/usr/include/trilinos/Threads/Kokkos_ThreadsExec.hpp is in libtrilinos-kokkos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | /*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_THREADSEXEC_HPP
#define KOKKOS_THREADSEXEC_HPP
#include <Kokkos_Macros.hpp>
#if defined( KOKKOS_ENABLE_THREADS )
#include <cstdio>
#include <utility>
#include <impl/Kokkos_spinwait.hpp>
#include <impl/Kokkos_FunctorAdapter.hpp>
#include <Kokkos_Atomic.hpp>
//----------------------------------------------------------------------------
namespace Kokkos {
namespace Impl {
class ThreadsExec {
public:
// Fan array has log_2(NT) reduction threads plus 2 scan threads
// Currently limited to 16k threads.
enum { MAX_FAN_COUNT = 16 };
enum { MAX_THREAD_COUNT = 1 << ( MAX_FAN_COUNT - 2 ) };
enum { VECTOR_LENGTH = 8 };
/** \brief States of a worker thread */
enum { Terminating ///< Termination in progress
, Inactive ///< Exists, waiting for work
, Active ///< Exists, performing work
, Rendezvous ///< Exists, waiting in a barrier or reduce
, ScanCompleted
, ScanAvailable
, ReductionAvailable
};
private:
friend class Kokkos::Threads ;
// Fan-in operations' root is the highest ranking thread
// to place the 'scan' reduction intermediate values on
// the threads that need them.
// For a simple reduction the thread location is arbitrary.
ThreadsExec * const * m_pool_base ; ///< Base for pool fan-in
void * m_scratch ;
int m_scratch_reduce_end ;
int m_scratch_thread_end ;
int m_numa_rank ;
int m_numa_core_rank ;
int m_pool_rank ;
int m_pool_rank_rev ;
int m_pool_size ;
int m_pool_fan_size ;
int volatile m_pool_state ; ///< State for global synchronizations
// Members for dynamic scheduling
// Which thread am I stealing from currently
int m_current_steal_target;
// This thread's owned work_range
Kokkos::pair<long,long> m_work_range KOKKOS_ALIGN(16);
// Team Offset if one thread determines work_range for others
long m_team_work_index;
// Is this thread stealing (i.e. its owned work_range is exhausted
bool m_stealing;
static void global_lock();
static void global_unlock();
static bool spawn();
static void execute_resize_scratch( ThreadsExec & , const void * );
static void execute_sleep( ThreadsExec & , const void * );
ThreadsExec( const ThreadsExec & );
ThreadsExec & operator = ( const ThreadsExec & );
static void execute_serial( void (*)( ThreadsExec & , const void * ) );
public:
KOKKOS_INLINE_FUNCTION int pool_size() const { return m_pool_size ; }
KOKKOS_INLINE_FUNCTION int pool_rank() const { return m_pool_rank ; }
KOKKOS_INLINE_FUNCTION int numa_rank() const { return m_numa_rank ; }
KOKKOS_INLINE_FUNCTION int numa_core_rank() const { return m_numa_core_rank ; }
inline long team_work_index() const { return m_team_work_index ; }
static int get_thread_count();
static ThreadsExec * get_thread( const int init_thread_rank );
inline void * reduce_memory() const { return m_scratch ; }
KOKKOS_INLINE_FUNCTION void * scratch_memory() const
{ return reinterpret_cast<unsigned char *>(m_scratch) + m_scratch_reduce_end ; }
KOKKOS_INLINE_FUNCTION int volatile & state() { return m_pool_state ; }
KOKKOS_INLINE_FUNCTION ThreadsExec * const * pool_base() const { return m_pool_base ; }
static void driver(void);
~ThreadsExec();
ThreadsExec();
static void * resize_scratch( size_t reduce_size , size_t thread_size );
static void * root_reduce_scratch();
static bool is_process();
static void verify_is_process( const std::string & , const bool initialized );
static int is_initialized();
static void initialize( unsigned thread_count ,
unsigned use_numa_count ,
unsigned use_cores_per_numa ,
bool allow_asynchronous_threadpool );
static void finalize();
/* Given a requested team size, return valid team size */
static unsigned team_size_valid( unsigned );
static void print_configuration( std::ostream & , const bool detail = false );
//------------------------------------
static void wait_yield( volatile int & , const int );
//------------------------------------
// All-thread functions:
inline
int all_reduce( const int value )
{
// Make sure there is enough scratch space:
const int rev_rank = m_pool_size - ( m_pool_rank + 1 );
*((volatile int*) reduce_memory()) = value ;
memory_fence();
// Fan-in reduction with highest ranking thread as the root
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
// Wait: Active -> Rendezvous
Impl::spinwait_while_equal( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Active );
}
if ( rev_rank ) {
m_pool_state = ThreadsExec::Rendezvous ;
// Wait: Rendezvous -> Active
Impl::spinwait_while_equal( m_pool_state , ThreadsExec::Rendezvous );
}
else {
// Root thread does the reduction and broadcast
int accum = 0 ;
for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
accum += *((volatile int *) get_thread( rank )->reduce_memory());
}
for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
*((volatile int *) get_thread( rank )->reduce_memory()) = accum ;
}
memory_fence();
for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
get_thread( rank )->m_pool_state = ThreadsExec::Active ;
}
}
return *((volatile int*) reduce_memory());
}
inline
void barrier( )
{
// Make sure there is enough scratch space:
const int rev_rank = m_pool_size - ( m_pool_rank + 1 );
memory_fence();
// Fan-in reduction with highest ranking thread as the root
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
// Wait: Active -> Rendezvous
Impl::spinwait_while_equal( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Active );
}
if ( rev_rank ) {
m_pool_state = ThreadsExec::Rendezvous ;
// Wait: Rendezvous -> Active
Impl::spinwait_while_equal( m_pool_state , ThreadsExec::Rendezvous );
}
else {
// Root thread does the reduction and broadcast
memory_fence();
for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
get_thread( rank )->m_pool_state = ThreadsExec::Active ;
}
}
}
//------------------------------------
// All-thread functions:
template< class FunctorType , class ArgTag >
inline
void fan_in_reduce( const FunctorType & f ) const
{
typedef Kokkos::Impl::FunctorValueJoin< FunctorType , ArgTag > Join ;
typedef Kokkos::Impl::FunctorFinal< FunctorType , ArgTag > Final ;
const int rev_rank = m_pool_size - ( m_pool_rank + 1 );
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
ThreadsExec & fan = *m_pool_base[ rev_rank + ( 1 << i ) ] ;
Impl::spinwait_while_equal( fan.m_pool_state , ThreadsExec::Active );
Join::join( f , reduce_memory() , fan.reduce_memory() );
}
if ( ! rev_rank ) {
Final::final( f , reduce_memory() );
}
}
inline
void fan_in() const
{
const int rev_rank = m_pool_size - ( m_pool_rank + 1 );
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
Impl::spinwait_while_equal( m_pool_base[rev_rank+(1<<i)]->m_pool_state , ThreadsExec::Active );
}
}
template< class FunctorType , class ArgTag >
inline
void scan_large( const FunctorType & f )
{
// Sequence of states:
// 0) Active : entry and exit state
// 1) ReductionAvailable : reduction value available
// 2) ScanAvailable : inclusive scan value available
// 3) Rendezvous : All threads inclusive scan value are available
// 4) ScanCompleted : exclusive scan value copied
typedef Kokkos::Impl::FunctorValueTraits< FunctorType , ArgTag > Traits ;
typedef Kokkos::Impl::FunctorValueJoin< FunctorType , ArgTag > Join ;
typedef Kokkos::Impl::FunctorValueInit< FunctorType , ArgTag > Init ;
typedef typename Traits::value_type scalar_type ;
const int rev_rank = m_pool_size - ( m_pool_rank + 1 );
const unsigned count = Traits::value_count( f );
scalar_type * const work_value = (scalar_type *) reduce_memory();
//--------------------------------
// Fan-in reduction with highest ranking thread as the root
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
ThreadsExec & fan = *m_pool_base[ rev_rank + (1<<i) ];
// Wait: Active -> ReductionAvailable (or ScanAvailable)
Impl::spinwait_while_equal( fan.m_pool_state , ThreadsExec::Active );
Join::join( f , work_value , fan.reduce_memory() );
}
// Copy reduction value to scan value before releasing from this phase.
for ( unsigned i = 0 ; i < count ; ++i ) { work_value[i+count] = work_value[i] ; }
if ( rev_rank ) {
// Set: Active -> ReductionAvailable
m_pool_state = ThreadsExec::ReductionAvailable ;
// Wait for contributing threads' scan value to be available.
if ( ( 1 << m_pool_fan_size ) < ( m_pool_rank + 1 ) ) {
ThreadsExec & th = *m_pool_base[ rev_rank + ( 1 << m_pool_fan_size ) ] ;
// Wait: Active -> ReductionAvailable
// Wait: ReductionAvailable -> ScanAvailable
Impl::spinwait_while_equal( th.m_pool_state , ThreadsExec::Active );
Impl::spinwait_while_equal( th.m_pool_state , ThreadsExec::ReductionAvailable );
Join::join( f , work_value + count , ((scalar_type *)th.reduce_memory()) + count );
}
// This thread has completed inclusive scan
// Set: ReductionAvailable -> ScanAvailable
m_pool_state = ThreadsExec::ScanAvailable ;
// Wait for all threads to complete inclusive scan
// Wait: ScanAvailable -> Rendezvous
Impl::spinwait_while_equal( m_pool_state , ThreadsExec::ScanAvailable );
}
//--------------------------------
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
ThreadsExec & fan = *m_pool_base[ rev_rank + (1<<i) ];
// Wait: ReductionAvailable -> ScanAvailable
Impl::spinwait_while_equal( fan.m_pool_state , ThreadsExec::ReductionAvailable );
// Set: ScanAvailable -> Rendezvous
fan.m_pool_state = ThreadsExec::Rendezvous ;
}
// All threads have completed the inclusive scan.
// All non-root threads are in the Rendezvous state.
// Threads are free to overwrite their reduction value.
//--------------------------------
if ( ( rev_rank + 1 ) < m_pool_size ) {
// Exclusive scan: copy the previous thread's inclusive scan value
ThreadsExec & th = *m_pool_base[ rev_rank + 1 ] ; // Not the root thread
const scalar_type * const src_value = ((scalar_type *)th.reduce_memory()) + count ;
for ( unsigned j = 0 ; j < count ; ++j ) { work_value[j] = src_value[j]; }
}
else {
(void) Init::init( f , work_value );
}
//--------------------------------
// Wait for all threads to copy previous thread's inclusive scan value
// Wait for all threads: Rendezvous -> ScanCompleted
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
Impl::spinwait_while_equal( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Rendezvous );
}
if ( rev_rank ) {
// Set: ScanAvailable -> ScanCompleted
m_pool_state = ThreadsExec::ScanCompleted ;
// Wait: ScanCompleted -> Active
Impl::spinwait_while_equal( m_pool_state , ThreadsExec::ScanCompleted );
}
// Set: ScanCompleted -> Active
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
m_pool_base[ rev_rank + (1<<i) ]->m_pool_state = ThreadsExec::Active ;
}
}
template< class FunctorType , class ArgTag >
inline
void scan_small( const FunctorType & f )
{
typedef Kokkos::Impl::FunctorValueTraits< FunctorType , ArgTag > Traits ;
typedef Kokkos::Impl::FunctorValueJoin< FunctorType , ArgTag > Join ;
typedef Kokkos::Impl::FunctorValueInit< FunctorType , ArgTag > Init ;
typedef typename Traits::value_type scalar_type ;
const int rev_rank = m_pool_size - ( m_pool_rank + 1 );
const unsigned count = Traits::value_count( f );
scalar_type * const work_value = (scalar_type *) reduce_memory();
//--------------------------------
// Fan-in reduction with highest ranking thread as the root
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
// Wait: Active -> Rendezvous
Impl::spinwait_while_equal( m_pool_base[ rev_rank + (1<<i) ]->m_pool_state , ThreadsExec::Active );
}
for ( unsigned i = 0 ; i < count ; ++i ) { work_value[i+count] = work_value[i]; }
if ( rev_rank ) {
m_pool_state = ThreadsExec::Rendezvous ;
// Wait: Rendezvous -> Active
Impl::spinwait_while_equal( m_pool_state , ThreadsExec::Rendezvous );
}
else {
// Root thread does the thread-scan before releasing threads
scalar_type * ptr_prev = 0 ;
for ( int rank = 0 ; rank < m_pool_size ; ++rank ) {
scalar_type * const ptr = (scalar_type *) get_thread( rank )->reduce_memory();
if ( rank ) {
for ( unsigned i = 0 ; i < count ; ++i ) { ptr[i] = ptr_prev[ i + count ]; }
Join::join( f , ptr + count , ptr );
}
else {
(void) Init::init( f , ptr );
}
ptr_prev = ptr ;
}
}
for ( int i = 0 ; i < m_pool_fan_size ; ++i ) {
m_pool_base[ rev_rank + (1<<i) ]->m_pool_state = ThreadsExec::Active ;
}
}
//------------------------------------
/** \brief Wait for previous asynchronous functor to
* complete and release the Threads device.
* Acquire the Threads device and start this functor.
*/
static void start( void (*)( ThreadsExec & , const void * ) , const void * );
static int in_parallel();
static void fence();
static bool sleep();
static bool wake();
/* Dynamic Scheduling related functionality */
// Initialize the work range for this thread
inline void set_work_range(const long& begin, const long& end, const long& chunk_size) {
m_work_range.first = (begin+chunk_size-1)/chunk_size;
m_work_range.second = end>0?(end+chunk_size-1)/chunk_size:m_work_range.first;
}
// Claim and index from this thread's range from the beginning
inline long get_work_index_begin () {
Kokkos::pair<long,long> work_range_new = m_work_range;
Kokkos::pair<long,long> work_range_old = work_range_new;
if(work_range_old.first>=work_range_old.second)
return -1;
work_range_new.first+=1;
bool success = false;
while(!success) {
work_range_new = Kokkos::atomic_compare_exchange(&m_work_range,work_range_old,work_range_new);
success = ( (work_range_new == work_range_old) ||
(work_range_new.first>=work_range_new.second));
work_range_old = work_range_new;
work_range_new.first+=1;
}
if(work_range_old.first<work_range_old.second)
return work_range_old.first;
else
return -1;
}
// Claim and index from this thread's range from the end
inline long get_work_index_end () {
Kokkos::pair<long,long> work_range_new = m_work_range;
Kokkos::pair<long,long> work_range_old = work_range_new;
if(work_range_old.first>=work_range_old.second)
return -1;
work_range_new.second-=1;
bool success = false;
while(!success) {
work_range_new = Kokkos::atomic_compare_exchange(&m_work_range,work_range_old,work_range_new);
success = ( (work_range_new == work_range_old) ||
(work_range_new.first>=work_range_new.second) );
work_range_old = work_range_new;
work_range_new.second-=1;
}
if(work_range_old.first<work_range_old.second)
return work_range_old.second-1;
else
return -1;
}
// Reset the steal target
inline void reset_steal_target() {
m_current_steal_target = (m_pool_rank+1)%pool_size();
m_stealing = false;
}
// Reset the steal target
inline void reset_steal_target(int team_size) {
m_current_steal_target = (m_pool_rank_rev+team_size);
if(m_current_steal_target>=pool_size())
m_current_steal_target = 0;//pool_size()-1;
m_stealing = false;
}
// Get a steal target; start with my-rank + 1 and go round robin, until arriving at this threads rank
// Returns -1 fi no active steal target available
inline int get_steal_target() {
while(( m_pool_base[m_current_steal_target]->m_work_range.second <=
m_pool_base[m_current_steal_target]->m_work_range.first ) &&
(m_current_steal_target!=m_pool_rank) ) {
m_current_steal_target = (m_current_steal_target+1)%pool_size();
}
if(m_current_steal_target == m_pool_rank)
return -1;
else
return m_current_steal_target;
}
inline int get_steal_target(int team_size) {
while(( m_pool_base[m_current_steal_target]->m_work_range.second <=
m_pool_base[m_current_steal_target]->m_work_range.first ) &&
(m_current_steal_target!=m_pool_rank_rev) ) {
if(m_current_steal_target + team_size < pool_size())
m_current_steal_target = (m_current_steal_target+team_size);
else
m_current_steal_target = 0;
}
if(m_current_steal_target == m_pool_rank_rev)
return -1;
else
return m_current_steal_target;
}
inline long steal_work_index (int team_size = 0) {
long index = -1;
int steal_target = team_size>0?get_steal_target(team_size):get_steal_target();
while ( (steal_target != -1) && (index == -1)) {
index = m_pool_base[steal_target]->get_work_index_end();
if(index == -1)
steal_target = team_size>0?get_steal_target(team_size):get_steal_target();
}
return index;
}
// Get a work index. Claim from owned range until its exhausted, then steal from other thread
inline long get_work_index (int team_size = 0) {
long work_index = -1;
if(!m_stealing) work_index = get_work_index_begin();
if( work_index == -1) {
memory_fence();
m_stealing = true;
work_index = steal_work_index(team_size);
}
m_team_work_index = work_index;
memory_fence();
return work_index;
}
};
} /* namespace Impl */
} /* namespace Kokkos */
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace Kokkos {
inline int Threads::in_parallel()
{ return Impl::ThreadsExec::in_parallel(); }
inline int Threads::is_initialized()
{ return Impl::ThreadsExec::is_initialized(); }
inline void Threads::initialize(
unsigned threads_count ,
unsigned use_numa_count ,
unsigned use_cores_per_numa ,
bool allow_asynchronous_threadpool )
{
Impl::ThreadsExec::initialize( threads_count , use_numa_count , use_cores_per_numa , allow_asynchronous_threadpool );
}
inline void Threads::finalize()
{
Impl::ThreadsExec::finalize();
}
inline void Threads::print_configuration( std::ostream & s , const bool detail )
{
Impl::ThreadsExec::print_configuration( s , detail );
}
inline bool Threads::sleep()
{ return Impl::ThreadsExec::sleep() ; }
inline bool Threads::wake()
{ return Impl::ThreadsExec::wake() ; }
inline void Threads::fence()
{ Impl::ThreadsExec::fence() ; }
} /* namespace Kokkos */
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
#endif
#endif /* #define KOKKOS_THREADSEXEC_HPP */
|