/usr/include/trilinos/MLAPI_MultiLevelAdaptiveSA.h is in libtrilinos-ml-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | #ifndef MLAPI_MULTILEVELADAPTIVESA_H
#define MLAPI_MULTILEVELADAPTIVESA_H
/*!
\file MLAPI_MultiLevelAdaptiveSA.h
\brief Adaptive smoothed aggregation preconditioner.
\author Marzio Sala, Ray Tuminaro, Jonathan Hu, Michael Gee, Marian Brezina.
\date Last updated on Feb-05.
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
#include "ml_common.h"
#include "ml_agg_genP.h"
#include "MLAPI_Error.h"
#include "MLAPI_CompObject.h"
#include "MLAPI_TimeObject.h"
#include "MLAPI_Operator.h"
#include "MLAPI_Operator_Utils.h"
#include "MLAPI_MultiVector.h"
#include "MLAPI_MultiVector_Utils.h"
#include "MLAPI_InverseOperator.h"
#include "MLAPI_Expressions.h"
#include "MLAPI_BaseOperator.h"
#include "MLAPI_Workspace.h"
#include "MLAPI_Aggregation.h"
#include "MLAPI_Eig.h"
#include <vector>
namespace MLAPI {
/*!
\class MultiLevelAdaptiveSA
\brief Black-box multilevel adaptive smoothed aggregation preconditioner.
This class implements an adaptive smoothed aggregation preconditioner.
An example of usage is reported in file \ref ml_adaptivesa.
We note that the usage of this class is slightly different from that of
MultiLevelSA.
An instance of this class can be created as follows:
\code
int NumPDEEqns = 1;
int MaxLevels = 10;
MultiLevelAdaptiveSA Prec(FineMatrix, List, NumPDEEqns, MaxLevels);
\endcode
Important methods of this class:
- The number of PDE equations on the finest level can be queried using
GetInputNumPDEEqns().
- GetNumPDEEqns() returns the number of PDE equations on the current level.
This value can be set via SetNumPDEEqns().
- GetNullSpace() returns a reference to the internally stored null space;
the null space is set using SetNullSpace().
- GetMaxLevels() returns the number of levels. If called before Compute(),
GetMaxLevels() returns the maximum number of levels used in the
constructor, otherwise returns the actual number of levels.
- GetSmootherType() and GetCoarseType() return the smoother and coarse type.
- The number of application of the cycle in IncrementNullSpace() is given
by GetNumItersCoarse() and GetNumItersFine().
- Methods \c A(level), \c P(level), \c R(level) and \c S(level) return a
reference to the internally stored operators.
- Method SetList() can be used at any time to reset the internally stored
list.
The general usage is:
- Specify the null space using SetNullSpace(NS), where NS is a MultiVector,
then compute the hierarchy using Compute(), or
- Compute the first component of the null space using SetupInitialNullSpace().
This will define a single-vector null space, and store it using
SetNullSpace(NS).
- When a non-empty null space is provided, the user can increment by one
the dimension of the null space by calling IncrementNullSpace().
- Method AdaptCompute() performs all these operations.
\author Marzio Sala, Ray Tuminaro, Jonathan Hu, Michael Gee, Marian Brezina.
\date Last updated on Mar-05.
\todo store the structure of the aggregates for all phases.
\todo Current implementation supposes zero threshold.
*/
class MultiLevelAdaptiveSA : public BaseOperator, public CompObject, public TimeObject {
public:
// @{ \name Constructors and destructors
//! Constructs the hierarchy for given Operator and parameters.
MultiLevelAdaptiveSA(const Operator & FineMatrix, Teuchos::ParameterList& List,
const int NumPDEEqns, const int MaxLevels = 20) :
IsComputed_(false)
{
FineMatrix_ = FineMatrix;
List_ = List;
MaxLevels_ = MaxLevels;
SetInputNumPDEEqns(NumPDEEqns);
SetNumPDEEqns(NumPDEEqns);
ResizeArrays(MaxLevels);
A(0) = FineMatrix;
}
//! Destructor.
virtual ~MultiLevelAdaptiveSA()
{ }
// @}
// @{ \name Set and Get methods
//! Returns a copy of the internally stored domain space.
const Space GetOperatorDomainSpace() const
{
return(FineMatrix_.GetDomainSpace());
}
//! Returns a copy of the internally stored range space.
const Space GetOperatorRangeSpace() const
{
return(FineMatrix_.GetRangeSpace());
}
//! Returns a copy of the internally stored domain space.
inline const Space GetDomainSpace() const
{
return(FineMatrix_.GetDomainSpace());
}
//! Returns a copy of the internally stored range space.
inline const Space GetRangeSpace() const
{
return(FineMatrix_.GetRangeSpace());
}
//! Returns a reference to the restriction operator of level \c i.
inline Operator& R(const int i)
{
return(R_[i]);
}
//! Returns a reference to the restriction operator of level \c i.
inline const Operator& R(const int i) const
{
return(R_[i]);
}
//! Returns a reference to the operator of level \c i.
inline Operator& A(const int i)
{
return(A_[i]);
}
//! Returns a reference to the operator of level \c i.
inline const Operator& A(const int i) const
{
return(A_[i]);
}
//! Returns a reference to the prolongator operator of level \c i.
inline Operator& P(const int i)
{
return(P_[i]);
}
//! Returns a reference to the prolongator operator of level \c i.
inline const Operator& P(const int i) const
{
return(P_[i]);
}
//! Returns a reference to the inverse operator of level \c i.
inline InverseOperator& S(const int i)
{
return(S_[i]);
}
//! Returns a reference to the inverse operator of level \c i.
inline const InverseOperator& S(const int i) const
{
return(S_[i]);
}
//! Returns the actual number of levels
inline int GetMaxLevels() const
{
return(MaxLevels_);
}
//! Returns the actual number of levels
inline void SetMaxLevels(const int MaxLevels)
{
MaxLevels_ = MaxLevels;
}
//! Gets a reference to the internally stored null space.
inline const MultiVector GetNullSpace() const
{
return(NullSpace_);
}
//! Sets the null space multi-vector to \c NullSpace.
inline void SetNullSpace(MultiVector& NullSpace)
{
NullSpace_ = NullSpace;
}
//! Returns \c true if the hierarchy has been successfully computed.
inline bool IsComputed() const
{
return(IsComputed_);
}
//! Sets the internally stored list to \c List.
inline void SetList(Teuchos::ParameterList& List)
{
List_ = List;
}
//! Returns the smoother solver type.
inline std::string GetSmootherType()
{
return(List_.get("smoother: type", "symmetric Gauss-Seidel"));
}
//! Returns the coarse solver type.
inline std::string GetCoarseType()
{
return(List_.get("coarse: type", "Amesos-KLU"));
}
//! Returns the number of PDE equations on the finest level.
inline void SetInputNumPDEEqns(const int n)
{
NumPDEEqns_ = n;
}
//! Returns the number of PDE equations on the current level.
inline int GetInputNumPDEEqns()
{
return(NumPDEEqns_);
}
//! Sets the number of PDE equations on the current level.
inline int GetNumPDEEqns()
{
return(List_.get("PDE equations", 1));
}
inline void SetNumPDEEqns(const int NumPDEEqns)
{
List_.set("PDE equations", NumPDEEqns);
}
//! Returns the maximum allowed coarse size.
inline int GetMaxCoarseSize()
{
return(List_.get("coarse: max size", 32));
}
//! Returns the maximum allowed reduction.
inline double GetMaxReduction()
{
return(List_.get("adapt: max reduction", 0.1));
}
//! Returns the maximum number of applications on the coarser levels.
inline int GetNumItersCoarse()
{
return(List_.get("adapt: iters coarse", 5));
}
//! Returns the maximum number of applications on the finest level.
inline int GetNumItersFine()
{
return(List_.get("adapt: iters fine", 15));
}
//! Returns the multigrid preconditioner operator complexity.
double GetComplexity()
{
double nnzFine = A_[0].GetNumGlobalNonzeros();
double nnzTotal = nnzFine;
for (int i = 1; i < GetMaxLevels(); i++) {
nnzTotal += A_[i].GetNumGlobalNonzeros();
}
return nnzTotal / nnzFine;
}
// @}
// @{ \name Hierarchy construction methods
// ======================================================================
//! Creates an hierarchy using the provided or default null space.
// ======================================================================
void Compute()
{
ResetTimer();
StackPush();
IsComputed_ = false;
// get parameter from the input list
SetNumPDEEqns(GetInputNumPDEEqns());
// retrive null space
MultiVector ThisNS = GetNullSpace();
if (GetPrintLevel()) {
std::cout << std::endl;
ML_print_line("-", 80);
std::cout << "Computing the hierarchy, input null space dimension = "
<< ThisNS.GetNumVectors() << std::endl;
}
// build up the default null space
if (ThisNS.GetNumVectors() == 0) {
ThisNS.Reshape(FineMatrix_.GetDomainSpace(),GetNumPDEEqns());
ThisNS = 0.0;
for (int i = 0 ; i < ThisNS.GetMyLength() ; ++i)
for (int j = 0 ; j < GetNumPDEEqns() ;++j)
if (i % GetNumPDEEqns() == j)
ThisNS(i,j) = 1.0;
SetNullSpace(ThisNS);
}
MultiVector NextNS; // contains the next-level null space
// work on increasing hierarchies only.
A(0) = FineMatrix_;
int level;
for (level = 0 ; level < GetMaxLevels() - 1 ; ++level) {
if (GetPrintLevel()) ML_print_line("-", 80);
if (level)
SetNumPDEEqns(ThisNS.GetNumVectors());
// load current level into database
List_.set("workspace: current level", level);
GetSmoothedP(A(level), List_, ThisNS, P(level), NextNS);
ThisNS = NextNS;
R(level) = GetTranspose(P(level));
A(level + 1) = GetRAP(R(level),A(level),P(level));
S(level).Reshape(A(level), GetSmootherType(), List_);
// break if coarse matrix is below specified tolerance
if (A(level + 1).GetNumGlobalRows() <= GetMaxCoarseSize()) {
++level;
break;
}
}
// set coarse solver
S(level).Reshape(A(level), GetCoarseType(), List_);
SetMaxLevels(level + 1);
// set the label
SetLabel("SA, L = " + GetString(GetMaxLevels()) +
", smoother = " + GetSmootherType());
if (GetPrintLevel()) ML_print_line("-", 80);
IsComputed_ = true;
StackPop();
// FIXME: update flops!
UpdateTime();
}
// ======================================================================
//! Setup the adaptive multilevel hierarchy.
/* Computes the multilevel hierarchy as specified by the user.
*
* \param UseDefaultOrSpecified - (In) if \c true, the first call to Compute()
* uses either the default null space or the null space
* that has been set using SetNullSpace().
* If \c false, then one null space component is
* computed using SetupInitialNullSpace().
*
* \param AdditionalCandidates - (In) Number of candidates, that is the
* number of null space components that will be
* computed using IncrementNullSpace(). If
* \c "UseDefaultOrSpecified == false", the code computes
* one additional candidate using
* SetupInitialNullSpace(), and the remaining using
* IncrementNullSpace().
*/
// time is tracked within each method.
// ======================================================================
void AdaptCompute(const bool UseDefaultOrSpecified, int AdditionalCandidates)
{
StackPush();
if (UseDefaultOrSpecified)
Compute();
else {
SetupInitialNullSpace();
Compute();
AdditionalCandidates--;
}
for (int i = 0 ; i < AdditionalCandidates ; ++i) {
IncrementNullSpace();
Compute();
}
StackPop();
}
// ======================================================================
//! Computes the first component of the null space.
// ======================================================================
void SetupInitialNullSpace()
{
ResetTimer();
StackPush();
SetNumPDEEqns(GetInputNumPDEEqns());
if (GetPrintLevel()) {
std::cout << std::endl;
ML_print_line("-", 80);
std::cout << "Computing the first null space component" << std::endl;
}
MultiVector NS(A_[0].GetDomainSpace());
MultiVector NewNS;
for (int v = 0 ; v < NS.GetNumVectors() ; ++v)
NS.Random(v);
NS = (NS + 1.0) / 2.0;
// zero out everything except for first dof on every node
for (int j=0; j < NS.GetMyLength(); ++j)
{
if (j % GetNumPDEEqns() != 0)
NS(j) = 0.;
}
// run pre-smoother
MultiVector F(A(0).GetDomainSpace());
F = 0.0;
S(0).Reshape(A(0), GetSmootherType(), List_);
S(0).Apply(F, NS);
double MyEnergyBefore = sqrt((A(0) * NS) * NS);
if (MyEnergyBefore == 0.0) {
SetNullSpace(NewNS);
return;
}
//compare last two iterates on fine level
int SweepsBefore = List_.get("smoother: sweeps",1);
List_.set("smoother: sweeps",1);
S(0).Reshape(A(0), GetSmootherType(), List_);
S(0).Apply(F, NS);
double MyEnergyAfter = sqrt((A(0) * NS) * NS);
if (MyEnergyAfter/MyEnergyBefore < GetMaxReduction()) {
SetNullSpace(NewNS);
return;
}
List_.set("smoother: sweeps",SweepsBefore);
int level;
for (level = 0 ; level < GetMaxLevels() - 2 ; ++level) {
if (level) SetNumPDEEqns(NS.GetNumVectors());
if (GetPrintLevel()) {
ML_print_line("-", 80);
std::cout << "current working level = " << level << std::endl;
std::cout << "number of global rows = "
<< A(level).GetDomainSpace().GetNumGlobalElements() << std::endl;
std::cout << "number of PDE equations = " << GetNumPDEEqns() << std::endl;
std::cout << "null space dimension = " << NS.GetNumVectors() << std::endl;
}
GetSmoothedP(A(level), List_, NS, P(level), NewNS);
NS = NewNS;
R(level) = GetTranspose(P(level));
A(level + 1) = GetRAP(R(level),A(level),P(level));
S(level + 1).Reshape(A(level + 1),GetSmootherType(),List_);
// break if coarse matrix is below specified size
if (A(level + 1).GetDomainSpace().GetNumGlobalElements() <= GetMaxCoarseSize()) {
++level;
break;
}
MultiVector locF(A(level + 1).GetDomainSpace());
locF = 0.0;
MyEnergyBefore = sqrt((A(level + 1) * NS) * NS);
S(level + 1).Apply(locF, NS);
MyEnergyAfter = sqrt((A(level + 1) * NS) * NS);
if (GetPrintLevel() == 0) {
std::cout << "Energy before smoothing = " << MyEnergyBefore << std::endl;
std::cout << "Energy after smoothing = " << MyEnergyAfter << std::endl;
}
if (pow(MyEnergyAfter/MyEnergyBefore,1.0/SweepsBefore) < GetMaxReduction()) {
++level;
break;
}
}
if (GetPrintLevel())
ML_print_line("-", 80);
// interpolate candidate back to fine level
int MaxLevels = level;
for (int j = MaxLevels ; j > 0 ; --j) {
NS = P(j - 1) * NS;
}
F.Reshape(A(0).GetDomainSpace());
F = 0.0;
S(0).Apply(F, NS);
double norm = NS.NormInf();
NS.Scale(1.0 / norm);
SetNullSpace(NS);
StackPop();
UpdateTime();
}
//! Increments the null space dimension by one.
bool IncrementNullSpace()
{
ResetTimer();
StackPush();
SetNumPDEEqns(GetInputNumPDEEqns());
MultiVector InputNS = GetNullSpace();
if (InputNS.GetNumVectors() == 0)
ML_THROW("Empty null space not allowed", -1);
if (GetPrintLevel()) {
std::cout << std::endl;
ML_print_line("-", 80);
std::cout << "Incrementing the hierarchy, input null space dimension = "
<< InputNS.GetNumVectors() << std::endl;
}
int level;
// =========================================================== //
// InputNS is the currently available (and stored) null space. //
// ExpandedNS is InputNS + AdditionalNS. //
// NCand is dimension of previous nullspace. //
// AdditionalNS is set to random between 0 and 1.0; however, //
// we might need to zero out in the new candidate everybody //
// but the (Ncand+1)'th guy //
// Once the new candidate is set, we run the current V-cycle //
// on it. NOTE: I need the final copy instruction, since the //
// original pointer in AdditionalNS could have been changed //
// under the hood. //
// =========================================================== //
int NCand = InputNS.GetNumVectors();
MultiVector ExpandedNS = InputNS;
ExpandedNS.Append();
MultiVector AdditionalNS = Extract(ExpandedNS, NCand);
AdditionalNS.Random();
AdditionalNS = (AdditionalNS + 1.) / 2.0;
if (NCand+1 <= GetNumPDEEqns())
{
for (int i=0; i< AdditionalNS.GetMyLength(); i++)
if ( (i+1) % (NCand+1) != 0)
AdditionalNS(i) = 0;
}
MultiVector b0(AdditionalNS.GetVectorSpace());
for (int i=0; i< GetNumItersFine() ; i++)
SolveMultiLevelSA(b0,AdditionalNS,0);
double NormFirst = ExpandedNS.NormInf(0);
AdditionalNS.Scale(NormFirst / AdditionalNS.NormInf());
for (int i=0; i<AdditionalNS.GetMyLength(); i++)
ExpandedNS(i,NCand) = AdditionalNS(i);
// ===================== //
// cycle over all levels //
// ===================== //
for (level = 0 ; level < GetMaxLevels() - 2 ; ++level) {
if (GetPrintLevel()) ML_print_line("-", 80);
List_.set("workspace: current level", level);
// ======================================================= //
// Create a new prolongator operator using the newly //
// available null space. NewNS is a temporary variable, //
// set to ExpandedNS for the next-level null space. We //
// also need to setup the smoother at this level (not on //
// the finest, since the finest-level matrix does not //
// change). //
// At this point, we stick the operators in the hierarchy. //
// ======================================================= //
MultiVector NewNS;
GetSmoothedP(A(level), List_, ExpandedNS, P(level), NewNS);
ExpandedNS = NewNS;
R(level) = GetTranspose(P(level));
A(level + 1) = GetRAP(R(level),A(level),P(level));
SetNumPDEEqns(NewNS.GetNumVectors());
if (level != 0)
S(level).Reshape(A(level), GetSmootherType(), List_);
S(level + 1).Reshape(A(level + 1), GetSmootherType(), List_);
// ======================================================= //
// Need to setup the bridge. We need to extract the NCand //
// components of the "old" null space, and set them in a //
// temporary variable, OldNS. NewNS is simply discarded. //
// ======================================================= //
MultiVector OldNS = ExpandedNS;
OldNS.Delete(NCand);
Operator Pbridge;
GetSmoothedP(A(level + 1), List_, OldNS, Pbridge, NewNS);
P(level + 1) = Pbridge;
R(level + 1) = GetTranspose(Pbridge);
AdditionalNS = Duplicate(Extract(ExpandedNS, NCand));
double MyEnergyBefore = sqrt((A(level + 1) * AdditionalNS) * AdditionalNS);
// FIXME scale with something: norm of the matrix, ...;
if (MyEnergyBefore < 1e-10) {
++level;
break;
}
// ======================================================= //
// run Nits_coarse cycles, using AdditionalNS as starting //
// solution, and a zero right hand-side. //
// ======================================================= //
b0.Reshape(AdditionalNS.GetVectorSpace());
b0 = 0.;
for (int i=0; i< GetNumItersCoarse() ; i++)
SolveMultiLevelSA(b0,AdditionalNS,level+1);
// ======================================================= //
// Get the norm of the first null space component, then //
// analyze the energy after the application of the cycle. //
// If the energy after is zero, we have to check whether //
// the new guy is zero or not. //
// Then, we scale the new candidate so that its largest //
// entry is of the same magniture of the largest entry of //
// the first component. //
// ======================================================= //
double NormFirstComponent = ExpandedNS.NormInf(0);
double MyEnergyAfter = sqrt((A(level + 1) * AdditionalNS) * AdditionalNS);
if (MyEnergyAfter == 0.0) {
if (AdditionalNS.NormInf() != 0.0) {
for (int i=0; i<AdditionalNS.GetMyLength(); i++)
ExpandedNS(i,NCand) = AdditionalNS(i);
}
}
else {
for (int i=0; i<AdditionalNS.GetMyLength(); i++) {
ExpandedNS(i,NCand) = AdditionalNS(i);
}
}
double NormExpanded = ExpandedNS.NormInf(NCand);
ExpandedNS.Scale(NormFirstComponent / NormExpanded, NCand);
if (GetPrintLevel() == 0) {
std::cout << "energy before cycle =" << MyEnergyBefore << std::endl;
std::cout << "energy after =" << MyEnergyAfter << std::endl;
}
// FIXME: still to do:
// - scaling of the new computed component
if (pow(MyEnergyAfter/MyEnergyBefore,1.0 / GetNumItersCoarse()) < GetMaxReduction()) {
++level;
break;
}
}
--level;
AdditionalNS = Extract(ExpandedNS, NCand);
// ======================================================= //
// project back to fine level the AdditionalNS vector. //
// Then, reset the number of PDE equations, and finally //
// set the null space of this object using SetNullSpace(). //
// Note that at this point the hierarchy is broken, and //
// must be reconstructed using Compute(). //
// ======================================================= //
// FIXME: put scaling on every level in here?
for (int i=level; i>=0 ; i--) {
AdditionalNS = P(i) * AdditionalNS;
}
InputNS.Append(AdditionalNS);
SetNullSpace(InputNS);
if (GetPrintLevel()) ML_print_line("-", 80);
StackPop();
UpdateTime();
IsComputed_ = false;
return(true);
}
// @}
// @{ \name Mathematical methods
// ======================================================================
//! Applies the preconditioner to \c b_f, returns the result in \c x_f.
// ======================================================================
int Apply(const MultiVector& b_f, MultiVector& x_f) const
{
ResetTimer();
StackPush();
if (IsComputed() == false)
ML_THROW("Method Compute() must be called", -1);
SolveMultiLevelSA(b_f,x_f,0);
StackPop();
UpdateTime();
return(0);
}
// ======================================================================
//! Recursively called core of the multi level preconditioner.
// ======================================================================
int SolveMultiLevelSA(const MultiVector& b_f,MultiVector& x_f, int level) const
{
if (level == GetMaxLevels() - 1) {
x_f = S(level) * b_f;
return(0);
}
MultiVector r_f(P(level).GetRangeSpace());
MultiVector r_c(P(level).GetDomainSpace());
MultiVector z_c(P(level).GetDomainSpace());
// reset flop counter
S(level).SetFlops(0.0);
A(level).SetFlops(0.0);
R(level).SetFlops(0.0);
P(level).SetFlops(0.0);
// apply pre-smoother
S(level).Apply(b_f,x_f);
// new residual
r_f = b_f - A(level) * x_f;
// restrict to coarse
r_c = R(level) * r_f;
// solve coarse problem
SolveMultiLevelSA(r_c,z_c,level + 1);
// prolongate back and add to solution
x_f = x_f + P(level) * z_c;
// apply post-smoother
S(level).Apply(b_f,x_f);
UpdateFlops(2.0 * S(level).GetFlops());
UpdateFlops(A(level).GetFlops());
UpdateFlops(R(level).GetFlops());
UpdateFlops(P(level).GetFlops());
UpdateFlops(2.0 * x_f.GetGlobalLength());
return(0);
}
// @}
// @{ \name Miscellaneous methods
//! Prints basic information about \c this preconditioner.
std::ostream& Print(std::ostream& os,
const bool verbose = true) const
{
if (GetMyPID() == 0) {
os << std::endl;
os << "*** MLAPI::MultiLevelSA, label = `" << GetLabel() << "'" << std::endl;
os << std::endl;
os << "Number of levels = " << GetMaxLevels() << std::endl;
os << "Flop count = " << GetFlops() << std::endl;
os << "Cumulative time = " << GetTime() << std::endl;
if (GetTime() != 0.0)
os << "MFlops rate = " << 1.0e-6 * GetFlops() / GetTime() << std::endl;
else
os << "MFlops rate = 0.0" << std::endl;
os << std::endl;
for (int level = 0 ; level < GetMaxLevels() ; ++level) {
ML_print_line("-", 80);
std::cout << "Information for level = " << level;
std::cout << "number of global rows = "
<< A(level).GetNumGlobalRows() << std::endl;
std::cout << "number of global nnz = "
<< A(level).GetNumGlobalNonzeros() << std::endl;
}
ML_print_line("-", 80);
}
return(os);
}
// @}
private:
//! Returns the smoothed prolongator operator.
void GetSmoothedP(const Operator & Aop, Teuchos::ParameterList& List, MultiVector& NS,
Operator& Pop, MultiVector& NewNS)
{
double LambdaMax;
Operator IminusA;
std::string EigenAnalysis = List.get("eigen-analysis: type", "Anorm");
double Damping = List.get("aggregation: damping", 1.333);
Operator Ptent;
GetPtent(Aop, List, NS, Ptent, NewNS);
if (EigenAnalysis == "Anorm")
LambdaMax = MaxEigAnorm(Aop,true);
else if (EigenAnalysis == "cg")
LambdaMax = MaxEigCG(Aop,true);
else if (EigenAnalysis == "power-method")
LambdaMax = MaxEigPowerMethod(Aop,true);
else
ML_THROW("incorrect parameter (" + EigenAnalysis + ")", -1);
if (GetPrintLevel()) {
std::cout << "omega = " << Damping << std::endl;
std::cout << "lambda max = " << LambdaMax << std::endl;
std::cout << "damping factor = " << Damping / LambdaMax << std::endl;
}
if (Damping != 0.0) {
IminusA = GetJacobiIterationOperator(Aop, Damping / LambdaMax);
Pop = IminusA * Ptent;
}
else
Pop = Ptent;
// fix the number of equations in Pop, so that GetRAP() will
// get the correct number for C= RAP
Pop.GetML_Operator()->num_PDEs = Ptent.GetML_Operator()->num_PDEs;
return;
}
void ResizeArrays(const int MaxLevels)
{
A_.resize(MaxLevels);
R_.resize(MaxLevels);
P_.resize(MaxLevels);
S_.resize(MaxLevels);
}
//! Maximum number of levels.
int MaxLevels_;
//! Fine-level matrix.
Operator FineMatrix_;
//! Contains the hierarchy of operators.
std::vector<Operator> A_;
//! Contains the hierarchy of restriction operators.
std::vector<Operator> R_;
//! Contains the hierarchy of prolongator operators.
std::vector<Operator> P_;
//! Contains the hierarchy of inverse operators.
std::vector<InverseOperator> S_;
Teuchos::ParameterList List_;
//! Contains the current null space
MultiVector NullSpace_;
//! \c true if a hierarchy has been successfully computed.
bool IsComputed_;
//! Number of PDE equations on the finest grid.
int NumPDEEqns_;
}; // class MultiLevelAdaptiveSA
} // namespace MLAPI
#endif
|