (or 1/eps if MinDiagonalValue_ happens to be zero).
      for (size_t i = 0 ; i < numMyRows; ++i) {
        const scalar_type d_i = diag[i];
        const magnitude_type d_i_mag = STS::magnitude (d_i);
        const magnitude_type d_i_real = STS::real (d_i);

        // We can't compare complex numbers, but we can compare their
        // real parts.
        if (d_i_real < STM::zero ()) {
          ++numNegDiagEntries;
        }
        if (d_i_mag < minMagDiagEntryMag) {
          // minMagDiagEntry = d_i;
          minMagDiagEntryMag = d_i_mag;
        }
        if (d_i_mag > maxMagDiagEntryMag) {
          // maxMagDiagEntry = d_i;
          maxMagDiagEntryMag = d_i_mag;
        }

        if (fixTinyDiagEntries_) {
          // <= not <, in case minDiagValMag is zero.
          if (d_i_mag <= minDiagValMag) {
            ++numSmallDiagEntries;
            if (d_i_mag == STM::zero ()) {
              ++numZeroDiagEntries;
            }
            diag[i] = oneOverMinDiagVal;
          } else {
            diag[i] = one / d_i;
          }
        }
        else { // Don't fix zero or tiny diagonal entries.
          // <= not <, in case minDiagValMag is zero.
          if (d_i_mag <= minDiagValMag) {
            ++numSmallDiagEntries;
            if (d_i_mag == STM::zero ()) {
              ++numZeroDiagEntries;
            }
          }
          diag[i] = one / d_i;
        }
      }

      // Count floating-point operations of computing the inverse diagonal.
      //
      // FIXME (mfh 30 Mar 2013) Shouldn't counts be global, not local?
      if (STS::isComplex) { // magnitude: at least 3 flops per diagonal entry
        ComputeFlops_ += 4.0 * numMyRows;
      } else {
        ComputeFlops_ += numMyRows;
      }

      // Collect global data about the diagonal entries.  Only do this
      // (which involves O(1) all-reduces) if the user asked us to do
      // the extra work.
      //
      // FIXME (mfh 28 Mar 2013) This is wrong if some processes have
      // zero rows.  Fixing this requires one of two options:
      //
      // 1. Use a custom reduction operation that ignores processes
      //    with zero diagonal entries.
      // 2. Split the communicator, compute all-reduces using the
      //    subcommunicator over processes that have a nonzero number
      //    of diagonal entries, and then broadcast from one of those
      //    processes (if there is one) to the processes in the other
      //    subcommunicator.
      const Comm<int>& comm = * (A_->getRowMap ()->getComm ());

      // Compute global min and max magnitude of entries.
      Array<magnitude_type> localVals (2);
      localVals[0] = minMagDiagEntryMag;
      // (- (min (- x))) is the same as (max x).
      localVals[1] = -maxMagDiagEntryMag;
      Array<magnitude_type> globalVals (2);
      reduceAll<int, magnitude_type> (comm, REDUCE_MIN, 2,
                                      localVals.getRawPtr (),
                                      globalVals.getRawPtr ());
      globalMinMagDiagEntryMag_ = globalVals[0];
      globalMaxMagDiagEntryMag_ = -globalVals[1];

      Array<size_t> localCounts (3);
      localCounts[0] = numSmallDiagEntries;
      localCounts[1] = numZeroDiagEntries;
      localCounts[2] = numNegDiagEntries;
      Array<size_t> globalCounts (3);
      reduceAll<int, size_t> (comm, REDUCE_SUM, 3,
                              localCounts.getRawPtr (),
                              globalCounts.getRawPtr ());
      globalNumSmallDiagEntries_ = globalCounts[0];
      globalNumZeroDiagEntries_ = globalCounts[1];
      globalNumNegDiagEntries_ = globalCounts[2];

      // Forestall "set but not used" compiler warnings.
      // (void) minMagDiagEntry;
      // (void) maxMagDiagEntry;

      // Compute and save the difference between the computed inverse
      // diagonal, and the original diagonal's inverse.
      //
      // NOTE (mfh 11 Jan 2016) We need to sync Diagonal_ back from
      // host to device for the update kernel below, and we don't need
      // to modify it or sync it back again here.
      vector_type diff (A_->getRowMap ());
      diff.reciprocal (*origDiag);
      Diagonal_->template sync<device_type> ();
      diff.update (-one, *Diagonal_, one);
      globalDiagNormDiff_ = diff.norm2 ();
    }
    else { // don't check diagonal elements
      if (fixTinyDiagEntries_) {
        // Go through all the diagonal entries.  Invert those that
        // aren't too small in magnitude.  For those that are too
        // small in magnitude, replace them with oneOverMinDiagVal.
        for (size_t i = 0 ; i < numMyRows; ++i) {
          const scalar_type d_i = diag[i];
          const magnitude_type d_i_mag = STS::magnitude (d_i);

          // <= not <, in case minDiagValMag is zero.
          if (d_i_mag <= minDiagValMag) {
            diag[i] = oneOverMinDiagVal;
          } else {
            diag[i] = one / d_i;
          }
        }
      }
      else { // don't fix tiny or zero diagonal entries
        for (size_t i = 0 ; i < numMyRows; ++i) {
          diag[i] = one / diag[i];
        }
      }
      if (STS::isComplex) { // magnitude: at least 3 flops per diagonal entry
        ComputeFlops_ += 4.0 * numMyRows;
      } else {
        ComputeFlops_ += numMyRows;
      }
    }

    if (IsParallel_ && (PrecType_ == Ifpack2::Details::GS ||
                        PrecType_ == Ifpack2::Details::SGS)) {
      // mfh 21 Mar 2013: The Import object may be null, but in that
      // case, the domain and column Maps are the same and we don't
      // need to Import anyway.
      Importer_ = A_->getGraph ()->getImporter ();
      Diagonal_->template sync<device_type> ();
    }
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
    //KokkosKernels GaussSiedel Initialization.
    if (PrecType_ == Ifpack2::Details::MTGS || PrecType_ == Ifpack2::Details::MTSGS) {
      const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
      TEUCHOS_TEST_FOR_EXCEPTION
        (crsMat == NULL, std::logic_error, "Ifpack2::Relaxation::compute: "
         "Multithreaded Gauss-Seidel methods currently only work when the input "
         "matrix is a Tpetra::CrsMatrix.");
      local_matrix_type kcsr = crsMat->getLocalMatrix ();

      const bool is_symmetric = (PrecType_ == Ifpack2::Details::MTSGS);
      using KokkosKernels::Experimental::Graph::gauss_seidel_numeric;
      gauss_seidel_numeric<mt_kernel_handle_type,
        lno_row_view_t,
        lno_nonzero_view_t,
        scalar_nonzero_view_t> (mtKernelHandle_.getRawPtr (),
                                A_->getNodeNumRows (), A_->getNodeNumCols (),
                                kcsr.graph.row_map,
                                kcsr.graph.entries,
                                kcsr.values,
                                is_symmetric);
    }
#endif // HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
  } // end TimeMonitor scope

  ComputeTime_ += Time_->totalElapsedTime ();
  ++NumCompute_;
  IsComputed_ = true;
}


template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseJacobi (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                    Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  using Teuchos::as;
  typedef Tpetra::MultiVector<scalar_type, local_ordinal_type,
    global_ordinal_type, node_type> MV;

  if (hasBlockCrsMatrix_) {
    ApplyInverseJacobi_BlockCrsMatrix (X, Y);
    return;
  }

  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numVectors = as<double> (X.getNumVectors ());
  if (ZeroStartingSolution_) {
    // For the first Jacobi sweep, if we are allowed to assume that
    // the initial guess is zero, then Jacobi is just diagonal
    // scaling.  (A_ij * x_j = 0 for i != j, since x_j = 0.)
    // Compute it as Y(i,j) = DampingFactor_ * X(i,j) * D(i).
    Y.elementWiseMultiply (DampingFactor_, *Diagonal_, X, STS::zero ());

    // Count (global) floating-point operations.  Ifpack2 represents
    // this as a floating-point number rather than an integer, so that
    // overflow (for a very large number of calls, or a very large
    // problem) is approximate instead of catastrophic.
    double flopUpdate = 0.0;
    if (DampingFactor_ == STS::one ()) {
      // Y(i,j) = X(i,j) * D(i): one multiply for each entry of Y.
      flopUpdate = numGlobalRows * numVectors;
    } else {
      // Y(i,j) = DampingFactor_ * X(i,j) * D(i):
      // Two multiplies per entry of Y.
      flopUpdate = 2.0 * numGlobalRows * numVectors;
    }
    ApplyFlops_ += flopUpdate;
    if (NumSweeps_ == 1) {
      return;
    }
  }
  // If we were allowed to assume that the starting guess was zero,
  // then we have already done the first sweep above.
  const int startSweep = ZeroStartingSolution_ ? 1 : 0;
  // We don't need to initialize the result MV, since the sparse
  // mat-vec will clobber its contents anyway.
  MV A_times_Y (Y.getMap (), as<size_t>(numVectors), false);
  for (int j = startSweep; j < NumSweeps_; ++j) {
    // Each iteration: Y = Y + \omega D^{-1} (X - A*Y)
    applyMat (Y, A_times_Y);
    A_times_Y.update (STS::one (), X, -STS::one ());
    Y.elementWiseMultiply (DampingFactor_, *Diagonal_, A_times_Y, STS::one ());
  }

  // For each column of output, for each pass over the matrix:
  //
  // - One + and one * for each matrix entry
  // - One / and one + for each row of the matrix
  // - If the damping factor is not one: one * for each row of the
  //   matrix.  (It's not fair to count this if the damping factor is
  //   one, since the implementation could skip it.  Whether it does
  //   or not is the implementation's choice.)

  // Floating-point operations due to the damping factor, per matrix
  // row, per direction, per columm of output.
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  const double dampingFlops = (DampingFactor_ == STS::one ()) ? 0.0 : 1.0;
  ApplyFlops_ += as<double> (NumSweeps_ - startSweep) * numVectors *
    (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}

template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseJacobi_BlockCrsMatrix (const Tpetra::MultiVector<scalar_type,
                                     local_ordinal_type,
                                     global_ordinal_type,
                                     node_type>& X,
                                   Tpetra::MultiVector<scalar_type,
                                     local_ordinal_type,
                                     global_ordinal_type,
                                     node_type>& Y) const
{
  typedef Tpetra::Experimental::BlockMultiVector<scalar_type,
    local_ordinal_type, global_ordinal_type, node_type> BMV;

  const block_crs_matrix_type* blockMatConst =
    dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr ());
  TEUCHOS_TEST_FOR_EXCEPTION
    (blockMatConst == NULL, std::logic_error, "This method should never be "
     "called if the matrix A_ is not a BlockCrsMatrix.  Please report this "
     "bug to the Ifpack2 developers.");
  // mfh 23 Jan 2016: Unfortunately, the const cast is necessary.
  // This is because applyBlock() is nonconst (more accurate), while
  // apply() is const (required by Tpetra::Operator interface, but a
  // lie, because it possibly allocates temporary buffers).
  block_crs_matrix_type* blockMat =
    const_cast<block_crs_matrix_type*> (blockMatConst);

  auto meshRowMap = blockMat->getRowMap ();
  auto meshColMap = blockMat->getColMap ();
  const local_ordinal_type blockSize = blockMat->getBlockSize ();

  BMV X_blk (X, *meshColMap, blockSize);
  BMV Y_blk (Y, *meshRowMap, blockSize);

  if (ZeroStartingSolution_) {
    // For the first sweep, if we are allowed to assume that the
    // initial guess is zero, then block Jacobi is just block diagonal
    // scaling.  (A_ij * x_j = 0 for i != j, since x_j = 0.)
    Y_blk.blockWiseMultiply (DampingFactor_, blockDiag_, X_blk);
    if (NumSweeps_ == 1) {
      return;
    }
  }

  auto pointRowMap = Y.getMap ();
  const size_t numVecs = X.getNumVectors ();

  // We don't need to initialize the result MV, since the sparse
  // mat-vec will clobber its contents anyway.
  BMV A_times_Y (*meshRowMap, *pointRowMap, blockSize, numVecs);

  // If we were allowed to assume that the starting guess was zero,
  // then we have already done the first sweep above.
  const int startSweep = ZeroStartingSolution_ ? 1 : 0;

  for (int j = startSweep; j < NumSweeps_; ++j) {
    blockMat->applyBlock (Y_blk, A_times_Y);
    // Y := Y + \omega D^{-1} (X - A*Y).  Use A_times_Y as scratch.
    Y_blk.blockJacobiUpdate (DampingFactor_, blockDiag_,
                             X_blk, A_times_Y, STS::one ());
  }
}

template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  typedef Relaxation<MatrixType> this_type;
  // The CrsMatrix version is faster, because it can access the sparse
  // matrix data directly, rather than by copying out each row's data
  // in turn.  Thus, we check whether the RowMatrix is really a
  // CrsMatrix.
  //
  // FIXME (mfh 07 Jul 2013) See note on crs_matrix_type typedef
  // declaration in Ifpack2_Relaxation_decl.hpp header file.  The code
  // will still be correct if the cast fails, but it will use an
  // unoptimized kernel.
  const block_crs_matrix_type* blockCrsMat =
    dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr ());
  const crs_matrix_type* crsMat =
    dynamic_cast<const crs_matrix_type*> (A_.getRawPtr ());
  if (blockCrsMat != NULL)  {
    const_cast<this_type*> (this)->ApplyInverseGS_BlockCrsMatrix (*blockCrsMat, X, Y);
  } else if (crsMat != NULL) {
    ApplyInverseGS_CrsMatrix (*crsMat, X, Y);
  } else {
    ApplyInverseGS_RowMatrix (X, Y);
  }
}


template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS_RowMatrix (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                          Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  typedef Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> MV;

  // Tpetra's GS implementation for CrsMatrix handles zeroing out the
  // starting multivector itself.  The generic RowMatrix version here
  // does not, so we have to zero out Y here.
  if (ZeroStartingSolution_) {
    Y.putScalar (STS::zero ());
  }

  const size_t NumVectors = X.getNumVectors ();
  const size_t maxLength = A_->getNodeMaxNumRowEntries ();
  Array<local_ordinal_type> Indices (maxLength);
  Array<scalar_type> Values (maxLength);

  // Local smoothing stuff
  const size_t numMyRows = A_->getNodeNumRows();
  const local_ordinal_type* rowInd  = 0;
  size_t numActive = numMyRows;
  bool do_local = ! localSmoothingIndices_.is_null ();
  if (do_local) {
    rowInd = localSmoothingIndices_.getRawPtr ();
    numActive = localSmoothingIndices_.size ();
  }

  RCP<MV> Y2;
  if (IsParallel_) {
    if (Importer_.is_null ()) { // domain and column Maps are the same.
      // We will copy Y into Y2 below, so no need to fill with zeros here.
      Y2 = rcp (new MV (Y.getMap (), NumVectors, false));
    } else {
      // FIXME (mfh 21 Mar 2013) We probably don't need to fill with
      // zeros here, since we are doing an Import into Y2 below
      // anyway.  However, it doesn't hurt correctness.
      Y2 = rcp (new MV (Importer_->getTargetMap (), NumVectors));
    }
  }
  else {
    Y2 = rcpFromRef (Y);
  }

  // Diagonal
  ArrayRCP<const scalar_type> d_rcp = Diagonal_->get1dView ();
  ArrayView<const scalar_type> d_ptr = d_rcp();

  // Constant stride check
  bool constant_stride = X.isConstantStride() && Y2->isConstantStride();

  if (constant_stride) {
    // extract 1D RCPs
    size_t                    x_stride = X.getStride();
    size_t                   y2_stride = Y2->getStride();
    ArrayRCP<scalar_type>       y2_rcp = Y2->get1dViewNonConst();
    ArrayRCP<const scalar_type>  x_rcp = X.get1dView();
    ArrayView<scalar_type>      y2_ptr = y2_rcp();
    ArrayView<const scalar_type> x_ptr = x_rcp();
    Array<scalar_type> dtemp(NumVectors,STS::zero());

    for (int j = 0; j < NumSweeps_; ++j) {
      // data exchange is here, once per sweep
      if (IsParallel_) {
        if (Importer_.is_null ()) {
          *Y2 = Y; // just copy, since domain and column Maps are the same
        } else {
          Y2->doImport (Y, *Importer_, Tpetra::INSERT);
        }
      }

      if (! DoBackwardGS_) { // Forward sweep
        for (size_t ii = 0; ii < numActive; ++ii) {
          local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
          size_t NumEntries;
          A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
          dtemp.assign(NumVectors,STS::zero());

          for (size_t k = 0; k < NumEntries; ++k) {
            const local_ordinal_type col = Indices[k];
            for (size_t m = 0; m < NumVectors; ++m) {
              dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
            }
          }

          for (size_t m = 0; m < NumVectors; ++m) {
            y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
          }
        }
      }
      else { // Backward sweep
        // ptrdiff_t is the same size as size_t, but is signed.  Being
        // signed is important so that i >= 0 is not trivially true.
        for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
          local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
          size_t NumEntries;
          A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
          dtemp.assign (NumVectors, STS::zero ());

          for (size_t k = 0; k < NumEntries; ++k) {
            const local_ordinal_type col = Indices[k];
            for (size_t m = 0; m < NumVectors; ++m) {
              dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
            }
          }

          for (size_t m = 0; m < NumVectors; ++m) {
            y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
          }
        }
      }
      // FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
      if (IsParallel_) {
        Tpetra::deep_copy (Y, *Y2);
      }
    }
  }
  else {
    // extract 2D RCPS
    ArrayRCP<ArrayRCP<scalar_type> > y2_ptr = Y2->get2dViewNonConst ();
    ArrayRCP<ArrayRCP<const scalar_type> > x_ptr = X.get2dView ();

    for (int j = 0; j < NumSweeps_; ++j) {
      // data exchange is here, once per sweep
      if (IsParallel_) {
        if (Importer_.is_null ()) {
          *Y2 = Y; // just copy, since domain and column Maps are the same
        } else {
          Y2->doImport (Y, *Importer_, Tpetra::INSERT);
        }
      }

      if (! DoBackwardGS_) { // Forward sweep
        for (size_t ii = 0; ii < numActive; ++ii) {
          local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);
          size_t NumEntries;
          A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);

          for (size_t m = 0; m < NumVectors; ++m) {
            scalar_type dtemp = STS::zero ();
            ArrayView<const scalar_type> x_local = (x_ptr())[m]();
            ArrayView<scalar_type>      y2_local = (y2_ptr())[m]();

            for (size_t k = 0; k < NumEntries; ++k) {
              const local_ordinal_type col = Indices[k];
              dtemp += Values[k] * y2_local[col];
            }
            y2_local[i] += DampingFactor_ * d_ptr[i] * (x_local[i] - dtemp);
          }
        }
      }
      else { // Backward sweep
        // ptrdiff_t is the same size as size_t, but is signed.  Being
        // signed is important so that i >= 0 is not trivially true.
        for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
          local_ordinal_type i = as<local_ordinal_type> (do_local ? rowInd[ii] : ii);

          size_t NumEntries;
          A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);

          for (size_t m = 0; m < NumVectors; ++m) {
            scalar_type dtemp = STS::zero ();
            ArrayView<const scalar_type> x_local = (x_ptr())[m]();
            ArrayView<scalar_type>      y2_local = (y2_ptr())[m]();

            for (size_t k = 0; k < NumEntries; ++k) {
              const local_ordinal_type col = Indices[k];
              dtemp += Values[k] * y2_local[col];
            }
            y2_local[i] += DampingFactor_ * d_ptr[i] * (x_local[i] - dtemp);
          }
        }
      }

      // FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
      if (IsParallel_) {
        Tpetra::deep_copy (Y, *Y2);
      }
    }
  }


  // See flop count discussion in implementation of ApplyInverseGS_CrsMatrix().
  const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
  const double numVectors = as<double> (X.getNumVectors ());
  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
    (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}


template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS_CrsMatrix (const crs_matrix_type& A,
                          const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                          Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  using Teuchos::as;
  const Tpetra::ESweepDirection direction =
    DoBackwardGS_ ? Tpetra::Backward : Tpetra::Forward;
  if (localSmoothingIndices_.is_null ()) {
    A.gaussSeidelCopy (Y, X, *Diagonal_, DampingFactor_, direction,
                       NumSweeps_, ZeroStartingSolution_);
  }
  else {
    A.reorderedGaussSeidelCopy (Y, X, *Diagonal_, localSmoothingIndices_ (),
                                DampingFactor_, direction,
                                NumSweeps_, ZeroStartingSolution_);
  }

  // For each column of output, for each sweep over the matrix:
  //
  // - One + and one * for each matrix entry
  // - One / and one + for each row of the matrix
  // - If the damping factor is not one: one * for each row of the
  //   matrix.  (It's not fair to count this if the damping factor is
  //   one, since the implementation could skip it.  Whether it does
  //   or not is the implementation's choice.)

  // Floating-point operations due to the damping factor, per matrix
  // row, per direction, per columm of output.
  const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
  const double numVectors = as<double> (X.getNumVectors ());
  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  ApplyFlops_ += NumSweeps_ * numVectors *
    (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}

template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseGS_BlockCrsMatrix (const block_crs_matrix_type& A,
                               const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                               Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y)
{
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  typedef Tpetra::Experimental::BlockMultiVector<scalar_type,
    local_ordinal_type, global_ordinal_type, node_type> BMV;
  typedef Tpetra::MultiVector<scalar_type,
    local_ordinal_type, global_ordinal_type, node_type> MV;

  //FIXME: (tcf) 8/21/2014 -- may be problematic for multiple right hand sides
  //
  // NOTE (mfh 12 Sep 2014) I don't think it should be a problem for
  // multiple right-hand sides, unless the input or output MultiVector
  // does not have constant stride.  We should check for that case
  // here, in case it doesn't work in localGaussSeidel (which is
  // entirely possible).
  BMV yBlock (Y, * (A.getGraph ()->getDomainMap ()), A.getBlockSize ());
  const BMV xBlock (X, * (A.getColMap ()), A.getBlockSize ());

  bool performImport = false;
  RCP<BMV> yBlockCol;
  if (Importer_.is_null ()) {
    yBlockCol = rcpFromRef (yBlock);
  }
  else {
    if (yBlockColumnPointMap_.is_null () ||
        yBlockColumnPointMap_->getNumVectors () != yBlock.getNumVectors () ||
        yBlockColumnPointMap_->getBlockSize () != yBlock.getBlockSize ()) {
      yBlockColumnPointMap_ =
        rcp (new BMV (* (A.getColMap ()), A.getBlockSize (),
                      static_cast<local_ordinal_type> (yBlock.getNumVectors ())));
    }
    yBlockCol = yBlockColumnPointMap_;
    performImport = true;
  }

  if (ZeroStartingSolution_) {
    yBlockCol->putScalar (STS::zero ());
  }
  else if (performImport) {
    yBlockCol->doImport (yBlock, *Importer_, Tpetra::INSERT);
  }

  const Tpetra::ESweepDirection direction =
    DoBackwardGS_ ? Tpetra::Backward : Tpetra::Forward;

  for (int sweep = 0; sweep < NumSweeps_; ++sweep) {
    if (performImport && sweep > 0) {
      yBlockCol->doImport(yBlock, *Importer_, Tpetra::INSERT);
    }
    A.localGaussSeidel (xBlock, *yBlockCol, blockDiag_,
                        DampingFactor_, direction);
    if (performImport) {
      RCP<const MV> yBlockColPointDomain =
        yBlockCol->getMultiVectorView ().offsetView (A.getDomainMap (), 0);
      Tpetra::deep_copy (Y, *yBlockColPointDomain);
    }
  }
}




template<class MatrixType>
void
Relaxation<MatrixType>::
MTGaussSeidel (const crs_matrix_type* crsMat,
               Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
               const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
               const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& D,
               const scalar_type& dampingFactor,
               const Tpetra::ESweepDirection direction,
               const int numSweeps,
               const bool zeroInitialGuess) const
{
#ifdef HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
  using Teuchos::null;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  using Teuchos::rcp_const_cast;

  typedef scalar_type Scalar;
  typedef local_ordinal_type LocalOrdinal;
  typedef global_ordinal_type GlobalOrdinal;
  typedef node_type Node;

  const char prefix[] = "Ifpack2::Relaxation::(reordered)MTGaussSeidel: ";
  const Scalar ZERO = Teuchos::ScalarTraits<Scalar>::zero ();

  TEUCHOS_TEST_FOR_EXCEPTION
    (crsMat == NULL, std::logic_error, prefix << "The matrix is NULL.  This "
     "should never happen.  Please report this bug to the Ifpack2 developers.");
  TEUCHOS_TEST_FOR_EXCEPTION
    (! crsMat->isFillComplete (), std::runtime_error, prefix << "The input "
     "CrsMatrix is not fill complete.  Please call fillComplete on the matrix,"
     " then do setup again, before calling apply().  \"Do setup\" means that "
     "if only the matrix's values have changed since last setup, you need only"
     " call compute().  If the matrix's structure may also have changed, you "
     "must first call initialize(), then call compute().  If you have not set"
     " up this preconditioner for this matrix before, you must first call "
     "initialize(), then call compute().");
  TEUCHOS_TEST_FOR_EXCEPTION
    (numSweeps < 0, std::invalid_argument, prefix << "The number of sweeps "
     "must be nonnegative, but you provided numSweeps = " << numSweeps <<
     " < 0.");
  if (numSweeps == 0) {
    return;
  }

  typedef typename Tpetra::MultiVector<Scalar, LocalOrdinal, GlobalOrdinal, Node> MV;
  typedef typename crs_matrix_type::import_type import_type;
  typedef typename crs_matrix_type::export_type export_type;
  typedef typename crs_matrix_type::map_type map_type;

  RCP<const import_type> importer = crsMat->getGraph ()->getImporter ();
  RCP<const export_type> exporter = crsMat->getGraph ()->getExporter ();
  TEUCHOS_TEST_FOR_EXCEPTION(
    ! exporter.is_null (), std::runtime_error,
    "This method's implementation currently requires that the matrix's row, "
    "domain, and range Maps be the same.  This cannot be the case, because "
    "the matrix has a nontrivial Export object.");

  RCP<const map_type> domainMap = crsMat->getDomainMap ();
  RCP<const map_type> rangeMap = crsMat->getRangeMap ();
  RCP<const map_type> rowMap = crsMat->getGraph ()->getRowMap ();
  RCP<const map_type> colMap = crsMat->getGraph ()->getColMap ();

#ifdef HAVE_IFPACK2_DEBUG
  {
    // The relation 'isSameAs' is transitive.  It's also a
    // collective, so we don't have to do a "shared" test for
    // exception (i.e., a global reduction on the test value).
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! X.getMap ()->isSameAs (*domainMap), std::runtime_error,
      "Ifpack2::Relaxation::MTGaussSeidel requires that the input "
      "multivector X be in the domain Map of the matrix.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! B.getMap ()->isSameAs (*rangeMap), std::runtime_error,
      "Ifpack2::Relaxation::MTGaussSeidel requires that the input "
      "B be in the range Map of the matrix.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! D.getMap ()->isSameAs (*rowMap), std::runtime_error,
      "Ifpack2::Relaxation::MTGaussSeidel requires that the input "
      "D be in the row Map of the matrix.");
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! rowMap->isSameAs (*rangeMap), std::runtime_error,
      "Ifpack2::Relaxation::MTGaussSeidel requires that the row Map and the "
      "range Map be the same (in the sense of Tpetra::Map::isSameAs).");
    TEUCHOS_TEST_FOR_EXCEPTION(
      ! domainMap->isSameAs (*rangeMap), std::runtime_error,
      "Ifpack2::Relaxation::MTGaussSeidel requires that the domain Map and "
      "the range Map of the matrix be the same.");
  }
#else
  // Forestall any compiler warnings for unused variables.
  (void) rangeMap;
  (void) rowMap;
#endif // HAVE_IFPACK2_DEBUG

  // Fetch a (possibly cached) temporary column Map multivector
  // X_colMap, and a domain Map view X_domainMap of it.  Both have
  // constant stride by construction.  We know that the domain Map
  // must include the column Map, because our Gauss-Seidel kernel
  // requires that the row Map, domain Map, and range Map are all
  // the same, and that each process owns all of its own diagonal
  // entries of the matrix.

  RCP<MV> X_colMap;
  RCP<MV> X_domainMap;
  bool copyBackOutput = false;
  if (importer.is_null ()) {
    if (X.isConstantStride ()) {
      X_colMap = rcpFromRef (X);
      X_domainMap = rcpFromRef (X);

      // Column Map and domain Map are the same, so there are no
      // remote entries.  Thus, if we are not setting the initial
      // guess to zero, we don't have to worry about setting remote
      // entries to zero, even though we are not doing an Import in
      // this case.
      if (zeroInitialGuess) {
        X_colMap->putScalar (ZERO);
      }
      // No need to copy back to X at end.
    }
    else {
      // We must copy X into a constant stride multivector.
      // Just use the cached column Map multivector for that.
      // force=true means fill with zeros, so no need to fill
      // remote entries (not in domain Map) with zeros.
      //X_colMap = crsMat->getColumnMapMultiVector (X, true);
      X_colMap = rcp (new MV (colMap, X.getNumVectors ()));
      // X_domainMap is always a domain Map view of the column Map
      // multivector.  In this case, the domain and column Maps are
      // the same, so X_domainMap _is_ X_colMap.
      X_domainMap = X_colMap;
      if (! zeroInitialGuess) { // Don't copy if zero initial guess
        try {
          deep_copy (*X_domainMap , X); // Copy X into constant stride MV
        } catch (std::exception& e) {
          std::ostringstream os;
          os << "Ifpack2::Relaxation::MTGaussSeidel: "
            "deep_copy(*X_domainMap, X) threw an exception: "
             << e.what () << ".";
          TEUCHOS_TEST_FOR_EXCEPTION(true, std::runtime_error, e.what ());
        }
      }
      copyBackOutput = true; // Don't forget to copy back at end.
      /*
      TPETRA_EFFICIENCY_WARNING(
        ! X.isConstantStride (),
        std::runtime_error,
        "MTGaussSeidel: The current implementation of the Gauss-Seidel "
        "kernel requires that X and B both have constant stride.  Since X "
        "does not have constant stride, we had to make a copy.  This is a "
        "limitation of the current implementation and not your fault, but we "
        "still report it as an efficiency warning for your information.");
        */
    }
  }
  else { // Column Map and domain Map are _not_ the same.
    //X_colMap = crsMat->getColumnMapMultiVector (X);
    X_colMap = rcp (new MV (colMap, X.getNumVectors ()));

    X_domainMap = X_colMap->offsetViewNonConst (domainMap, 0);

#ifdef HAVE_IFPACK2_DEBUG
    auto X_colMap_host_view = X_colMap->template getLocalView<Kokkos::HostSpace> ();
    auto X_domainMap_host_view = X_domainMap->template getLocalView<Kokkos::HostSpace> ();

    if (X_colMap->getLocalLength () != 0 && X_domainMap->getLocalLength ()) {
      TEUCHOS_TEST_FOR_EXCEPTION(
        X_colMap_host_view.ptr_on_device () != X_domainMap_host_view.ptr_on_device (),
        std::logic_error, "Ifpack2::Relaxation::MTGaussSeidel: "
        "Pointer to start of column Map view of X is not equal to pointer to "
        "start of (domain Map view of) X.  This may mean that "
        "Tpetra::MultiVector::offsetViewNonConst is broken.  "
        "Please report this bug to the Tpetra developers.");
    }

    TEUCHOS_TEST_FOR_EXCEPTION(
      X_colMap_host_view.dimension_0 () < X_domainMap_host_view.dimension_0 () ||
      X_colMap->getLocalLength () < X_domainMap->getLocalLength (),
      std::logic_error, "Ifpack2::Relaxation::MTGaussSeidel: "
      "X_colMap has fewer local rows than X_domainMap.  "
      "X_colMap_host_view.dimension_0() = " << X_colMap_host_view.dimension_0 ()
      << ", X_domainMap_host_view.dimension_0() = "
      << X_domainMap_host_view.dimension_0 ()
      << ", X_colMap->getLocalLength() = " << X_colMap->getLocalLength ()
      << ", and X_domainMap->getLocalLength() = "
      << X_domainMap->getLocalLength ()
      << ".  This means that Tpetra::MultiVector::offsetViewNonConst "
      "is broken.  Please report this bug to the Tpetra developers.");

    TEUCHOS_TEST_FOR_EXCEPTION(
      X_colMap->getNumVectors () != X_domainMap->getNumVectors (),
      std::logic_error, "Ifpack2::Relaxation::MTGaussSeidel: "
      "X_colMap has a different number of columns than X_domainMap.  "
      "X_colMap->getNumVectors() = " << X_colMap->getNumVectors ()
      << " != X_domainMap->getNumVectors() = "
      << X_domainMap->getNumVectors ()
      << ".  This means that Tpetra::MultiVector::offsetViewNonConst "
      "is broken.  Please report this bug to the Tpetra developers.");
#endif // HAVE_IFPACK2_DEBUG

    if (zeroInitialGuess) {
      // No need for an Import, since we're filling with zeros.
      X_colMap->putScalar (ZERO);
    } else {
      // We could just copy X into X_domainMap.  However, that
      // wastes a copy, because the Import also does a copy (plus
      // communication).  Since the typical use case for
      // Gauss-Seidel is a small number of sweeps (2 is typical), we
      // don't want to waste that copy.  Thus, we do the Import
      // here, and skip the first Import in the first sweep.
      // Importing directly from X effects the copy into X_domainMap
      // (which is a view of X_colMap).
      X_colMap->doImport (X, *importer, Tpetra::CombineMode::INSERT);
    }
    copyBackOutput = true; // Don't forget to copy back at end.
  } // if column and domain Maps are (not) the same

  // The Gauss-Seidel / SOR kernel expects multivectors of constant
  // stride.  X_colMap is by construction, but B might not be.  If
  // it's not, we have to make a copy.
  RCP<const MV> B_in;
  if (B.isConstantStride ()) {
    B_in = rcpFromRef (B);
  }
  else {
    // Range Map and row Map are the same in this case, so we can
    // use the cached row Map multivector to store a constant stride
    // copy of B.
    //RCP<MV> B_in_nonconst = crsMat->getRowMapMultiVector (B, true);
    RCP<MV> B_in_nonconst = rcp (new MV (rowMap, B.getNumVectors()));
    try {
      deep_copy (*B_in_nonconst, B);
    } catch (std::exception& e) {
      std::ostringstream os;
      os << "Ifpack2::Relaxation::MTGaussSeidel: "
        "deep_copy(*B_in_nonconst, B) threw an exception: "
         << e.what () << ".";
      TEUCHOS_TEST_FOR_EXCEPTION(true, std::runtime_error, e.what ());
    }
    B_in = rcp_const_cast<const MV> (B_in_nonconst);

    /*
    TPETRA_EFFICIENCY_WARNING(
      ! B.isConstantStride (),
      std::runtime_error,
      "MTGaussSeidel: The current implementation requires that B have "
      "constant stride.  Since B does not have constant stride, we had to "
      "copy it into a separate constant-stride multivector.  This is a "
      "limitation of the current implementation and not your fault, but we "
      "still report it as an efficiency warning for your information.");
      */
  }

  local_matrix_type kcsr = crsMat->getLocalMatrix ();
  const size_t NumVectors = X.getNumVectors ();

  bool update_y_vector = true;
  //false as it was done up already, and we dont want to zero it in each sweep.
  bool zero_x_vector = false;
  for (int sweep = 0; sweep < numSweeps; ++sweep) {
    if (! importer.is_null () && sweep > 0) {
      // We already did the first Import for the zeroth sweep above,
      // if it was necessary.
      X_colMap->doImport (*X_domainMap, *importer, Tpetra::CombineMode::INSERT);
    }

    for (size_t indVec = 0; indVec < NumVectors; ++indVec) {
      if (direction == Tpetra::Symmetric) {
        KokkosKernels::Experimental::Graph::symmetric_gauss_seidel_apply
        (mtKernelHandle_.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(),
            kcsr.graph.row_map, kcsr.graph.entries, kcsr.values,
            Kokkos::subview(X_colMap->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
            Kokkos::subview(B_in->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
            zero_x_vector, update_y_vector);
      }
      else if (direction == Tpetra::Forward) {
        KokkosKernels::Experimental::Graph::forward_sweep_gauss_seidel_apply
        (mtKernelHandle_.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(),
            kcsr.graph.row_map,kcsr.graph.entries, kcsr.values,
            Kokkos::subview(X_colMap->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec ),
            Kokkos::subview(B_in->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
            zero_x_vector, update_y_vector);
      }
      else if (direction == Tpetra::Backward) {
        KokkosKernels::Experimental::Graph::backward_sweep_gauss_seidel_apply
        (mtKernelHandle_.getRawPtr(), A_->getNodeNumRows(), A_->getNodeNumCols(),
            kcsr.graph.row_map,kcsr.graph.entries, kcsr.values,
            Kokkos::subview(X_colMap->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec ),
            Kokkos::subview(B_in->template getLocalView<MyExecSpace> (), Kokkos::ALL (), indVec),
            zero_x_vector, update_y_vector);
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION(
            true, std::invalid_argument,
            prefix << "The 'direction' enum does not have any of its valid "
            "values: Forward, Backward, or Symmetric.");
      }
    }

    if (NumVectors > 1){
      update_y_vector = true;
    }
    else {
      update_y_vector = false;
    }
  }

  if (copyBackOutput) {
    try {
      deep_copy (X , *X_domainMap); // Copy result back into X.
    } catch (std::exception& e) {
      TEUCHOS_TEST_FOR_EXCEPTION(
        true, std::runtime_error, prefix << "deep_copy(X, *X_domainMap) "
        "threw an exception: " << e.what ());
    }
  }

#else
  TEUCHOS_TEST_FOR_EXCEPTION
    (true, std::logic_error, "The multithreaded implementation of Gauss-Seidel "
     "is not enabled.  Please talk to the Ifpack2 developers about how to "
     "enable this method.");
#endif // HAVE_IFPACK2_EXPERIMENTAL_KOKKOSKERNELS_FEATURES
}

template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseMTSGS_CrsMatrix (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
                             Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X) const
{
  const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
  TEUCHOS_TEST_FOR_EXCEPTION
    (crsMat == NULL, std::logic_error, "Ifpack2::Relaxation::apply: "
     "Multithreaded Gauss-Seidel methods currently only work when the input "
     "matrix is a Tpetra::CrsMatrix.");

  using Teuchos::as;
  const Tpetra::ESweepDirection direction = Tpetra::Symmetric;

  //Teuchos::ArrayView<local_ordinal_type> rowIndices; // unused, as of 04 Jan 2017
  TEUCHOS_TEST_FOR_EXCEPTION
    (! localSmoothingIndices_.is_null (), std::logic_error,
     "Our implementation of Multithreaded Gauss-Seidel does not implement the "
     "use case where the user supplies an iteration order.  "
     "This error used to appear as \"MT GaussSeidel ignores the given "
     "order\".  "
     "I tried to add more explanation, but I didn't implement \"MT "
     "GaussSeidel\" [sic].  "
     "You'll have to ask the person who did.");
  this->MTGaussSeidel (crsMat, X, B, *Diagonal_, DampingFactor_, direction,
                       NumSweeps_, ZeroStartingSolution_);

  const double dampingFlops = (DampingFactor_ == STS::one ()) ? 0.0 : 1.0;
  const double numVectors = as<double> (X.getNumVectors ());
  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
      (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}


template<class MatrixType>
void Relaxation<MatrixType>::ApplyInverseMTGS_CrsMatrix (
    const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& B,
    Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X) const {

  const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
  TEUCHOS_TEST_FOR_EXCEPTION(
      crsMat == NULL, std::runtime_error, "Ifpack2::Relaxation::compute: "
      "MT methods works for CRSMatrix Only.");

  using Teuchos::as;
  const Tpetra::ESweepDirection direction =
    DoBackwardGS_ ? Tpetra::Backward : Tpetra::Forward;

  //Teuchos::ArrayView<local_ordinal_type> rowIndices; // unused, as of 04 Jan 2017
  TEUCHOS_TEST_FOR_EXCEPTION
    (! localSmoothingIndices_.is_null (), std::logic_error,
     "Our implementation of Multithreaded Gauss-Seidel does not implement the "
     "use case where the user supplies an iteration order.  "
     "This error used to appear as \"MT GaussSeidel ignores the given "
     "order\".  "
     "I tried to add more explanation, but I didn't implement \"MT "
     "GaussSeidel\" [sic].  "
     "You'll have to ask the person who did.");
  this->MTGaussSeidel (crsMat, X, B, *Diagonal_, DampingFactor_, direction,
                       NumSweeps_, ZeroStartingSolution_);

  const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
  const double numVectors = as<double> (X.getNumVectors ());
  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  ApplyFlops_ += NumSweeps_ * numVectors *
    (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}

template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                 Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  typedef Relaxation<MatrixType> this_type;
  // The CrsMatrix version is faster, because it can access the sparse
  // matrix data directly, rather than by copying out each row's data
  // in turn.  Thus, we check whether the RowMatrix is really a
  // CrsMatrix.
  //
  // FIXME (mfh 07 Jul 2013) See note on crs_matrix_type typedef
  // declaration in Ifpack2_Relaxation_decl.hpp header file.  The code
  // will still be correct if the cast fails, but it will use an
  // unoptimized kernel.
  const block_crs_matrix_type* blockCrsMat = dynamic_cast<const block_crs_matrix_type*> (A_.getRawPtr());
  const crs_matrix_type* crsMat = dynamic_cast<const crs_matrix_type*> (&(*A_));
  if (blockCrsMat != NULL)  {
    const_cast<this_type*> (this)->ApplyInverseSGS_BlockCrsMatrix(*blockCrsMat, X, Y);
  }
  else if (crsMat != NULL) {
    ApplyInverseSGS_CrsMatrix (*crsMat, X, Y);
  } else {
    ApplyInverseSGS_RowMatrix (X, Y);
  }
}


template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS_RowMatrix (const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                           Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  using Teuchos::Array;
  using Teuchos::ArrayRCP;
  using Teuchos::ArrayView;
  using Teuchos::as;
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  typedef Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type> MV;


  // Tpetra's GS implementation for CrsMatrix handles zeroing out the
  // starting multivector itself.  The generic RowMatrix version here
  // does not, so we have to zero out Y here.
  if (ZeroStartingSolution_) {
    Y.putScalar (STS::zero ());
  }

  const size_t NumVectors = X.getNumVectors ();
  const size_t maxLength = A_->getNodeMaxNumRowEntries ();
  Array<local_ordinal_type> Indices (maxLength);
  Array<scalar_type> Values (maxLength);

  // Local smoothing stuff
  const size_t numMyRows             = A_->getNodeNumRows();
  const local_ordinal_type * rowInd  = 0;
  size_t numActive                   = numMyRows;
  bool do_local = !localSmoothingIndices_.is_null();
  if(do_local) {
    rowInd    = localSmoothingIndices_.getRawPtr();
    numActive = localSmoothingIndices_.size();
  }


  RCP<MV> Y2;
  if (IsParallel_) {
    if (Importer_.is_null ()) { // domain and column Maps are the same.
      // We will copy Y into Y2 below, so no need to fill with zeros here.
      Y2 = rcp (new MV (Y.getMap (), NumVectors, false));
    } else {
      // FIXME (mfh 21 Mar 2013) We probably don't need to fill with
      // zeros here, since we are doing an Import into Y2 below
      // anyway.  However, it doesn't hurt correctness.
      Y2 = rcp (new MV (Importer_->getTargetMap (), NumVectors));
    }
  }
  else {
    Y2 = rcpFromRef (Y);
  }

  // Diagonal
  ArrayRCP<const scalar_type>  d_rcp = Diagonal_->get1dView();
  ArrayView<const scalar_type> d_ptr = d_rcp();

  // Constant stride check
  bool constant_stride = X.isConstantStride() && Y2->isConstantStride();

  if(constant_stride) {
    // extract 1D RCPs
    size_t                    x_stride = X.getStride();
    size_t                   y2_stride = Y2->getStride();
    ArrayRCP<scalar_type>       y2_rcp = Y2->get1dViewNonConst();
    ArrayRCP<const scalar_type>  x_rcp = X.get1dView();
    ArrayView<scalar_type>      y2_ptr = y2_rcp();
    ArrayView<const scalar_type> x_ptr = x_rcp();
    Array<scalar_type> dtemp(NumVectors,STS::zero());

    for (int j = 0; j < NumSweeps_; j++) {
      // data exchange is here, once per sweep
      if (IsParallel_) {
        if (Importer_.is_null ()) {
          // just copy, since domain and column Maps are the same
          Tpetra::deep_copy (*Y2, Y);
        } else {
          Y2->doImport (Y, *Importer_, Tpetra::INSERT);
        }
      }
      for (size_t ii = 0; ii < numActive; ++ii) {
        local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
        size_t NumEntries;
        A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
        dtemp.assign(NumVectors,STS::zero());

        for (size_t k = 0; k < NumEntries; ++k) {
          const local_ordinal_type col = Indices[k];
          for (size_t m = 0; m < NumVectors; ++m) {
            dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
          }
        }

        for (size_t m = 0; m < NumVectors; ++m) {
          y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
        }
      }

      // ptrdiff_t is the same size as size_t, but is signed.  Being
      // signed is important so that i >= 0 is not trivially true.
      for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
        local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
        size_t NumEntries;
        A_->getLocalRowCopy (i, Indices (), Values (), NumEntries);
        dtemp.assign(NumVectors,STS::zero());

        for (size_t k = 0; k < NumEntries; ++k) {
          const local_ordinal_type col = Indices[k];
          for (size_t m = 0; m < NumVectors; ++m) {
            dtemp[m] += Values[k] * y2_ptr[col + y2_stride*m];
          }
        }

        for (size_t m = 0; m < NumVectors; ++m) {
          y2_ptr[i + y2_stride*m] += DampingFactor_ * d_ptr[i] * (x_ptr[i + x_stride*m] - dtemp[m]);
        }
      }

      // FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
      if (IsParallel_) {
        Tpetra::deep_copy (Y, *Y2);
      }
    }
  }
  else {
    // extract 2D RCPs
    ArrayRCP<ArrayRCP<scalar_type> > y2_ptr = Y2->get2dViewNonConst ();
    ArrayRCP<ArrayRCP<const scalar_type> > x_ptr =  X.get2dView ();

    for (int iter = 0; iter < NumSweeps_; ++iter) {
      // only one data exchange per sweep
      if (IsParallel_) {
        if (Importer_.is_null ()) {
          // just copy, since domain and column Maps are the same
          Tpetra::deep_copy (*Y2, Y);
        } else {
          Y2->doImport (Y, *Importer_, Tpetra::INSERT);
        }
      }

      for (size_t ii = 0; ii < numActive; ++ii) {
        local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
        const scalar_type diag = d_ptr[i];
        size_t NumEntries;
        A_->getLocalRowCopy (as<local_ordinal_type> (i), Indices (), Values (), NumEntries);

        for (size_t m = 0; m < NumVectors; ++m) {
          scalar_type dtemp = STS::zero ();
          ArrayView<const scalar_type> x_local = (x_ptr())[m]();
          ArrayView<scalar_type>      y2_local = (y2_ptr())[m]();

          for (size_t k = 0; k < NumEntries; ++k) {
            const local_ordinal_type col = Indices[k];
            dtemp += Values[k] * y2_local[col];
          }
          y2_local[i] += DampingFactor_ * (x_local[i] - dtemp) * diag;
        }
      }

      // ptrdiff_t is the same size as size_t, but is signed.  Being
      // signed is important so that i >= 0 is not trivially true.
      for (ptrdiff_t ii = as<ptrdiff_t> (numActive) - 1; ii >= 0; --ii) {
        local_ordinal_type i = as<local_ordinal_type>(do_local ? rowInd[ii] : ii);
        const scalar_type diag = d_ptr[i];
        size_t NumEntries;
        A_->getLocalRowCopy (as<local_ordinal_type> (i), Indices (), Values (), NumEntries);

        for (size_t m = 0; m < NumVectors; ++m) {
          scalar_type dtemp = STS::zero ();
          ArrayView<const scalar_type> x_local = (x_ptr())[m]();
          ArrayView<scalar_type>      y2_local = (y2_ptr())[m]();

          for (size_t k = 0; k < NumEntries; ++k) {
            const local_ordinal_type col = Indices[k];
            dtemp += Values[k] * y2_local[col];
          }
          y2_local[i] += DampingFactor_ * (x_local[i] - dtemp) * diag;
        }
      }

      // FIXME (mfh 02 Jan 2013) This is only correct if row Map == range Map.
      if (IsParallel_) {
        Tpetra::deep_copy (Y, *Y2);
      }
    }
  }

  // See flop count discussion in implementation of ApplyInverseSGS_CrsMatrix().
  const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
  const double numVectors = as<double> (X.getNumVectors ());
  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
    (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}


template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS_CrsMatrix (const crs_matrix_type& A,
                           const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                           Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y) const
{
  using Teuchos::as;
  const Tpetra::ESweepDirection direction = Tpetra::Symmetric;
  if (localSmoothingIndices_.is_null ()) {
    A.gaussSeidelCopy (Y, X, *Diagonal_, DampingFactor_, direction,
                       NumSweeps_, ZeroStartingSolution_);
  }
  else {
    A.reorderedGaussSeidelCopy (Y, X, *Diagonal_, localSmoothingIndices_ (),
                                DampingFactor_, direction,
                                NumSweeps_, ZeroStartingSolution_);
  }

  // For each column of output, for each sweep over the matrix:
  //
  // - One + and one * for each matrix entry
  // - One / and one + for each row of the matrix
  // - If the damping factor is not one: one * for each row of the
  //   matrix.  (It's not fair to count this if the damping factor is
  //   one, since the implementation could skip it.  Whether it does
  //   or not is the implementation's choice.)
  //
  // Each sweep of symmetric Gauss-Seidel / SOR counts as two sweeps,
  // one forward and one backward.

  // Floating-point operations due to the damping factor, per matrix
  // row, per direction, per columm of output.
  const double dampingFlops = (DampingFactor_ == STS::one()) ? 0.0 : 1.0;
  const double numVectors = as<double> (X.getNumVectors ());
  const double numGlobalRows = as<double> (A_->getGlobalNumRows ());
  const double numGlobalNonzeros = as<double> (A_->getGlobalNumEntries ());
  ApplyFlops_ += 2.0 * NumSweeps_ * numVectors *
    (2.0 * numGlobalRows + 2.0 * numGlobalNonzeros + dampingFlops);
}

template<class MatrixType>
void
Relaxation<MatrixType>::
ApplyInverseSGS_BlockCrsMatrix (const block_crs_matrix_type& A,
                                const Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& X,
                                Tpetra::MultiVector<scalar_type,local_ordinal_type,global_ordinal_type,node_type>& Y)
{
  using Teuchos::RCP;
  using Teuchos::rcp;
  using Teuchos::rcpFromRef;
  typedef Tpetra::Experimental::BlockMultiVector<scalar_type,
    local_ordinal_type, global_ordinal_type, node_type> BMV;
  typedef Tpetra::MultiVector<scalar_type,
    local_ordinal_type, global_ordinal_type, node_type> MV;

  //FIXME: (tcf) 8/21/2014 -- may be problematic for multiple right hand sides
  //
  // NOTE (mfh 12 Sep 2014) I don't think it should be a problem for
  // multiple right-hand sides, unless the input or output MultiVector
  // does not have constant stride.  We should check for that case
  // here, in case it doesn't work in localGaussSeidel (which is
  // entirely possible).
  BMV yBlock (Y, * (A.getGraph ()->getDomainMap ()), A.getBlockSize ());
  const BMV xBlock (X, * (A.getColMap ()), A.getBlockSize ());

  bool performImport = false;
  RCP<BMV> yBlockCol;
  if (Importer_.is_null ()) {
    yBlockCol = Teuchos::rcpFromRef (yBlock);
  }
  else {
    if (yBlockColumnPointMap_.is_null () ||
        yBlockColumnPointMap_->getNumVectors () != yBlock.getNumVectors () ||
        yBlockColumnPointMap_->getBlockSize () != yBlock.getBlockSize ()) {
      yBlockColumnPointMap_ =
        rcp (new BMV (* (A.getColMap ()), A.getBlockSize (),
                      static_cast<local_ordinal_type> (yBlock.getNumVectors ())));
    }
    yBlockCol = yBlockColumnPointMap_;
    performImport = true;
  }

  if (ZeroStartingSolution_) {
    yBlockCol->putScalar (STS::zero ());
  }
  else if (performImport) {
    yBlockCol->doImport (yBlock, *Importer_, Tpetra::INSERT);
  }

  // FIXME (mfh 12 Sep 2014) Shouldn't this come from the user's parameter?
  const Tpetra::ESweepDirection direction = Tpetra::Symmetric;

  for (int sweep = 0; sweep < NumSweeps_; ++sweep) {
    if (performImport && sweep > 0) {
      yBlockCol->doImport (yBlock, *Importer_, Tpetra::INSERT);
    }
    A.localGaussSeidel (xBlock, *yBlockCol, blockDiag_,
                        DampingFactor_, direction);
    if (performImport) {
      RCP<const MV> yBlockColPointDomain =
        yBlockCol->getMultiVectorView ().offsetView (A.getDomainMap (), 0);
      MV yBlockView = yBlock.getMultiVectorView ();
      Tpetra::deep_copy (yBlockView, *yBlockColPointDomain);
    }
  }
}


template<class MatrixType>
std::string Relaxation<MatrixType>::description () const
{
  std::ostringstream os;

  // Output is a valid YAML dictionary in flow style.  If you don't
  // like everything on a single line, you should call describe()
  // instead.
  os << "\"Ifpack2::Relaxation\": {";

  os << "Initialized: " << (isInitialized () ? "true" : "false") << ", "
     << "Computed: " << (isComputed () ? "true" : "false") << ", ";

  // It's useful to print this instance's relaxation method (Jacobi,
  // Gauss-Seidel, or symmetric Gauss-Seidel).  If you want more info
  // than that, call describe() instead.
  os << "Type: ";
  if (PrecType_ == Ifpack2::Details::JACOBI) {
    os << "Jacobi";
  } else if (PrecType_ == Ifpack2::Details::GS) {
    os << "Gauss-Seidel";
  } else if (PrecType_ == Ifpack2::Details::SGS) {
    os << "Symmetric Gauss-Seidel";
  } else if (PrecType_ == Ifpack2::Details::MTGS) {
    os << "MT Gauss-Seidel";
  } else if (PrecType_ == Ifpack2::Details::MTSGS) {
    os << "MT Symmetric Gauss-Seidel";
  }
  else {
    os << "INVALID";
  }

  os  << ", " << "sweeps: " << NumSweeps_ << ", "
      << "damping factor: " << DampingFactor_ << ", ";
  if (DoL1Method_) {
    os << "use l1: " << DoL1Method_ << ", "
       << "l1 eta: " << L1Eta_ << ", ";
  }

  if (A_.is_null ()) {
    os << "Matrix: null";
  }
  else {
    os << "Global matrix dimensions: ["
       << A_->getGlobalNumRows () << ", " << A_->getGlobalNumCols () << "]"
       << ", Global nnz: " << A_->getGlobalNumEntries();
  }

  os << "}";
  return os.str ();
}


template<class MatrixType>
void
Relaxation<MatrixType>::
describe (Teuchos::FancyOStream &out,
          const Teuchos::EVerbosityLevel verbLevel) const
{
  using Teuchos::OSTab;
  using Teuchos::TypeNameTraits;
  using Teuchos::VERB_DEFAULT;
  using Teuchos::VERB_NONE;
  using Teuchos::VERB_LOW;
  using Teuchos::VERB_MEDIUM;
  using Teuchos::VERB_HIGH;
  using Teuchos::VERB_EXTREME;
  using std::endl;

  const Teuchos::EVerbosityLevel vl =
    (verbLevel == VERB_DEFAULT) ? VERB_LOW : verbLevel;

  const int myRank = this->getComm ()->getRank ();

  //    none: print nothing
  //     low: print O(1) info from Proc 0
  //  medium:
  //    high:
  // extreme:

  if (vl != VERB_NONE && myRank == 0) {
    // Describable interface asks each implementation to start with a tab.
    OSTab tab1 (out);
    // Output is valid YAML; hence the quotes, to protect the colons.
    out << "\"Ifpack2::Relaxation\":" << endl;
    OSTab tab2 (out);
    out << "MatrixType: \"" << TypeNameTraits<MatrixType>::name () << "\""
        << endl;
    if (this->getObjectLabel () != "") {
      out << "Label: " << this->getObjectLabel () << endl;
    }
    out << "Initialized: " << (isInitialized () ? "true" : "false") << endl
        << "Computed: " << (isComputed () ? "true" : "false") << endl
        << "Parameters: " << endl;
    {
      OSTab tab3 (out);
      out << "\"relaxation: type\": ";
      if (PrecType_ == Ifpack2::Details::JACOBI) {
        out << "Jacobi";
      } else if (PrecType_ == Ifpack2::Details::GS) {
        out << "Gauss-Seidel";
      } else if (PrecType_ == Ifpack2::Details::SGS) {
        out << "Symmetric Gauss-Seidel";
      } else if (PrecType_ == Ifpack2::Details::MTGS) {
        out << "MT Gauss-Seidel";
      } else if (PrecType_ == Ifpack2::Details::MTSGS) {
        out << "MT Symmetric Gauss-Seidel";
      } else {
        out << "INVALID";
      }
      // We quote these parameter names because they contain colons.
      // YAML uses the colon to distinguish key from value.
      out << endl
          << "\"relaxation: sweeps\": " << NumSweeps_ << endl
          << "\"relaxation: damping factor\": " << DampingFactor_ << endl
          << "\"relaxation: min diagonal value\": " << MinDiagonalValue_ << endl
          << "\"relaxation: zero starting solution\": " << ZeroStartingSolution_ << endl
          << "\"relaxation: backward mode\": " << DoBackwardGS_ << endl
          << "\"relaxation: use l1\": " << DoL1Method_ << endl
          << "\"relaxation: l1 eta\": " << L1Eta_ << endl;
    }
    out << "Computed quantities:" << endl;
    {
      OSTab tab3 (out);
      out << "Global number of rows: " << A_->getGlobalNumRows () << endl
          << "Global number of columns: " << A_->getGlobalNumCols () << endl;
    }
    if (checkDiagEntries_ && isComputed ()) {
      out << "Properties of input diagonal entries:" << endl;
      {
        OSTab tab3 (out);
        out << "Magnitude of minimum-magnitude diagonal entry: "
            << globalMinMagDiagEntryMag_ << endl
            << "Magnitude of maximum-magnitude diagonal entry: "
            << globalMaxMagDiagEntryMag_ << endl
            << "Number of diagonal entries with small magnitude: "
            << globalNumSmallDiagEntries_ << endl
            << "Number of zero diagonal entries: "
            << globalNumZeroDiagEntries_ << endl
            << "Number of diagonal entries with negative real part: "
            << globalNumNegDiagEntries_ << endl
            << "Abs 2-norm diff between computed and actual inverse "
            << "diagonal: " << globalDiagNormDiff_ << endl;
      }
    }
    if (isComputed ()) {
      out << "Saved diagonal offsets: "
          << (savedDiagOffsets_ ? "true" : "false") << endl;
    }
    out << "Call counts and total times (in seconds): " << endl;
    {
      OSTab tab3 (out);
      out << "initialize: " << endl;
      {
        OSTab tab4 (out);
        out << "Call count: " << NumInitialize_ << endl;
        out << "Total time: " << InitializeTime_ << endl;
      }
      out << "compute: " << endl;
      {
        OSTab tab4 (out);
        out << "Call count: " << NumCompute_ << endl;
        out << "Total time: " << ComputeTime_ << endl;
      }
      out << "apply: " << endl;
      {
        OSTab tab4 (out);
        out << "Call count: " << NumApply_ << endl;
        out << "Total time: " << ApplyTime_ << endl;
      }
    }
  }
}

} // namespace Ifpack2

#define IFPACK2_RELAXATION_INSTANT(S,LO,GO,N)                            \
  template class Ifpack2::Relaxation< Tpetra::RowMatrix<S, LO, GO, N> >;

#endif // IFPACK2_RELAXATION_DEF_HPP