This file is indexed.

/usr/include/trilinos/Kokkos_MemoryPool.hpp is in libtrilinos-kokkos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
//@HEADER
// ************************************************************************
// 
//                        Kokkos v. 2.0
//              Copyright (2014) Sandia Corporation
// 
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact  H. Carter Edwards (hcedwar@sandia.gov)
// 
// ************************************************************************
//@HEADER
*/

#ifndef KOKKOS_MEMORYPOOL_HPP
#define KOKKOS_MEMORYPOOL_HPP

#include <Kokkos_Core_fwd.hpp>
#include <Kokkos_Parallel.hpp>
#include <Kokkos_Atomic.hpp>
#include <impl/Kokkos_ConcurrentBitset.hpp>
#include <impl/Kokkos_Error.hpp>
#include <impl/Kokkos_SharedAlloc.hpp>

namespace Kokkos {

template< typename DeviceType >
class MemoryPool {
private:

  typedef typename Kokkos::Impl::concurrent_bitset CB ;

  enum : uint32_t { bits_per_int_lg2  = CB::bits_per_int_lg2 };
  enum : uint32_t { state_shift       = CB::state_shift };
  enum : uint32_t { state_used_mask   = CB::state_used_mask };
  enum : uint32_t { state_header_mask = CB::state_header_mask };
  enum : uint32_t { max_bit_count_lg2 = CB::max_bit_count_lg2 };
  enum : uint32_t { max_bit_count     = CB::max_bit_count };

  /*  Defaults for min block, max block, and superblock sizes */
  enum : uint32_t { MIN_BLOCK_SIZE_LG2  =  6  /*   64 bytes */ };
  enum : uint32_t { MAX_BLOCK_SIZE_LG2  = 12  /*   4k bytes */ };
  enum : uint32_t { SUPERBLOCK_SIZE_LG2 = 16  /*  64k bytes */ };

  enum : uint32_t { HINT_PER_BLOCK_SIZE = 2 };

  /*  Each superblock has a concurrent bitset state
   *  which is an array of uint32_t integers.
   *    [ { block_count_lg2  : state_shift bits
   *      , used_block_count : ( 32 - state_shift ) bits
   *      }
   *    , { block allocation bit set }* ]
   *
   *  As superblocks are assigned (allocated) to a block size
   *  and released (deallocated) back to empty the superblock state
   *  is concurrently updated.
   */

  typedef typename DeviceType::memory_space base_memory_space ;

  enum { accessible =
           Kokkos::Impl::MemorySpaceAccess< Kokkos::HostSpace 
                                          , base_memory_space >::accessible };

  typedef Kokkos::Impl::SharedAllocationTracker Tracker ;
  typedef Kokkos::Impl::SharedAllocationRecord
    < base_memory_space >  Record ;

  Tracker    m_tracker ;
  uint32_t * m_sb_state_array ;
  uint32_t   m_sb_state_size ;
  uint32_t   m_sb_size_lg2 ;
  uint32_t   m_max_block_size_lg2 ;
  uint32_t   m_min_block_size_lg2 ;
  int32_t    m_sb_count ;
  int32_t    m_hint_offset ;   // Offset to K * #block_size array of hints
  int32_t    m_data_offset ;   // Offset to 0th superblock data
  int32_t    m_unused_padding ;

public:

  //--------------------------------------------------------------------------

  KOKKOS_INLINE_FUNCTION
  size_t capacity() const noexcept
    { return size_t(m_sb_count) << m_sb_size_lg2 ; }

  KOKKOS_INLINE_FUNCTION
  size_t min_block_size() const noexcept
    { return ( 1LU << m_min_block_size_lg2 ); }

  KOKKOS_INLINE_FUNCTION
  size_t max_block_size() const noexcept
    { return ( 1LU << m_max_block_size_lg2 ); }

  struct usage_statistics {
    size_t capacity_bytes ;       ///<  Capacity in bytes
    size_t superblock_bytes ;     ///<  Superblock size in bytes
    size_t max_block_bytes ;      ///<  Maximum block size in bytes
    size_t min_block_bytes ;      ///<  Minimum block size in bytes
    size_t capacity_superblocks ; ///<  Number of superblocks
    size_t consumed_superblocks ; ///<  Superblocks assigned to allocations
    size_t consumed_blocks ;  ///<  Number of allocations
    size_t consumed_bytes ;   ///<  Bytes allocated
    size_t reserved_blocks ;  ///<  Unallocated blocks in assigned superblocks
    size_t reserved_bytes ;   ///<  Unallocated bytes in assigned superblocks
  };

  void get_usage_statistics( usage_statistics & stats ) const
    {
      Kokkos::HostSpace host ;

      const size_t alloc_size = m_hint_offset * sizeof(uint32_t);

      uint32_t * const sb_state_array = 
        accessible ? m_sb_state_array : (uint32_t *) host.allocate(alloc_size);

      if ( ! accessible ) {
        Kokkos::Impl::DeepCopy< Kokkos::HostSpace , base_memory_space >
          ( sb_state_array , m_sb_state_array , alloc_size );
      }

      stats.superblock_bytes = ( 1LU << m_sb_size_lg2 );
      stats.max_block_bytes  = ( 1LU << m_max_block_size_lg2 );
      stats.min_block_bytes  = ( 1LU << m_min_block_size_lg2 );
      stats.capacity_bytes   = stats.superblock_bytes * m_sb_count ;
      stats.capacity_superblocks = m_sb_count ;
      stats.consumed_superblocks = 0 ;
      stats.consumed_blocks = 0 ;
      stats.consumed_bytes  = 0 ;
      stats.reserved_blocks = 0 ;
      stats.reserved_bytes  = 0 ;

      const uint32_t * sb_state_ptr = sb_state_array ;

      for ( int32_t i = 0 ; i < m_sb_count
          ; ++i , sb_state_ptr += m_sb_state_size ) {

        const uint32_t block_count_lg2 = (*sb_state_ptr) >> state_shift ;

        if ( block_count_lg2 ) {
          const uint32_t block_count    = 1u << block_count_lg2 ;
          const uint32_t block_size_lg2 = m_sb_size_lg2 - block_count_lg2 ;
          const uint32_t block_size     = 1u << block_size_lg2 ;
          const uint32_t block_used     = (*sb_state_ptr) & state_used_mask ;

          stats.consumed_superblocks++ ;
          stats.consumed_blocks += block_used ;
          stats.consumed_bytes  += block_used * block_size ;
          stats.reserved_blocks += block_count - block_used ;
          stats.reserved_bytes  += (block_count - block_used ) * block_size ;
        }
      }

      if ( ! accessible ) {
        host.deallocate( sb_state_array, alloc_size );
      }
    }

  void print_state( std::ostream & s ) const
    {
      Kokkos::HostSpace host ;

      const size_t alloc_size = m_hint_offset * sizeof(uint32_t);

      uint32_t * const sb_state_array = 
        accessible ? m_sb_state_array : (uint32_t *) host.allocate(alloc_size);

      if ( ! accessible ) {
        Kokkos::Impl::DeepCopy< Kokkos::HostSpace , base_memory_space >
          ( sb_state_array , m_sb_state_array , alloc_size );
      }

      const uint32_t * sb_state_ptr = sb_state_array ;

      s << "pool_size(" << ( size_t(m_sb_count) << m_sb_size_lg2 ) << ")"
        << " superblock_size(" << ( 1 << m_sb_size_lg2 ) << ")" << std::endl ;

      for ( int32_t i = 0 ; i < m_sb_count
          ; ++i , sb_state_ptr += m_sb_state_size ) {

        if ( *sb_state_ptr ) {

          const uint32_t block_count_lg2 = (*sb_state_ptr) >> state_shift ;
          const uint32_t block_size_lg2  = m_sb_size_lg2 - block_count_lg2 ;
          const uint32_t block_count     = 1 << block_count_lg2 ;
          const uint32_t block_used      = (*sb_state_ptr) & state_used_mask ;

          s << "Superblock[ " << i << " / " << m_sb_count << " ] {"
            << " block_size(" << ( 1 << block_size_lg2 ) << ")"
            << " block_count( " << block_used
            << " / " << block_count  << " )"
            << std::endl ;
        }
      }

      if ( ! accessible ) {
        host.deallocate( sb_state_array, alloc_size );
      }
    }

  //--------------------------------------------------------------------------

  MemoryPool() = default ;
  MemoryPool( MemoryPool && ) = default ;
  MemoryPool( const MemoryPool & ) = default ;
  MemoryPool & operator = ( MemoryPool && ) = default ;
  MemoryPool & operator = ( const MemoryPool & ) = default ;

  /**\brief  Allocate a memory pool from 'memspace'.
   *
   *  The memory pool will have at least 'min_total_alloc_size' bytes
   *  of memory to allocate divided among superblocks of at least
   *  'min_superblock_size' bytes.  A single allocation must fit
   *  within a single superblock, so 'min_superblock_size' must be
   *  at least as large as the maximum single allocation.
   *  Both 'min_total_alloc_size' and 'min_superblock_size'
   *  are rounded up to the smallest power-of-two value that
   *  contains the corresponding sizes.
   *  Individual allocations will always consume a block of memory that
   *  is also a power-of-two.  These roundings are made to enable
   *  significant runtime performance improvements.
   */
  MemoryPool( const base_memory_space & memspace
            , const size_t   min_total_alloc_size
            , const uint32_t min_block_alloc_size // = 1 << MIN_BLOCK_SIZE_LG2
            , const uint32_t max_block_alloc_size // = 1 << MAX_BLOCK_SIZE_LG2
            , const uint32_t min_superblock_size  // = 1 << SUPERBLOCK_SIZE_LG2
            )
    : m_tracker()
    , m_sb_state_array(0)
    , m_sb_state_size(0)
    , m_sb_size_lg2(0)
    , m_max_block_size_lg2(0)
    , m_min_block_size_lg2(0)
    , m_sb_count(0)
    , m_hint_offset(0)
    , m_data_offset(0)
    , m_unused_padding(0)
    {
      const uint32_t int_align_lg2  = 3 ; /* align as int[8] */
      const uint32_t int_align_mask = ( 1u << int_align_lg2 ) - 1 ;

      // Block and superblock size is power of two:

      m_min_block_size_lg2 =
        Kokkos::Impl::integral_power_of_two_that_contains(min_block_alloc_size);

      m_max_block_size_lg2 =
        Kokkos::Impl::integral_power_of_two_that_contains(max_block_alloc_size);
  
      m_sb_size_lg2 =
        Kokkos::Impl::integral_power_of_two_that_contains(min_superblock_size);

      // Constraints:
      // m_min_block_size_lg2 <= m_max_block_size_lg2 <= m_sb_size_lg2
      // m_sb_size_lg2 <= m_min_block_size + max_bit_count_lg2

      if ( m_min_block_size_lg2 + max_bit_count_lg2 < m_sb_size_lg2 ) {
        m_min_block_size_lg2 = m_sb_size_lg2 - max_bit_count_lg2 ;
      }
      if ( m_min_block_size_lg2 + max_bit_count_lg2 < m_max_block_size_lg2 ) {
        m_min_block_size_lg2 = m_max_block_size_lg2 - max_bit_count_lg2 ;
      }
      if ( m_max_block_size_lg2 < m_min_block_size_lg2 ) {
        m_max_block_size_lg2 = m_min_block_size_lg2 ;
      }
      if ( m_sb_size_lg2 < m_max_block_size_lg2 ) {
        m_sb_size_lg2 = m_max_block_size_lg2 ;
      }

      // At least 32 minimum size blocks in a superblock

      if ( m_sb_size_lg2 < m_min_block_size_lg2 + 5 ) {
        m_sb_size_lg2 = m_min_block_size_lg2 + 5 ;
      }

      // number of superblocks is multiple of superblock size that
      // can hold min_total_alloc_size.

      const uint32_t sb_size_mask = ( 1u << m_sb_size_lg2 ) - 1 ;

      m_sb_count = ( min_total_alloc_size + sb_size_mask ) >> m_sb_size_lg2 ;

      // Any superblock can be assigned to the smallest size block
      // Size the block bitset to maximum number of blocks

      const uint32_t max_block_count_lg2 =
        m_sb_size_lg2 - m_min_block_size_lg2 ;

      m_sb_state_size =
        ( CB::buffer_bound_lg2( max_block_count_lg2 ) + int_align_mask ) & ~int_align_mask ;

      // Array of all superblock states

      const size_t all_sb_state_size =
        ( m_sb_count * m_sb_state_size + int_align_mask ) & ~int_align_mask ;

      // Number of block sizes

      const int32_t number_block_sizes =
         1 + m_max_block_size_lg2 - m_min_block_size_lg2 ;

      // Array length for possible block sizes
      // Hint array is one uint32_t per block size

      const int32_t block_size_array_size =
        ( number_block_sizes + int_align_mask ) & ~int_align_mask ;

      m_hint_offset = all_sb_state_size ;
      m_data_offset = m_hint_offset +
                      block_size_array_size * HINT_PER_BLOCK_SIZE ;

      // Allocation:

      const size_t header_size = m_data_offset * sizeof(uint32_t);
      const size_t alloc_size  = header_size +
                                 ( size_t(m_sb_count) << m_sb_size_lg2 );

      Record * rec = Record::allocate( memspace , "MemoryPool" , alloc_size );

      m_tracker.assign_allocated_record_to_uninitialized( rec );

      m_sb_state_array = (uint32_t *) rec->data();

      Kokkos::HostSpace host ;

      uint32_t * const sb_state_array = 
        accessible ? m_sb_state_array
                   : (uint32_t *) host.allocate(header_size);

      for ( int32_t i = 0 ; i < m_data_offset ; ++i ) sb_state_array[i] = 0 ;

      // Initial assignment of empty superblocks to block sizes:

      for ( int32_t i = 0 ; i < number_block_sizes ; ++i ) {
        const uint32_t block_size_lg2  = i + m_min_block_size_lg2 ;
        const uint32_t block_count_lg2 = m_sb_size_lg2 - block_size_lg2 ;
        const uint32_t block_state     = block_count_lg2 << state_shift ;
        const uint32_t hint_begin = m_hint_offset + i * HINT_PER_BLOCK_SIZE ;

        // for block size index 'i':
        //   sb_id_hint  = sb_state_array[ hint_begin ];
        //   sb_id_begin = sb_state_array[ hint_begin + 1 ];

        const int32_t jbeg = ( i * m_sb_count ) / number_block_sizes ;
        const int32_t jend = ( ( i + 1 ) * m_sb_count ) / number_block_sizes ;

        sb_state_array[ hint_begin ] = uint32_t(jbeg);
        sb_state_array[ hint_begin + 1 ] = uint32_t(jbeg);

        for ( int32_t j = jbeg ; j < jend ; ++j ) {
          sb_state_array[ j * m_sb_state_size ] = block_state ;
        }
      }

      // Write out initialized state:

      if ( ! accessible ) {
        Kokkos::Impl::DeepCopy< base_memory_space , Kokkos::HostSpace >
          ( m_sb_state_array , sb_state_array , header_size );

        host.deallocate( sb_state_array, header_size );
      }
      else {
        Kokkos::memory_fence();
      }
    }

  //--------------------------------------------------------------------------

private:

  /* Given a size 'n' get the block size in which it can be allocated.
   * Restrict lower bound to minimum block size.
   */
  KOKKOS_FORCEINLINE_FUNCTION
  unsigned get_block_size_lg2( unsigned n ) const noexcept
    {
      const unsigned i = Kokkos::Impl::integral_power_of_two_that_contains( n );

      return i < m_min_block_size_lg2 ? m_min_block_size_lg2 : i ;
    }

public:

  KOKKOS_INLINE_FUNCTION
  uint32_t allocate_block_size( uint32_t alloc_size ) const noexcept
    {
      return alloc_size <= (1UL << m_max_block_size_lg2)
           ? ( 1u << get_block_size_lg2( alloc_size ) )
           : 0 ;
    }

  //--------------------------------------------------------------------------
  /**\brief  Allocate a block of memory that is at least 'alloc_size'
   *
   *  The block of memory is aligned to the minimum block size,
   *  currently is 64 bytes, will never be less than 32 bytes.
   *
   *  If concurrent allocations and deallocations are taking place
   *  then a single allocation attempt may fail due to lack of available space.
   *  The allocation attempt will try up to 'attempt_limit' times.
   */
  KOKKOS_FUNCTION
  void * allocate( size_t alloc_size
                 , int32_t attempt_limit = 1 ) const noexcept
    {
      void * p = 0 ;

      const uint32_t block_size_lg2 = get_block_size_lg2( alloc_size );

      if ( block_size_lg2 <= m_max_block_size_lg2 ) {

        // Allocation will fit within a superblock
        // that has block sizes ( 1 << block_size_lg2 )

        const uint32_t block_count_lg2  = m_sb_size_lg2 - block_size_lg2 ;
        const uint32_t block_state      = block_count_lg2 << state_shift ;
        const uint32_t block_count      = 1u << block_count_lg2 ;
        const uint32_t block_count_mask = block_count - 1 ;

        // Superblock hints for this block size:
        //   hint_sb_id_ptr[0] is the dynamically changing hint
        //   hint_sb_id_ptr[1] is the static start point

        volatile uint32_t * const hint_sb_id_ptr
          = m_sb_state_array     /* memory pool state array */
          + m_hint_offset        /* offset to hint portion of array */
          + HINT_PER_BLOCK_SIZE  /* number of hints per block size */
            * ( block_size_lg2 - m_min_block_size_lg2 ); /* block size id */

        const int32_t sb_id_begin = int32_t( hint_sb_id_ptr[1] );

        // Fast query clock register 'tic' to pseudo-randomize
        // the guess for which block within a superblock should
        // be claimed.  If not available then a search occurs.

        const uint32_t block_id_hint = block_count_mask &
          (uint32_t)( Kokkos::Impl::clock_tic()
#if defined( KOKKOS_ACTIVE_EXECUTION_MEMORY_SPACE_CUDA )
          // Spread out potentially concurrent access
          // by threads within a warp or thread block.
          + ( threadIdx.x + blockDim.x * threadIdx.y )
#endif
          );

        int32_t sb_id = -1 ;

        volatile uint32_t * sb_state_array = 0 ;

        while ( attempt_limit ) {

          int32_t hint_sb_id = -1 ;

          if ( sb_id < 0 ) {

            sb_id = hint_sb_id = int32_t( *hint_sb_id_ptr );

            sb_state_array = m_sb_state_array + ( sb_id * m_sb_state_size );
          }

          // Require:
          //   0 <= sb_id
          //   sb_state_array == m_sb_state_array + m_sb_state_size * sb_id

          if ( block_state == ( state_header_mask & *sb_state_array ) ) {

            // This superblock state is assigned to this block size.
            // Try to claim a bit.

            const Kokkos::pair<int,int> result =
              CB::acquire_bounded_lg2( sb_state_array
                                     , block_count_lg2
                                     , block_id_hint
                                     , block_state
                                     );

            // If result.first < 0 then failed to acquire
            // due to either full or buffer was wrong state.
            // Could be wrong state if a deallocation raced the
            // superblock to empty before the acquire could succeed.

            if ( 0 <= result.first ) { // acquired a bit

              // Set the allocated block pointer

              p = ((char*)( m_sb_state_array + m_data_offset ))
                + ( uint32_t(sb_id) << m_sb_size_lg2 ) // superblock memory
                + ( result.first    << block_size_lg2 ); // block memory

              break ; // Success
            }

// printf("  acquire block_count_lg2(%d) block_state(0x%x) sb_id(%d) result(%d,%d)\n" , block_count_lg2 , block_state , sb_id , result.first , result.second );

          }
          //------------------------------------------------------------------
          //  Arrive here if failed to acquire a block.
          //  Must find a new superblock.

          //  Start searching at designated index for this block size.
          //  Look for a partially full superblock of this block size.
          //  Look for an empty superblock just in case cannot find partfull.

          sb_id = -1 ;

          int32_t sb_id_empty = -1 ;

          sb_state_array = m_sb_state_array + sb_id_begin * m_sb_state_size ;

          for ( int32_t i = 0 , id = sb_id_begin ; i < m_sb_count ; ++i ) {

            //  Query state of the candidate superblock.
            //  Note that the state may change at any moment
            //  as concurrent allocations and deallocations occur.
            
            const uint32_t state = *sb_state_array ;
            const uint32_t used  = state & state_used_mask ;

            if ( block_state == ( state & state_header_mask ) ) {

              //  Superblock is assigned to this block size

              if ( used < block_count ) { 

                // There is room to allocate one block

                sb_id = id ;

                if ( used + 1 < block_count ) {

                  // There is room to allocate more than one block

                  Kokkos::atomic_compare_exchange
                    ( hint_sb_id_ptr , uint32_t(hint_sb_id) , uint32_t(sb_id) );
                }

                break ;
              }
            }
            else if ( ( used == 0 ) && ( sb_id_empty == -1 ) ) {

              // Superblock is not assigned to this block size
              // and is the first empty superblock encountered.
              // Save this id to use if a partfull superblock is not found.

              sb_id_empty = id ;
            }

            if ( ++id < m_sb_count ) {
              sb_state_array += m_sb_state_size ;
            }
            else {
              id = 0 ;
              sb_state_array = m_sb_state_array ;
            }
          }

// printf("  search m_sb_count(%d) sb_id(%d) sb_id_empty(%d)\n" , m_sb_count , sb_id , sb_id_empty );

          if ( sb_id < 0 ) {

            //  Did not find a partfull superblock for this block size.

            if ( 0 <= sb_id_empty ) {

              //  Found first empty superblock following designated superblock
              //  Attempt to claim it for this block size.
              //  If the claim fails assume that another thread claimed it
              //  for this block size and try to use it anyway,
              //  but do not update hint.

              sb_id = sb_id_empty ;

              sb_state_array = m_sb_state_array + ( sb_id * m_sb_state_size );

              //  If successfully changed assignment of empty superblock 'sb_id'
              //  to this block_size then update the hint.

              const uint32_t state_empty = state_header_mask & *sb_state_array ;

              if ( state_empty ==
                     Kokkos::atomic_compare_exchange
                       (sb_state_array,state_empty,block_state) ) {

                // If this thread claimed the block then update the hint

                Kokkos::atomic_compare_exchange
                  ( hint_sb_id_ptr , uint32_t(hint_sb_id) , uint32_t(sb_id) );
              }
            }
            else {
              // Did not find a potentially usable superblock
              --attempt_limit ;
            }
          }
        } // end allocation attempt loop

        //--------------------------------------------------------------------
      }
      else {
        Kokkos::abort("Kokkos MemoryPool allocation request exceeded specified maximum allocation size");
      }

      return p ;
    }
  // end allocate
  //--------------------------------------------------------------------------

  /**\brief  Return an allocated block of memory to the pool.
   *
   *  Requires: p is return value from allocate( alloc_size );
   *
   *  For now the alloc_size is ignored.
   */
  KOKKOS_INLINE_FUNCTION
  void deallocate( void * p , size_t /* alloc_size */ ) const noexcept
    {
      // Determine which superblock and block
      const ptrdiff_t d =
        ((char*)p) - ((char*)( m_sb_state_array + m_data_offset ));

      // Verify contained within the memory pool's superblocks:
      const int ok_contains =
        ( 0 <= d ) && ( size_t(d) < ( size_t(m_sb_count) << m_sb_size_lg2 ) );

      int ok_block_aligned = 0 ;
      int ok_dealloc_once  = 0 ;

      if ( ok_contains ) {

        const int sb_id = d >> m_sb_size_lg2 ;

        // State array for the superblock.
        volatile uint32_t * const sb_state_array =
          m_sb_state_array + ( sb_id * m_sb_state_size );

        const uint32_t block_state    = (*sb_state_array) & state_header_mask ;
        const uint32_t block_size_lg2 =
          m_sb_size_lg2 - ( block_state >> state_shift );

        ok_block_aligned = 0 == ( d & ( ( 1 << block_size_lg2 ) - 1 ) );

        if ( ok_block_aligned ) {

          // Map address to block's bit
          // mask into superblock and then shift down for block index

          const uint32_t bit =
            ( d & ( ptrdiff_t( 1 << m_sb_size_lg2 ) - 1 ) ) >> block_size_lg2 ;

          const int result =
            CB::release( sb_state_array , bit , block_state );

          ok_dealloc_once = 0 <= result ;

// printf("  deallocate from sb_id(%d) result(%d) bit(%d) state(0x%x)\n"
//       , sb_id
//       , result
//       , uint32_t(d >> block_size_lg2)
//       , *sb_state_array );

        }
      }

      if ( ! ok_contains || ! ok_block_aligned || ! ok_dealloc_once ) {
#if 0
        printf("Kokkos MemoryPool deallocate(0x%lx) contains(%d) block_aligned(%d) dealloc_once(%d)\n",(uintptr_t)p,ok_contains,ok_block_aligned,ok_dealloc_once);
#endif
        Kokkos::abort("Kokkos MemoryPool::deallocate given erroneous pointer");
      }
    }
  // end deallocate
  //--------------------------------------------------------------------------
};

} // namespace Kokkos 

#endif /* #ifndef KOKKOS_MEMORYPOOL_HPP */