This file is indexed.

/usr/include/trilinos/Intrepid_CubatureControlVolumeSideDef.hpp is in libtrilinos-intrepid-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// @HEADER
// ************************************************************************
//
//                           Intrepid Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Pavel Bochev  (pbboche@sandia.gov)
//                    Denis Ridzal  (dridzal@sandia.gov), or
//                    Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file   Intrepid_CubatureControlVolumeSide.hpp
    \brief  Header file for the Intrepid::CubatureControlVolumeSide class.
    \author Created by K. Peterson, P. Bochev and D. Ridzal.
*/

#ifndef INTREPID_CUBATURE_CONTROLVOLUMESIDEDEF_HPP
#define INTREPID_CUBATURE_CONTROLVOLUMESIDEDEF_HPP

namespace Intrepid{

template<class Scalar, class ArrayPoint, class ArrayWeight>
CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::CubatureControlVolumeSide(const Teuchos::RCP<const shards::CellTopology>& cellTopology)
{
  // topology of primary cell
  primaryCellTopo_ = cellTopology;

  // get topology of sub-control volume (will be quad or hex depending on dimension)
  const CellTopologyData &myCellData =
         (primaryCellTopo_->getDimension() > 2) ? *shards::getCellTopologyData<shards::Hexahedron<8> >() :
                                                  *shards::getCellTopologyData<shards::Quadrilateral<4> >();

  subCVCellTopo_ = Teuchos::rcp(new shards::CellTopology(&myCellData));

  degree_ = 1;

  numPoints_ = primaryCellTopo_->getEdgeCount();

  cubDimension_ = primaryCellTopo_->getDimension();

}

template<class Scalar, class ArrayPoint, class ArrayWeight>
void CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getCubature(ArrayPoint& cubPoints,
		                                                       ArrayWeight& cubWeights) const
{
    TEUCHOS_TEST_FOR_EXCEPTION( (true), std::logic_error,
                      ">>> ERROR (CubatureControlVolumeSide): Cubature defined in physical space calling method for reference space cubature.");
}

template<class Scalar, class ArrayPoint, class ArrayWeight>
void CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getCubature(ArrayPoint& cubPoints,
		                                                           ArrayWeight& cubWeights,
                                                                           ArrayPoint& cellCoords) const
{
  // get array dimensions
  int numCells         = cellCoords.dimension(0);
  int numNodesPerCell  = cellCoords.dimension(1);
  int spaceDim         = cellCoords.dimension(2);
  int numNodesPerSubCV = subCVCellTopo_->getNodeCount();

  // get sub-control volume coordinates (one sub-control volume per node of primary cell)
  Intrepid::FieldContainer<Scalar> subCVCoords(numCells,numNodesPerCell,numNodesPerSubCV,spaceDim);
  Intrepid::CellTools<Scalar>::getSubCVCoords(subCVCoords,cellCoords,*(primaryCellTopo_));

 // num edges per primary cell
  int numEdgesPerCell = primaryCellTopo_->getEdgeCount();

  // Loop over cells
  for (int icell = 0; icell < numCells; icell++){

     // Get subcontrol volume side midpoints and normals
      int iside = 1;
      int numNodesPerSide = subCVCellTopo_->getNodeCount(spaceDim-1,iside);
      Intrepid::FieldContainer<int> sideNodes(numNodesPerSide);
      for (int i=0; i<numNodesPerSide; i++){
          sideNodes(i) = subCVCellTopo_->getNodeMap(spaceDim-1,iside,i);
      }

      // Loop over primary cell nodes and get side midpoints
      //   In each primary cell the number of control volume side integration
      //   points is equal to the number of primary cell edges. In 2d the
      //   number of edges = number of nodes and this loop defines all side
      //   points. In 3d this loop computes the side points for all
      //   subcontrol volume sides for iside = 1. Additional code below
      //   computes the remaining points for particular 3d topologies.
       for (int inode=0; inode < numNodesPerCell; inode++){
          for(int idim=0; idim < spaceDim; idim++){
             Scalar midpt = 0.0;
             for (int i=0; i<numNodesPerSide; i++){
                  midpt += subCVCoords(icell,inode,sideNodes(i),idim);
             }
             cubPoints(icell,inode,idim) = midpt/numNodesPerSide;
          }
       }

      // Map side center to reference subcell
       //Intrepid::FieldContainer<Scalar> sideCenterLocal(1,spaceDim-1);
       Intrepid::FieldContainer<double> sideCenterLocal(1,spaceDim-1);
       for (int idim = 0; idim < spaceDim-1; idim++){
          sideCenterLocal(0,idim) = 0.0;
       }

       Intrepid::FieldContainer<Scalar> refSidePoints(1,spaceDim);
       iside = 1;
       Intrepid::CellTools<Scalar>::mapToReferenceSubcell(refSidePoints,
                                    sideCenterLocal,
                                    spaceDim-1, iside, *(subCVCellTopo_));

      // Array of cell control volume coordinates
       Intrepid::FieldContainer<Scalar> cellCVCoords(numNodesPerCell, numNodesPerSubCV, spaceDim);
       for (int isubcv = 0; isubcv < numNodesPerCell; isubcv++) {
         for (int inode = 0; inode < numNodesPerSubCV; inode++){
           for (int idim = 0; idim < spaceDim; idim++){
               cellCVCoords(isubcv,inode,idim) = subCVCoords(icell,isubcv,inode,idim);
           }
         }
       }

      // calculate Jacobian at side centers
       Intrepid::FieldContainer<Scalar> subCVsideJacobian(numNodesPerCell, 1, spaceDim, spaceDim);
       Intrepid::CellTools<Scalar>::setJacobian(subCVsideJacobian, refSidePoints, cellCVCoords, *(subCVCellTopo_));

      // Get subcontrol volume side normals
       Intrepid::FieldContainer<Scalar> normals(numNodesPerCell, 1, spaceDim);
       Intrepid::CellTools<Scalar>::getPhysicalSideNormals(normals,subCVsideJacobian,iside,*(subCVCellTopo_));

       for (int inode = 0; inode < numNodesPerCell; inode++) {
          for (int idim = 0; idim < spaceDim; idim++){
             cubWeights(icell,inode,idim) = normals(inode,0,idim)*pow(2,spaceDim-1);
          }
       }

       if (primaryCellTopo_->getKey()==shards::Hexahedron<8>::key)
         {
           // first set of side midpoints and normals (above) associated with
           // primary cell edges 0-7 are obtained from side 1 of the
           // eight control volumes

           // second set of side midpoints and normals associated with
           // primary cell edges 8-11 are obtained from side 5 of the
           // first four control volumes.
           iside = 5;
           for (int i=0; i<numNodesPerSide; i++){
              sideNodes(i) = subCVCellTopo_->getNodeMap(spaceDim-1,iside,i);
           }
           int numExtraSides = numEdgesPerCell - numNodesPerCell;
             for (int icount=0; icount < numExtraSides; icount++){
                int iedge = icount + numNodesPerCell;
                for(int idim=0; idim < spaceDim; idim++){
                    Scalar midpt = 0.0;
                    for (int i=0; i<numNodesPerSide; i++){
                        midpt += subCVCoords(icell,icount,sideNodes(i),idim)/numNodesPerSide;
                    }
                    cubPoints(icell,iedge,idim) = midpt;
                }
            }

           // Map side center to reference subcell
           iside = 5;
           Intrepid::CellTools<Scalar>::mapToReferenceSubcell(refSidePoints,
                                        sideCenterLocal,
                                        spaceDim-1, iside, *(subCVCellTopo_));

           // calculate Jacobian at side centers
           Intrepid::CellTools<Scalar>::setJacobian(subCVsideJacobian, refSidePoints, cellCVCoords, *(subCVCellTopo_));

           // Get subcontrol volume side normals
           Intrepid::CellTools<Scalar>::getPhysicalSideNormals(normals,subCVsideJacobian,iside,*(subCVCellTopo_));

           for (int icount = 0; icount < numExtraSides; icount++) {
              int iedge = icount + numNodesPerCell;
              for (int idim = 0; idim < spaceDim; idim++){
                  cubWeights(icell,iedge,idim) = normals(icount,0,idim)*pow(2,spaceDim-1);
              }
           }

         } // end if Hex

        if (primaryCellTopo_->getKey()==shards::Tetrahedron<4>::key)
          {
           // first set of side midpoints and normals associated with
           // primary cell edges 0-2 are obtained from side 1 of the
           // eight control volumes (above)

           // second set of side midpoints and normals associated with
           // primary cell edges 3-5 are obtained from side 5 of the
           // first three control volumes.
           iside = 5;
           for (int i=0; i<numNodesPerSide; i++){
              sideNodes(i) = subCVCellTopo_->getNodeMap(spaceDim-1,iside,i);
           }
           for (int icount=0; icount < 3; icount++){
                int iedge = icount + 3;
                for(int idim=0; idim < spaceDim; idim++){
                    Scalar midpt = 0.0;
                    for (int i=0; i<numNodesPerSide; i++){
                        midpt += subCVCoords(icell,icount,sideNodes(i),idim)/numNodesPerSide;
                    }
                    cubPoints(icell,iedge,idim) = midpt;
                }
           }

          // Map side center to reference subcell
           iside = 5;
           Intrepid::CellTools<Scalar>::mapToReferenceSubcell(refSidePoints,
                                        sideCenterLocal,
                                        spaceDim-1, iside, *(subCVCellTopo_));

           // calculate Jacobian at side centers
           Intrepid::CellTools<Scalar>::setJacobian(subCVsideJacobian, refSidePoints, cellCVCoords, *(subCVCellTopo_));

           // Get subcontrol volume side normals
           Intrepid::CellTools<Scalar>::getPhysicalSideNormals(normals,subCVsideJacobian,iside,*(subCVCellTopo_));

           for (int icount = 0; icount < 3; icount++) {
              int iedge = icount + 3;
              for (int idim = 0; idim < spaceDim; idim++){
                  cubWeights(icell,iedge,idim) = normals(icount,0,idim)*pow(2,spaceDim-1);
              }
           }

       }// if tetrahedron

  } // end loop over cells

} // end getCubature
    

template<class Scalar, class ArrayPoint, class ArrayWeight>
int CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getNumPoints()const{
  return numPoints_;
} // end getNumPoints

template<class Scalar, class ArrayPoint, class ArrayWeight>
int CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getDimension()const{
  return cubDimension_;
} // end getNumPoints

template<class Scalar, class ArrayPoint, class ArrayWeight>
void CubatureControlVolumeSide<Scalar,ArrayPoint,ArrayWeight>::getAccuracy(std::vector<int>& accuracy)const{
  accuracy.assign(1,degree_);
} // end getAccuracy

} // end namespace Intrepid

#endif