This file is indexed.

/usr/include/trilinos/MueLu_Hierarchy_def.hpp is in libtrilinos-muelu-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
// @HEADER
//
// ***********************************************************************
//
//        MueLu: A package for multigrid based preconditioning
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact
//                    Jonathan Hu       (jhu@sandia.gov)
//                    Andrey Prokopenko (aprokop@sandia.gov)
//                    Ray Tuminaro      (rstumin@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

#ifndef MUELU_HIERARCHY_DEF_HPP
#define MUELU_HIERARCHY_DEF_HPP

#include <time.h>

#include <algorithm>
#include <sstream>

#include <Xpetra_Matrix.hpp>
#include <Xpetra_MultiVectorFactory.hpp>
#include <Xpetra_Operator.hpp>
#include <Xpetra_IO.hpp>

#include "MueLu_Hierarchy_decl.hpp"

#include "MueLu_BoostGraphviz.hpp"
#include "MueLu_FactoryManager.hpp"
#include "MueLu_HierarchyUtils.hpp"
#include "MueLu_TopRAPFactory.hpp"
#include "MueLu_TopSmootherFactory.hpp"
#include "MueLu_Level.hpp"
#include "MueLu_Monitor.hpp"
#include "MueLu_PerfUtils.hpp"
#include "MueLu_PFactory.hpp"
#include "MueLu_SmootherFactoryBase.hpp"
#include "MueLu_SmootherFactory.hpp"
#include "MueLu_SmootherBase.hpp"

#include "Teuchos_TimeMonitor.hpp"

namespace MueLu {

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Hierarchy()
    : maxCoarseSize_(GetDefaultMaxCoarseSize()), implicitTranspose_(GetDefaultImplicitTranspose()),
      doPRrebalance_(GetDefaultPRrebalance()), isPreconditioner_(true), Cycle_(GetDefaultCycle()),
      scalingFactor_(Teuchos::ScalarTraits<double>::one()), lib_(Xpetra::UseTpetra), isDumpingEnabled_(false), dumpLevel_(-1), rate_(-1)
  {
    AddLevel(rcp(new Level));
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Hierarchy(const RCP<Matrix>& A)
    : maxCoarseSize_(GetDefaultMaxCoarseSize()), implicitTranspose_(GetDefaultImplicitTranspose()),
      doPRrebalance_(GetDefaultPRrebalance()), isPreconditioner_(true), Cycle_(GetDefaultCycle()),
      scalingFactor_(Teuchos::ScalarTraits<double>::one()), isDumpingEnabled_(false), dumpLevel_(-1), rate_(-1)
  {
    lib_ = A->getDomainMap()->lib();

    RCP<Level> Finest = rcp(new Level);
    AddLevel(Finest);

    Finest->Set("A", A);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddLevel(const RCP<Level>& level) {
    int levelID = LastLevelID() + 1; // ID of the inserted level

    if (level->GetLevelID() != -1 && (level->GetLevelID() != levelID))
      GetOStream(Warnings1) << "Hierarchy::AddLevel(): Level with ID=" << level->GetLevelID() <<
          " have been added at the end of the hierarchy\n but its ID have been redefined" <<
          " because last level ID of the hierarchy was " << LastLevelID() << "." << std::endl;

    Levels_.push_back(level);
    level->SetLevelID(levelID);
    level->setlib(lib_);

    level->SetPreviousLevel( (levelID == 0) ? Teuchos::null : Levels_[LastLevelID() - 1] );
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddNewLevel() {
    RCP<Level> newLevel = Levels_[LastLevelID()]->Build(); // new coarse level, using copy constructor
    newLevel->setlib(lib_);
    this->AddLevel(newLevel);                              // add to hierarchy
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  RCP<Level> & Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetLevel(const int levelID) {
    TEUCHOS_TEST_FOR_EXCEPTION(levelID < 0 || levelID > LastLevelID(), Exceptions::RuntimeError,
                               "MueLu::Hierarchy::GetLevel(): invalid input parameter value: LevelID = " << levelID);
    return Levels_[levelID];
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  int Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetNumLevels() const {
    return Levels_.size();
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  int Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetGlobalNumLevels() const {
    RCP<Operator> A = Levels_[0]->template Get<RCP<Operator> >("A");
    RCP<const Teuchos::Comm<int> > comm = A->getDomainMap()->getComm();

    int numLevels = GetNumLevels();
    int numGlobalLevels;
    Teuchos::reduceAll(*comm, Teuchos::REDUCE_MAX, numLevels, Teuchos::ptr(&numGlobalLevels));

    return numGlobalLevels;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetOperatorComplexity() const {
    double totalNnz = 0, lev0Nnz = 1;
    for (int i = 0; i < GetNumLevels(); ++i) {
      TEUCHOS_TEST_FOR_EXCEPTION(!(Levels_[i]->IsAvailable("A")) , Exceptions::RuntimeError,
                                 "Operator complexity cannot be calculated because A is unavailable on level " << i);
      RCP<Operator> A = Levels_[i]->template Get<RCP<Operator> >("A");
      if (A.is_null())
        break;

      RCP<Matrix> Am = rcp_dynamic_cast<Matrix>(A);
      if (Am.is_null()) {
        GetOStream(Warnings0) << "Some level operators are not matrices, operator complexity calculation aborted" << std::endl;
        return 0.0;
      }

      totalNnz += as<double>(Am->getGlobalNumEntries());
      if (i == 0)
        lev0Nnz = totalNnz;
    }
    return totalNnz / lev0Nnz;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  double Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::GetSmootherComplexity() const {
    double node_sc = 0, global_sc=0;
    double a0_nnz =0;
    const size_t INVALID = Teuchos::OrdinalTraits<size_t>::invalid();
    // Get cost of fine matvec
    if (GetNumLevels() <= 0) return -1.0;
    if (!Levels_[0]->IsAvailable("A")) return -1.0;

    RCP<Operator> A = Levels_[0]->template Get<RCP<Operator> >("A");
    if (A.is_null()) return -1.0;
    RCP<Matrix> Am = rcp_dynamic_cast<Matrix>(A);
    if(Am.is_null()) return -1.0;
    a0_nnz = as<double>(Am->getGlobalNumEntries());

    // Get smoother complexity at each level
    for (int i = 0; i < GetNumLevels(); ++i) {
      size_t level_sc=0;
      if(!Levels_[i]->IsAvailable("PreSmoother")) continue;
      RCP<SmootherBase> S = Levels_[i]->template Get<RCP<SmootherBase> >("PreSmoother");
      if (S.is_null()) continue;
      level_sc = S->getNodeSmootherComplexity();
      if(level_sc == INVALID) {global_sc=-1.0;break;}

      node_sc += as<double>(level_sc);
    }

    double min_sc=0.0;
    RCP<const Teuchos::Comm<int> > comm =A->getDomainMap()->getComm();
    Teuchos::reduceAll(*comm,Teuchos::REDUCE_SUM,node_sc,Teuchos::ptr(&global_sc));
    Teuchos::reduceAll(*comm,Teuchos::REDUCE_MIN,node_sc,Teuchos::ptr(&min_sc));

    if(min_sc < 0.0) return -1.0;
    else return global_sc / a0_nnz;
  }




  // Coherence checks todo in Setup() (using an helper function):
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::CheckLevel(Level& level, int levelID) {
    TEUCHOS_TEST_FOR_EXCEPTION(level.lib() != lib_, Exceptions::RuntimeError,
                               "MueLu::Hierarchy::CheckLevel(): wrong underlying linear algebra library.");
    TEUCHOS_TEST_FOR_EXCEPTION(level.GetLevelID() != levelID, Exceptions::RuntimeError,
                               "MueLu::Hierarchy::CheckLevel(): wrong level ID");
    TEUCHOS_TEST_FOR_EXCEPTION(levelID != 0 && level.GetPreviousLevel() != Levels_[levelID-1], Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Setup(): wrong level parent");
  }

  // The function uses three managers: fine, coarse and next coarse
  // We construct the data for the coarse level, and do requests for the next coarse
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  bool Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Setup(int coarseLevelID,
                                                                   const RCP<const FactoryManagerBase> fineLevelManager,
                                                                   const RCP<const FactoryManagerBase> coarseLevelManager,
                                                                   const RCP<const FactoryManagerBase> nextLevelManager) {
    // Use PrintMonitor/TimerMonitor instead of just a FactoryMonitor to print "Level 0" instead of Hierarchy(0)
    // Print is done after the requests for next coarse level
    TimeMonitor m1(*this, this->ShortClassName() + ": " + "Setup (total)");
    TimeMonitor m2(*this, this->ShortClassName() + ": " + "Setup" + " (total, level=" + Teuchos::toString(coarseLevelID) + ")");

    // TODO: pass coarseLevelManager by reference
    TEUCHOS_TEST_FOR_EXCEPTION(coarseLevelManager == Teuchos::null, Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Setup(): argument coarseLevelManager cannot be null");

    typedef MueLu::TopRAPFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node>      TopRAPFactory;
    typedef MueLu::TopSmootherFactory<Scalar,LocalOrdinal,GlobalOrdinal,Node> TopSmootherFactory;

    TEUCHOS_TEST_FOR_EXCEPTION(LastLevelID() < coarseLevelID, Exceptions::RuntimeError,
                               "MueLu::Hierarchy:Setup(): level " << coarseLevelID << " (specified by coarseLevelID argument) "
                               "must be built before calling this function.");

    Level& level = *Levels_[coarseLevelID];

    if (levelManagers_.size() < coarseLevelID+1)
      levelManagers_.resize(coarseLevelID+1);
    levelManagers_[coarseLevelID] = coarseLevelManager;

    bool isFinestLevel = (fineLevelManager.is_null());
    bool isLastLevel   = (nextLevelManager.is_null());

    int oldRank = -1;
    if (isFinestLevel) {
      RCP<Operator>                  A         = level.Get< RCP<Operator> >("A");
      RCP<const Map>                 domainMap = A->getDomainMap();
      RCP<const Teuchos::Comm<int> > comm      = domainMap->getComm();

      // Initialize random seed for reproducibility
      Utilities::SetRandomSeed(*comm);

      // Record the communicator on the level (used for timers sync)
      level.SetComm(comm);
      oldRank = SetProcRankVerbose(comm->getRank());

      // Set the Hierarchy library to match that of the finest level matrix,
      // even if it was already set
      lib_ = domainMap->lib();
      level.setlib(lib_);

    } else {
      // Permeate library to a coarser level
      level.setlib(lib_);

      Level& prevLevel = *Levels_[coarseLevelID-1];
      oldRank = SetProcRankVerbose(prevLevel.GetComm()->getRank());
    }

    CheckLevel(level, coarseLevelID);

    // Attach FactoryManager to the fine level
    RCP<SetFactoryManager> SFMFine;
    if (!isFinestLevel)
      SFMFine = rcp(new SetFactoryManager(Levels_[coarseLevelID-1], fineLevelManager));

    if (isFinestLevel && Levels_[coarseLevelID]->IsAvailable("Coordinates"))
      ReplaceCoordinateMap(*Levels_[coarseLevelID]);

    // Attach FactoryManager to the coarse level
    SetFactoryManager SFMCoarse(Levels_[coarseLevelID], coarseLevelManager);

    if (isDumpingEnabled_ && dumpLevel_ == 0 && coarseLevelID == 1)
      DumpCurrentGraph();

    RCP<TopSmootherFactory> coarseFact   = rcp(new TopSmootherFactory(coarseLevelManager, "CoarseSolver"));
    RCP<TopSmootherFactory> smootherFact = rcp(new TopSmootherFactory(coarseLevelManager, "Smoother"));

    int nextLevelID = coarseLevelID + 1;

    RCP<SetFactoryManager> SFMNext;
    if (isLastLevel == false) {
      // We are not at the coarsest level, so there is going to be another level ("next coarse") after this one ("coarse")
      if (nextLevelID > LastLevelID())
        AddNewLevel();
      CheckLevel(*Levels_[nextLevelID], nextLevelID);

      // Attach FactoryManager to the next level (level after coarse)
      SFMNext = rcp(new SetFactoryManager(Levels_[nextLevelID], nextLevelManager));
      Levels_[nextLevelID]->Request(TopRAPFactory(coarseLevelManager, nextLevelManager));

      // Do smoother requests here. We don't know whether this is going to be
      // the coarsest level or not, but we need to DeclareInput before we call
      // coarseRAPFactory.Build(), otherwise some stuff may be erased after
      // level releases
      level.Request(*smootherFact);

    } else {
      // Similar to smoother above, do the coarse solver request here. We don't
      // know whether this is going to be the coarsest level or not, but we
      // need to DeclareInput before we call coarseRAPFactory.Build(),
      // otherwise some stuff may be erased after level releases. This is
      // actually evident on ProjectorSmoother. It requires both "A" and
      // "Nullspace". However, "Nullspace" is erased after all releases, so if
      // we call the coarse factory request after RAP build we would not have
      // any data, and cannot get it as we don't have previous managers. The
      // typical trace looks like this:
      //
      // MueLu::Level(0)::GetFactory(Aggregates, 0): No FactoryManager
      //   during request for data "     Aggregates" on level 0 by factory TentativePFactory
      //   during request for data "              P" on level 1 by factory EminPFactory
      //   during request for data "              P" on level 1 by factory TransPFactory
      //   during request for data "              R" on level 1 by factory RAPFactory
      //   during request for data "              A" on level 1 by factory TentativePFactory
      //   during request for data "      Nullspace" on level 2 by factory NullspaceFactory
      //   during request for data "      Nullspace" on level 2 by factory NullspacePresmoothFactory
      //   during request for data "      Nullspace" on level 2 by factory ProjectorSmoother
      //   during request for data "    PreSmoother" on level 2 by factory NoFactory
      level.Request(*coarseFact);
    }

    PrintMonitor m0(*this, "Level " +  Teuchos::toString(coarseLevelID), static_cast<MsgType>(Runtime0 | Test));

    // Build coarse level hierarchy
    RCP<Operator> Ac = Teuchos::null;
    TopRAPFactory coarseRAPFactory(fineLevelManager, coarseLevelManager);

    if (level.IsAvailable("A")) {
      Ac = level.Get<RCP<Operator> >("A");
    } else if (!isFinestLevel) {
      // We only build here, the release is done later
      coarseRAPFactory.Build(*level.GetPreviousLevel(), level);
    }

    if (level.IsAvailable("A"))
      Ac = level.Get<RCP<Operator> >("A");
    RCP<Matrix> Acm = rcp_dynamic_cast<Matrix>(Ac);

    // Record the communicator on the level
    if (!Ac.is_null())
      level.SetComm(Ac->getDomainMap()->getComm());

    // Test if we reach the end of the hierarchy
    bool isOrigLastLevel = isLastLevel;
    if (isLastLevel) {
      // Last level as we have achieved the max limit
      isLastLevel = true;

    } else if (Ac.is_null()) {
      // Last level for this processor, as it does not belong to the next
      // subcommunicator. Other processors may continue working on the
      // hierarchy
      isLastLevel = true;

    } else {
      if (!Acm.is_null() && Acm->getGlobalNumRows() <= maxCoarseSize_) {
        // Last level as the size of the coarse matrix became too small
        GetOStream(Runtime0) << "Max coarse size (<= " << maxCoarseSize_ << ") achieved" << std::endl;
        isLastLevel = true;
      }
    }

    if (!Ac.is_null() && !isFinestLevel) {
      RCP<Operator> A  = Levels_[coarseLevelID-1]->template Get< RCP<Operator> >("A");
      RCP<Matrix>   Am = rcp_dynamic_cast<Matrix>(A);

      const double maxCoarse2FineRatio = 0.8;
      if (!Acm.is_null() && !Am.is_null() && Acm->getGlobalNumRows() > maxCoarse2FineRatio * Am->getGlobalNumRows()) {
        // We could abort here, but for now we simply notify user.
        // Couple of additional points:
        //   - if repartitioning is delayed until level K, but the aggregation
        //     procedure stagnates between levels K-1 and K.  In this case,
        //     repartitioning could enable faster coarsening once again, but the
        //     hierarchy construction will abort due to the stagnation check.
        //   - if the matrix is small enough, we could move it to one processor.
        GetOStream(Warnings0) << "Aggregation stagnated. Please check your matrix and/or adjust your configuration file."
            << "Possible fixes:\n"
            << "  - reduce the maximum number of levels\n"
            << "  - enable repartitioning\n"
            << "  - increase the minimum coarse size." << std::endl;

      }
    }

    if (isLastLevel) {
      if (!isOrigLastLevel) {
        // We did not expect to finish this early so we did request a smoother.
        // We need a coarse solver instead. Do the magic.
        level.Release(*smootherFact);
        level.Request(*coarseFact);
      }

      // Do the actual build, if we have any data.
      // NOTE: this is not a great check, we may want to call Build() regardless.
      if (!Ac.is_null())
        coarseFact->Build(level);

      // Once the dirty deed is done, release stuff. The smoother has already
      // been released.
      level.Release(*coarseFact);

    } else {
      // isLastLevel = false => isOrigLastLevel = false, meaning that we have
      // requested the smoother. Now we need to build it and to release it.
      // We don't need to worry about the coarse solver, as we didn't request it.
      if (!Ac.is_null())
        smootherFact->Build(level);

      level.Release(*smootherFact);
    }

    if (isLastLevel == true) {
      if (isOrigLastLevel == false) {
        // Earlier in the function, we constructed the next coarse level, and requested data for the that level,
        // assuming that we are not at the coarsest level. Now, we changed our mind, so we have to release those.
        Levels_[nextLevelID]->Release(TopRAPFactory(coarseLevelManager, nextLevelManager));
      }
      Levels_.resize(nextLevelID);
    }

    // I think this is the proper place for graph so that it shows every dependence
    if (isDumpingEnabled_ && dumpLevel_ > 0 && coarseLevelID == dumpLevel_)
      DumpCurrentGraph();

    if (!isFinestLevel) {
      // Release the hierarchy data
      // We release so late to help blocked solvers, as the smoothers for them need A blocks
      // which we construct in RAPFactory
      level.Release(coarseRAPFactory);
    }

    if (oldRank != -1)
      SetProcRankVerbose(oldRank);

    return isLastLevel;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::SetupRe() {
    int numLevels = Levels_.size();
    TEUCHOS_TEST_FOR_EXCEPTION(levelManagers_.size() != numLevels, Exceptions::RuntimeError,
                               "Hierarchy::SetupRe: " << Levels_.size() << " levels, but  " << levelManagers_.size() << " level factory managers");

    const int startLevel = 0;
    Clear(startLevel);

#ifdef HAVE_MUELU_DEBUG
      // Reset factories' data used for debugging
      for (int i = 0; i < numLevels; i++)
        levelManagers_[i]->ResetDebugData();

#endif

    int levelID;
    for (levelID = startLevel; levelID < numLevels;) {
      bool r = Setup(levelID,
                     (levelID != 0 ? levelManagers_[levelID-1] : Teuchos::null),
                     levelManagers_[levelID],
                     (levelID+1 != numLevels ? levelManagers_[levelID+1] : Teuchos::null));
      levelID++;
      if (r) break;
    }
    // We may construct fewer levels for some reason, make sure we continue
    // doing that in the future
    Levels_       .resize(levelID);
    levelManagers_.resize(levelID);

    // since the # of levels, etc. may have changed, force re-determination of description during next call to description()
    ResetDescription();

    describe(GetOStream(Statistics0), GetVerbLevel());
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Setup(const FactoryManagerBase& manager, int startLevel, int numDesiredLevels) {
    // Use MueLu::BaseClass::description() to avoid printing "{numLevels = 1}" (numLevels is increasing...)
    PrintMonitor m0(*this, "Setup (" + this->MueLu::BaseClass::description() + ")", Runtime0);

    Clear(startLevel);

    // Check Levels_[startLevel] exists.
    TEUCHOS_TEST_FOR_EXCEPTION(Levels_.size() <= startLevel, Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Setup(): fine level (" << startLevel << ") does not exist");

    TEUCHOS_TEST_FOR_EXCEPTION(numDesiredLevels <= 0, Exceptions::RuntimeError,
                               "Constructing non-positive (" << numDesiredLevels << ") number of levels does not make sense.");

    // Check for fine level matrix A
    TEUCHOS_TEST_FOR_EXCEPTION(!Levels_[startLevel]->IsAvailable("A"), Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Setup(): fine level (" << startLevel << ") has no matrix A! "
                               "Set fine level matrix A using Level.Set()");

    RCP<Operator> A = Levels_[startLevel]->template Get<RCP<Operator> >("A");
    lib_ = A->getDomainMap()->lib();

    if (IsPrint(Statistics2)) {
      RCP<Matrix> Amat = rcp_dynamic_cast<Matrix>(A);

      if (!Amat.is_null()) {
          RCP<ParameterList> params = rcp(new ParameterList());
          params->set("printLoadBalancingInfo", true);
          params->set("printCommInfo",          true);

          GetOStream(Statistics2) << PerfUtils::PrintMatrixInfo(*Amat, "A0", params);
      } else {
          GetOStream(Warnings1) << "Fine level operator is not a matrix, statistics are not available" << std::endl;
      }
    }

    RCP<const FactoryManagerBase> rcpmanager = rcpFromRef(manager);

    const int lastLevel = startLevel + numDesiredLevels - 1;
    GetOStream(Runtime0) << "Setup loop: startLevel = " << startLevel << ", lastLevel = " << lastLevel
        << " (stop if numLevels = " << numDesiredLevels << " or Ac.size() < " << maxCoarseSize_ << ")" << std::endl;

    // Setup multigrid levels
    int iLevel = 0;
    if (numDesiredLevels == 1) {
      iLevel = 0;
      Setup(startLevel, Teuchos::null, rcpmanager, Teuchos::null);                     // setup finest==coarsest level (first and last managers are Teuchos::null)

    } else {
      bool bIsLastLevel = Setup(startLevel, Teuchos::null, rcpmanager, rcpmanager);    // setup finest level (level 0) (first manager is Teuchos::null)
      if (bIsLastLevel == false) {
        for (iLevel = startLevel + 1; iLevel < lastLevel; iLevel++) {
          bIsLastLevel = Setup(iLevel, rcpmanager, rcpmanager, rcpmanager);            // setup intermediate levels
          if (bIsLastLevel == true)
            break;
        }
        if (bIsLastLevel == false)
          Setup(lastLevel, rcpmanager, rcpmanager, Teuchos::null);                     // setup coarsest level (last manager is Teuchos::null)
      }
    }

    // TODO: some check like this should be done at the beginning of the routine
    TEUCHOS_TEST_FOR_EXCEPTION(iLevel != Levels_.size() - 1, Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Setup(): number of level");

    // TODO: this is not exception safe: manager will still hold default
    // factories if you exit this function with an exception
    manager.Clean();

    describe(GetOStream(Statistics0), GetVerbLevel());
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Clear(int startLevel) {
    if (startLevel < GetNumLevels())
      GetOStream(Runtime0) << "Clearing old data (if any)" << std::endl;

    for (int iLevel = startLevel; iLevel < GetNumLevels(); iLevel++)
      Levels_[iLevel]->Clear();
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::ExpertClear() {
    GetOStream(Runtime0) << "Clearing old data (expert)" << std::endl;
    for (int iLevel = 0; iLevel < GetNumLevels(); iLevel++)
      Levels_[iLevel]->ExpertClear();
  }

#if defined(HAVE_MUELU_EXPERIMENTAL) && defined(HAVE_MUELU_ADDITIVE_VARIANT)
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  ReturnType Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const MultiVector& B, MultiVector& X, ConvData conv,
                                                                           bool InitialGuessIsZero, LO startLevel) {
    LO            nIts = conv.maxIts_;
    MagnitudeType tol  = conv.tol_;

    std::string prefix       = this->ShortClassName() + ": ";
    std::string levelSuffix  = " (level=" + toString(startLevel) + ")";
    std::string levelSuffix1 = " (level=" + toString(startLevel+1) + ")";

    using namespace Teuchos;
    RCP<Time> CompTime                 = Teuchos::TimeMonitor::getNewCounter(prefix + "Computational Time (total)");
    RCP<Time> Concurrent               = Teuchos::TimeMonitor::getNewCounter(prefix + "Concurrent portion");
    RCP<Time> ApplyR                   = Teuchos::TimeMonitor::getNewCounter(prefix + "R: Computational Time");
    RCP<Time> ApplyPbar                = Teuchos::TimeMonitor::getNewCounter(prefix + "Pbar: Computational Time");
    RCP<Time> CompFine                 = Teuchos::TimeMonitor::getNewCounter(prefix + "Fine: Computational Time");
    RCP<Time> CompCoarse               = Teuchos::TimeMonitor::getNewCounter(prefix + "Coarse: Computational Time");
    RCP<Time> ApplySum                 = Teuchos::TimeMonitor::getNewCounter(prefix + "Sum: Computational Time");
    RCP<Time> Synchronize_beginning    = Teuchos::TimeMonitor::getNewCounter(prefix + "Synchronize_beginning");
    RCP<Time> Synchronize_center       = Teuchos::TimeMonitor::getNewCounter(prefix + "Synchronize_center");
    RCP<Time> Synchronize_end          = Teuchos::TimeMonitor::getNewCounter(prefix + "Synchronize_end");

    RCP<Level>          Fine = Levels_[0];
    RCP<Level>          Coarse;

    RCP<Operator> A = Fine->Get< RCP<Operator> >("A");
    Teuchos::RCP< const Teuchos::Comm< int > > communicator = A->getDomainMap()->getComm();

    //Synchronize_beginning->start();
    //communicator->barrier();
    //Synchronize_beginning->stop();

    CompTime->start();

    SC one = STS::one(), zero = STS::zero();

    bool zeroGuess = InitialGuessIsZero;

    // =======   UPFRONT DEFINITION OF COARSE VARIABLES ===========

    //RCP<const Map> origMap;
    RCP< Operator > P;
    RCP< Operator > Pbar;
    RCP< Operator > R;
    RCP< MultiVector > coarseRhs, coarseX;
    RCP< Operator > Ac;
    RCP<SmootherBase> preSmoo_coarse, postSmoo_coarse;
    bool emptyCoarseSolve = true;
    RCP<MultiVector> coarseX_prolonged = MultiVectorFactory::Build(X.getMap(), X.getNumVectors(), true);

    RCP<const Import> importer;

    if (Levels_.size() > 1) {
      Coarse = Levels_[1];
      if (Coarse->IsAvailable("Importer"))
        importer = Coarse->Get< RCP<const Import> >("Importer");

      R = Coarse->Get< RCP<Operator> >("R");
      P = Coarse->Get< RCP<Operator> >("P");


      //if(Coarse->IsAvailable("Pbar"))
      Pbar = Coarse->Get< RCP<Operator> >("Pbar");

      coarseRhs = MultiVectorFactory::Build(R->getRangeMap(), B.getNumVectors(), true);

      Ac = Coarse->Get< RCP< Operator > >("A");

      ApplyR->start();
      R->apply(B, *coarseRhs, Teuchos::NO_TRANS, one, zero);
      //P->apply(B, *coarseRhs, Teuchos::TRANS, one, zero);
      ApplyR->stop();

      if (doPRrebalance_ || importer.is_null()) {
        coarseX = MultiVectorFactory::Build(coarseRhs->getMap(), X.getNumVectors(), true);

      } else {

        RCP<TimeMonitor> ITime      = rcp(new TimeMonitor(*this, prefix + "Solve : import (total)"       , Timings0));
        RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : import" + levelSuffix1, Timings0));

        // Import: range map of R --> domain map of rebalanced Ac (before subcomm replacement)
        RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getTargetMap(), coarseRhs->getNumVectors());
        coarseTmp->doImport(*coarseRhs, *importer, Xpetra::INSERT);
        coarseRhs.swap(coarseTmp);

        coarseX = MultiVectorFactory::Build(importer->getTargetMap(), X.getNumVectors(), true);
      }

      if (Coarse->IsAvailable("PreSmoother"))
        preSmoo_coarse = Coarse->Get< RCP<SmootherBase> >("PreSmoother");
      if (Coarse->IsAvailable("PostSmoother"))
        postSmoo_coarse = Coarse->Get< RCP<SmootherBase> >("PostSmoother");
    }

    // ==========================================================


    MagnitudeType prevNorm = STS::magnitude(STS::one()), curNorm = STS::magnitude(STS::one());
    rate_ = 1.0;

    for (LO i = 1; i <= nIts; i++) {
#ifdef HAVE_MUELU_DEBUG
      if (A->getDomainMap()->isCompatible(*(X.getMap())) == false) {
        std::ostringstream ss;
        ss << "Level " << startLevel << ": level A's domain map is not compatible with X";
        throw Exceptions::Incompatible(ss.str());
      }

      if (A->getRangeMap()->isCompatible(*(B.getMap())) == false) {
        std::ostringstream ss;
        ss << "Level " << startLevel << ": level A's range map is not compatible with B";
        throw Exceptions::Incompatible(ss.str());
      }
#endif
    }

   bool emptyFineSolve = true;

   RCP< MultiVector > fineX;
   fineX = MultiVectorFactory::Build(X.getMap(), X.getNumVectors(), true);

   //Synchronize_center->start();
   //communicator->barrier();
   //Synchronize_center->stop();

   Concurrent->start();

   // NOTE: we need to check using IsAvailable before Get here to avoid building default smoother
   if (Fine->IsAvailable("PreSmoother")) {
     RCP<SmootherBase> preSmoo = Fine->Get< RCP<SmootherBase> >("PreSmoother");
     CompFine->start();
     preSmoo->Apply(*fineX, B, zeroGuess);
     CompFine->stop();
     emptyFineSolve = false;
   }
   if (Fine->IsAvailable("PostSmoother")) {
     RCP<SmootherBase> postSmoo = Fine->Get< RCP<SmootherBase> >("PostSmoother");
     CompFine->start();
     postSmoo->Apply(*fineX, B, zeroGuess);
     CompFine->stop();

     emptyFineSolve = false;
   }
   if (emptyFineSolve == true) {
     GetOStream(Warnings1) << "No fine grid smoother" << std::endl;
     // Fine grid smoother is identity
     fineX->update(one, B, zero);
   }

   if (Levels_.size() > 1) {
     // NOTE: we need to check using IsAvailable before Get here to avoid building default smoother
     if (Coarse->IsAvailable("PreSmoother")) {
       CompCoarse->start();
       preSmoo_coarse->Apply(*coarseX, *coarseRhs, zeroGuess);
       CompCoarse->stop();
       emptyCoarseSolve = false;

     }
     if (Coarse->IsAvailable("PostSmoother")) {
       CompCoarse->start();
       postSmoo_coarse->Apply(*coarseX, *coarseRhs, zeroGuess);
       CompCoarse->stop();
       emptyCoarseSolve = false;

     }
     if (emptyCoarseSolve == true) {
       GetOStream(Warnings1) << "No coarse grid solver" << std::endl;
       // Coarse operator is identity
       coarseX->update(one, *coarseRhs, zero);
     }
     Concurrent->stop();
     //Synchronize_end->start();
     //communicator->barrier();
     //Synchronize_end->stop();

     if (!doPRrebalance_ && !importer.is_null()) {
       RCP<TimeMonitor> ITime      = rcp(new TimeMonitor(*this, prefix + "Solve : export (total)"       , Timings0));
       RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : export" + levelSuffix1, Timings0));

       // Import: range map of rebalanced Ac (before subcomm replacement) --> domain map of P
       RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getSourceMap(), coarseX->getNumVectors());
       coarseTmp->doExport(*coarseX, *importer, Xpetra::INSERT);
       coarseX.swap(coarseTmp);
     }

     ApplyPbar->start();
     Pbar->apply(*coarseX, *coarseX_prolonged, Teuchos::NO_TRANS, one, zero);
     ApplyPbar->stop();
   }

   ApplySum->start();
   X.update(1.0, *fineX, 1.0, *coarseX_prolonged, 0.0);
   ApplySum->stop();

   CompTime->stop();

   //communicator->barrier();

   return (tol > 0 ? Unconverged : Undefined);
}
#else
  // ---------------------------------------- Iterate -------------------------------------------------------
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  ReturnType Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Iterate(const MultiVector& B, MultiVector& X, ConvData conv,
                                                                           bool InitialGuessIsZero, LO startLevel) {
    LO            nIts = conv.maxIts_;
    MagnitudeType tol  = conv.tol_;

    // These timers work as follows. "iterateTime" records total time spent in
    // iterate. "levelTime" records time on a per level basis. The label is
    // crafted to mimic the per-level messages used in Monitors. Note that a
    // given level is timed with a TimeMonitor instead of a Monitor or
    // SubMonitor. This is mainly because I want to time each level
    // separately, and Monitors/SubMonitors print "(total) xx yy zz" ,
    // "(sub,total) xx yy zz", respectively, which is subject to
    // misinterpretation.  The per-level TimeMonitors are stopped/started
    // manually before/after a recursive call to Iterate. A side artifact to
    // this approach is that the counts for intermediate level timers are twice
    // the counts for the finest and coarsest levels.
    std::string prefix       = this->ShortClassName() + ": ";
    std::string levelSuffix  = " (level=" + toString(startLevel) + ")";
    std::string levelSuffix1 = " (level=" + toString(startLevel+1) + ")";

    RCP<Monitor>     iterateTime;
    RCP<TimeMonitor> iterateTime1;
    if (startLevel == 0)
      iterateTime  = rcp(new Monitor(*this, "Solve", (nIts == 1) ? None : Runtime0, Timings0));
    else
      iterateTime1 = rcp(new TimeMonitor(*this, prefix + "Solve (total, level=" + toString(startLevel) + ")", Timings0));

    std::string iterateLevelTimeLabel = prefix + "Solve" + levelSuffix;
    RCP<TimeMonitor> iterateLevelTime = rcp(new TimeMonitor(*this, iterateLevelTimeLabel, Timings0));

    bool zeroGuess = InitialGuessIsZero;

    RCP<Level>    Fine = Levels_[startLevel];
    RCP<Operator> A    = Fine->Get< RCP<Operator> >("A");
    using namespace Teuchos;
    RCP<Time> CompCoarse  = Teuchos::TimeMonitor::getNewCounter(prefix + "Coarse: Computational Time");

    if (A.is_null()) {
      // This processor does not have any data for this process on coarser
      // levels. This can only happen when there are multiple processors and
      // we use repartitioning.
      return Undefined;
    }

    // Print residual information before iterating
    MagnitudeType prevNorm = STS::magnitude(STS::one()), curNorm = STS::magnitude(STS::one());
    rate_ = 1.0;
    if (startLevel == 0 && !isPreconditioner_ &&
        (IsPrint(Statistics1) || tol > 0)) {
      // We calculate the residual only if we want to print it out, or if we
      // want to stop once we achive the tolerance
      Teuchos::Array<MagnitudeType> rn;
      rn = Utilities::ResidualNorm(*A, X, B);

      if (tol > 0) {
        bool passed = true;
        for (LO k = 0; k < rn.size(); k++)
          if (rn[k] >= tol)
            passed = false;

        if (passed)
          return Converged;
      }

      if (IsPrint(Statistics1))
        GetOStream(Statistics1) << "iter:    "
            << std::setiosflags(std::ios::left)
            << std::setprecision(3) << 0 // iter 0
            << "           residual = "
            << std::setprecision(10) << rn
            << std::endl;
    }

    SC one = STS::one(), zero = STS::zero();
    for (LO i = 1; i <= nIts; i++) {
#ifdef HAVE_MUELU_DEBUG
#if 0 // TODO fix me
      if (A->getDomainMap()->isCompatible(*(X.getMap())) == false) {
        std::ostringstream ss;
        ss << "Level " << startLevel << ": level A's domain map is not compatible with X";
        throw Exceptions::Incompatible(ss.str());
      }

      if (A->getRangeMap()->isCompatible(*(B.getMap())) == false) {
        std::ostringstream ss;
        ss << "Level " << startLevel << ": level A's range map is not compatible with B";
        throw Exceptions::Incompatible(ss.str());
      }
#endif
#endif

      if (startLevel == as<LO>(Levels_.size())-1) {
        // On the coarsest level, we do either smoothing (if defined) or a direct solve.
        RCP<TimeMonitor> CLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : coarse" + levelSuffix, Timings0));

        bool emptySolve = true;

        // NOTE: we need to check using IsAvailable before Get here to avoid building default smoother
        if (Fine->IsAvailable("PreSmoother")) {
          RCP<SmootherBase> preSmoo = Fine->Get< RCP<SmootherBase> >("PreSmoother");
          CompCoarse->start();
          preSmoo->Apply(X, B, zeroGuess);
          CompCoarse->stop();
          zeroGuess  = false;
          emptySolve = false;
        }
        if (Fine->IsAvailable("PostSmoother")) {
          RCP<SmootherBase> postSmoo = Fine->Get< RCP<SmootherBase> >("PostSmoother");
          CompCoarse->start();
          postSmoo->Apply(X, B, zeroGuess);
          CompCoarse->stop();
          emptySolve = false;
        }
        if (emptySolve == true) {
          GetOStream(Warnings1) << "No coarse grid solver" << std::endl;
          // Coarse operator is identity
          X.update(one, B, zero);
        }

      } else {
        // On intermediate levels, we do cycles
        RCP<Level> Coarse = Levels_[startLevel+1];
        {
          // ============== PRESMOOTHING ==============
          RCP<TimeMonitor> STime      = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing (total)"      , Timings0));
          RCP<TimeMonitor> SLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing" + levelSuffix, Timings0));

          if (Fine->IsAvailable("PreSmoother")) {
            RCP<SmootherBase> preSmoo = Fine->Get< RCP<SmootherBase> >("PreSmoother");
            preSmoo->Apply(X, B, zeroGuess);
          } else {
            GetOStream(Warnings1) << "Level " <<  startLevel << ": No PreSmoother!" << std::endl;
          }
        }

        RCP<MultiVector> residual;
        {
          RCP<TimeMonitor> ATime      = rcp(new TimeMonitor(*this, prefix + "Solve : residual calculation (total)"      , Timings0));
          RCP<TimeMonitor> ALevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : residual calculation" + levelSuffix, Timings0));
          residual = Utilities::Residual(*A, X, B);
        }

        RCP<Operator>    P = Coarse->Get< RCP<Operator> >("P");
        if (Coarse->IsAvailable("Pbar"))
           P = Coarse->Get< RCP<Operator> >("Pbar");

        RCP<MultiVector> coarseRhs, coarseX;
        const bool initializeWithZeros = true;
        {
          // ============== RESTRICTION ==============
          RCP<TimeMonitor> RTime      = rcp(new TimeMonitor(*this, prefix + "Solve : restriction (total)"      , Timings0));
          RCP<TimeMonitor> RLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : restriction" + levelSuffix, Timings0));

          if (implicitTranspose_) {
            coarseRhs = MultiVectorFactory::Build(P->getDomainMap(), X.getNumVectors(), !initializeWithZeros);
            P->apply(*residual, *coarseRhs, Teuchos::TRANS, one, zero);

          } else {
            RCP<Operator> R = Coarse->Get< RCP<Operator> >("R");
            coarseRhs = MultiVectorFactory::Build(R->getRangeMap(), X.getNumVectors(), !initializeWithZeros);
            R->apply(*residual, *coarseRhs, Teuchos::NO_TRANS, one, zero);
          }
        }

        RCP<const Import> importer;
        if (Coarse->IsAvailable("Importer"))
          importer = Coarse->Get< RCP<const Import> >("Importer");

        if (doPRrebalance_ || importer.is_null()) {
          coarseX = MultiVectorFactory::Build(coarseRhs->getMap(), X.getNumVectors(), initializeWithZeros);

        } else {
          RCP<TimeMonitor> ITime      = rcp(new TimeMonitor(*this, prefix + "Solve : import (total)"       , Timings0));
          RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : import" + levelSuffix1, Timings0));

          // Import: range map of R --> domain map of rebalanced Ac (before subcomm replacement)
          RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getTargetMap(), coarseRhs->getNumVectors());
          coarseTmp->doImport(*coarseRhs, *importer, Xpetra::INSERT);
          coarseRhs.swap(coarseTmp);

          coarseX = MultiVectorFactory::Build(importer->getTargetMap(), X.getNumVectors(), initializeWithZeros);
        }

        RCP<Operator> Ac = Coarse->Get< RCP<Operator> >("A");
        if (!Ac.is_null()) {
          RCP<const Map> origXMap = coarseX->getMap();

          // Replace maps with maps with a subcommunicator
          coarseRhs->replaceMap(Ac->getRangeMap());
          coarseX  ->replaceMap(Ac->getDomainMap());

          {
            iterateLevelTime = Teuchos::null; // stop timing this level

            Iterate(*coarseRhs, *coarseX, 1, true, startLevel+1);
            // ^^ zero initial guess
            if (Cycle_ == WCYCLE)
              Iterate(*coarseRhs, *coarseX, 1, false, startLevel+1);
            // ^^ nonzero initial guess

            iterateLevelTime = rcp(new TimeMonitor(*this, iterateLevelTimeLabel));  // restart timing this level
          }
          coarseX->replaceMap(origXMap);
        }

        if (!doPRrebalance_ && !importer.is_null()) {
          RCP<TimeMonitor> ITime      = rcp(new TimeMonitor(*this, prefix + "Solve : export (total)"      ,  Timings0));
          RCP<TimeMonitor> ILevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : export" + levelSuffix1, Timings0));

          // Import: range map of rebalanced Ac (before subcomm replacement) --> domain map of P
          RCP<MultiVector> coarseTmp = MultiVectorFactory::Build(importer->getSourceMap(), coarseX->getNumVectors());
          coarseTmp->doExport(*coarseX, *importer, Xpetra::INSERT);
          coarseX.swap(coarseTmp);
        }

        // Update X += P * coarseX
        // Note that due to what may be round-off error accumulation, use of the fused kernel
        //    P->apply(*coarseX, X, Teuchos::NO_TRANS, one, one);
        // can in some cases result in slightly higher iteration counts.
        RCP<MultiVector> correction = MultiVectorFactory::Build(X.getMap(), X.getNumVectors(),false);
        {
          // ============== PROLONGATION ==============
          RCP<TimeMonitor> PTime      = rcp(new TimeMonitor(*this, prefix + "Solve : prolongation (total)"      , Timings0));
          RCP<TimeMonitor> PLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : prolongation" + levelSuffix, Timings0));
          P->apply(*coarseX, *correction, Teuchos::NO_TRANS, one, zero);
        }
        X.update(scalingFactor_, *correction, one);

        {
          // ============== POSTSMOOTHING ==============
          RCP<TimeMonitor> STime      = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing (total)"      , Timings0));
          RCP<TimeMonitor> SLevelTime = rcp(new TimeMonitor(*this, prefix + "Solve : smoothing" + levelSuffix, Timings0));

          if (Fine->IsAvailable("PostSmoother")) {
            RCP<SmootherBase> postSmoo = Fine->Get< RCP<SmootherBase> >("PostSmoother");
            postSmoo->Apply(X, B, false);

          } else {
            GetOStream(Warnings1) << "Level " <<  startLevel << ": No PostSmoother!" << std::endl;
          }
        }
      }
      zeroGuess = false;

      if (startLevel == 0 && !isPreconditioner_ &&
          (IsPrint(Statistics1) || tol > 0)) {
        // We calculate the residual only if we want to print it out, or if we
        // want to stop once we achive the tolerance
        Teuchos::Array<MagnitudeType> rn;
        rn = Utilities::ResidualNorm(*A, X, B);

        prevNorm = curNorm;
        curNorm  = rn[0];
        rate_ = as<MagnitudeType>(curNorm / prevNorm);

        if (tol > 0) {
          bool passed = true;
          for (LO k = 0; k < rn.size(); k++)
            if (rn[k] >= tol)
              passed = false;

          if (passed)
            return Converged;
        }

        if (IsPrint(Statistics1))
          GetOStream(Statistics1) << "iter:    "
                                     << std::setiosflags(std::ios::left)
                                     << std::setprecision(3) << i
                                     << "           residual = "
                                     << std::setprecision(10) << rn
                                     << std::endl;
      }
    }
    return (tol > 0 ? Unconverged : Undefined);
  }
#endif


  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write(const LO& start, const LO& end, const std::string &suffix) {
    LO startLevel = (start != -1 ? start : 0);
    LO   endLevel = (end   != -1 ? end   : Levels_.size()-1);

    TEUCHOS_TEST_FOR_EXCEPTION(startLevel > endLevel, Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Write : startLevel must be <= endLevel");

    TEUCHOS_TEST_FOR_EXCEPTION(startLevel < 0 || endLevel >= Levels_.size(), Exceptions::RuntimeError,
                               "MueLu::Hierarchy::Write bad start or end level");

    for (LO i = startLevel; i < endLevel + 1; i++) {
      RCP<Matrix> A = rcp_dynamic_cast<Matrix>(Levels_[i]-> template Get< RCP< Operator> >("A")), P, R;
      if (i > 0) {
        P = rcp_dynamic_cast<Matrix>(Levels_[i]-> template Get< RCP< Operator> >("P"));
        if (!implicitTranspose_)
          R = rcp_dynamic_cast<Matrix>(Levels_[i]-> template Get< RCP< Operator> >("R"));
      }

      if (!A.is_null()) Xpetra::IO<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write("A_" + toString(i) + suffix + ".m", *A);
      if (!P.is_null()) {
        Xpetra::IO<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write("P_" + toString(i) + suffix + ".m", *P);
      }
      if (!R.is_null()) {
        Xpetra::IO<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Write("R_" + toString(i) + suffix + ".m", *R);
      }
    }
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Keep(const std::string & ename, const FactoryBase* factory) {
    for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
      (*it)->Keep(ename, factory);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Delete(const std::string& ename, const FactoryBase* factory) {
    for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
      (*it)->Delete(ename, factory);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::AddKeepFlag(const std::string & ename, const FactoryBase* factory, KeepType keep) {
    for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
      (*it)->AddKeepFlag(ename, factory, keep);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::RemoveKeepFlag(const std::string & ename, const FactoryBase* factory, KeepType keep) {
    for (Array<RCP<Level> >::iterator it = Levels_.begin(); it != Levels_.end(); ++it)
      (*it)->RemoveKeepFlag(ename, factory, keep);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  std::string Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::description() const {
    if ( description_.empty() )
    {
      std::ostringstream out;
      out << BaseClass::description();
      out << "{#levels = " << GetGlobalNumLevels() << ", complexity = " << GetOperatorComplexity() << "}";
      description_ = out.str();
    }
    return description_;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::describe(Teuchos::FancyOStream& out, const Teuchos::EVerbosityLevel tVerbLevel) const {
    describe(out, toMueLuVerbLevel(tVerbLevel));
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::describe(Teuchos::FancyOStream& out, const VerbLevel verbLevel) const {
    RCP<Operator> A0 = Levels_[0]->template Get<RCP<Operator> >("A");
    RCP<const Teuchos::Comm<int> > comm = A0->getDomainMap()->getComm();

    int numLevels = GetNumLevels();
    RCP<Operator> Ac = Levels_[numLevels-1]->template Get<RCP<Operator> >("A");
    if (Ac.is_null()) {
      // It may happen that we do repartition on the last level, but the matrix
      // is small enough to satisfy "max coarse size" requirement. Then, even
      // though we have the level, the matrix would be null on all but one processors
      numLevels--;
    }
    int root = comm->getRank();

#ifdef HAVE_MPI
    int smartData = numLevels*comm->getSize() + comm->getRank(), maxSmartData;
    reduceAll(*comm, Teuchos::REDUCE_MAX, smartData, Teuchos::ptr(&maxSmartData));
    root = maxSmartData % comm->getSize();
#endif

    // Compute smoother complexity, if needed
    double smoother_comp =-1.0;
    if (verbLevel & (Statistics0 | Test))
      smoother_comp = GetSmootherComplexity();

    std::string outstr;
    if (comm->getRank() == root && verbLevel & (Statistics0 | Test)) {
      std::vector<Xpetra::global_size_t> nnzPerLevel;
      std::vector<Xpetra::global_size_t> rowsPerLevel;
      std::vector<int>                   numProcsPerLevel;
      bool aborted = false;
      for (int i = 0; i < numLevels; i++) {
        TEUCHOS_TEST_FOR_EXCEPTION(!(Levels_[i]->IsAvailable("A")) , Exceptions::RuntimeError,
                                   "Operator A is not available on level " << i);

        RCP<Operator> A = Levels_[i]->template Get<RCP<Operator> >("A");
        TEUCHOS_TEST_FOR_EXCEPTION(A.is_null(), Exceptions::RuntimeError,
                                   "Operator A on level " << i << " is null.");

        RCP<Matrix> Am = rcp_dynamic_cast<Matrix>(A);
        if (Am.is_null()) {
          GetOStream(Warnings0) << "Some level operators are not matrices, statistics calculation aborted" << std::endl;
          aborted = true;
          break;
        }

        Xpetra::global_size_t nnz = Am->getGlobalNumEntries();
        nnzPerLevel     .push_back(nnz);
        rowsPerLevel    .push_back(Am->getGlobalNumRows());
        numProcsPerLevel.push_back(Am->getRowMap()->getComm()->getSize());
      }

      if (!aborted) {
        std::ostringstream oss;
        oss << "\n--------------------------------------------------------------------------------\n" <<
            "---                            Multigrid Summary                             ---\n"
            "--------------------------------------------------------------------------------" << std::endl;
        oss << "Number of levels    = " << numLevels << std::endl;
        oss << "Operator complexity = " << std::setprecision(2) << std::setiosflags(std::ios::fixed)
            << GetOperatorComplexity() << std::endl;

        if(smoother_comp!=-1.0) {
          oss << "Smoother complexity = " << std::setprecision(2) << std::setiosflags(std::ios::fixed)
              << smoother_comp << std::endl;
        }

        switch (Cycle_) {
           case VCYCLE:
             oss << "Cycle type          = V" << std::endl;
             break;
           case WCYCLE:
             oss << "Cycle type          = W" << std::endl;
             break;
           default:
             break;
        };
        oss << std::endl;

        Xpetra::global_size_t tt = rowsPerLevel[0];
        int rowspacer = 2; while (tt != 0) { tt /= 10; rowspacer++; }
        tt = nnzPerLevel[0];
        int nnzspacer = 2; while (tt != 0) { tt /= 10; nnzspacer++; }
        tt = numProcsPerLevel[0];
        int npspacer = 2;  while (tt != 0) { tt /= 10; npspacer++; }
        oss  << "level " << std::setw(rowspacer) << " rows " << std::setw(nnzspacer) << " nnz " << " nnz/row" << std::setw(npspacer) << "  c ratio" << "  procs" << std::endl;
        for (size_t i = 0; i < nnzPerLevel.size(); ++i) {
          oss << "  " << i << "  ";
          oss << std::setw(rowspacer) << rowsPerLevel[i];
          oss << std::setw(nnzspacer) << nnzPerLevel[i];
          oss << std::setprecision(2) << std::setiosflags(std::ios::fixed);
          oss << std::setw(9) << as<double>(nnzPerLevel[i]) / rowsPerLevel[i];
          if (i) oss << std::setw(9) << as<double>(rowsPerLevel[i-1])/rowsPerLevel[i];
          else   oss << std::setw(9) << "     ";
          oss << "    " << std::setw(npspacer) << numProcsPerLevel[i] << std::endl;
        }
        oss << std::endl;
        for (int i = 0; i < GetNumLevels(); ++i) {
          RCP<SmootherBase> preSmoo, postSmoo;
          if (Levels_[i]->IsAvailable("PreSmoother"))
            preSmoo = Levels_[i]->template Get< RCP<SmootherBase> >("PreSmoother");
          if (Levels_[i]->IsAvailable("PostSmoother"))
            postSmoo = Levels_[i]->template Get< RCP<SmootherBase> >("PostSmoother");

          if (preSmoo != null && preSmoo == postSmoo)
            oss << "Smoother (level " << i << ") both : " << preSmoo->description() << std::endl;
          else {
            oss << "Smoother (level " << i << ") pre  : "
                << (preSmoo != null ?  preSmoo->description() : "no smoother") << std::endl;
            oss << "Smoother (level " << i << ") post : "
                << (postSmoo != null ?  postSmoo->description() : "no smoother") << std::endl;
          }

          oss << std::endl;
        }

        outstr = oss.str();
      }
    }

#ifdef HAVE_MPI
    RCP<const Teuchos::MpiComm<int> > mpiComm = rcp_dynamic_cast<const Teuchos::MpiComm<int> >(comm);
    MPI_Comm rawComm = (*mpiComm->getRawMpiComm())();

    int strLength = outstr.size();
    MPI_Bcast(&strLength, 1, MPI_INT, root, rawComm);
    if (comm->getRank() != root)
      outstr.resize(strLength);
    MPI_Bcast(&outstr[0], strLength, MPI_CHAR, root, rawComm);
#endif

    out << outstr;
  }

  // NOTE: at some point this should be replaced by a friend operator <<
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::print(std::ostream& out, const VerbLevel verbLevel) const {
    Teuchos::OSTab tab2(out);
    for (int i = 0; i < GetNumLevels(); ++i)
      Levels_[i]->print(out, verbLevel);
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::IsPreconditioner(const bool flag) {
    isPreconditioner_ = flag;
  }

  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::DumpCurrentGraph() const {
    if (GetProcRankVerbose() != 0)
      return;
#if defined(HAVE_MUELU_BOOST) && defined(HAVE_MUELU_BOOST_FOR_REAL) && defined(BOOST_VERSION) && (BOOST_VERSION >= 104400)
    BoostGraph      graph;

    BoostProperties dp;
    dp.property("label", boost::get(boost::vertex_name,  graph));
    dp.property("id",    boost::get(boost::vertex_index, graph));
    dp.property("label", boost::get(boost::edge_name,    graph));
    dp.property("color", boost::get(boost::edge_color,   graph));

    // create local maps
    std::map<const FactoryBase*, BoostVertex>                                     vindices;
    typedef std::map<std::pair<BoostVertex,BoostVertex>, std::string> emap; emap  edges;

    for (int i = dumpLevel_; i <= dumpLevel_+1 && i < GetNumLevels(); i++) {
      edges.clear();
      Levels_[i]->UpdateGraph(vindices, edges, dp, graph);

      for (emap::const_iterator eit = edges.begin(); eit != edges.end(); eit++) {
        std::pair<BoostEdge, bool> boost_edge = boost::add_edge(eit->first.first, eit->first.second, graph);
        boost::put("label", dp, boost_edge.first, eit->second);
        if (i == dumpLevel_)
          boost::put("color", dp, boost_edge.first, std::string("red"));
        else
          boost::put("color", dp, boost_edge.first, std::string("blue"));
      }
    }

    // add legend
    std::ostringstream legend;
    legend << "< <TABLE BORDER=\"0\" CELLBORDER=\"1\" CELLSPACING=\"0\" CELLPADDING=\"4\"> \
               <TR><TD COLSPAN=\"2\">Legend</TD></TR> \
               <TR><TD><FONT color=\"red\">Level " << dumpLevel_ << "</FONT></TD><TD><FONT color=\"blue\">Level " << dumpLevel_+1 << "</FONT></TD></TR> \
               </TABLE> >";
    BoostVertex boost_vertex = boost::add_vertex(graph);
    boost::put("label", dp, boost_vertex, legend.str());

    std::ofstream out(dumpFile_.c_str());
    boost::write_graphviz_dp(out, graph, dp, std::string("id"));
#else
    GetOStream(Errors) <<  "Dependency graph output requires boost and MueLu_ENABLE_Boost_for_real" << std::endl;
#endif
  }

  // Enforce that coordinate vector's map is consistent with that of A
  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
  void Hierarchy<Scalar, LocalOrdinal, GlobalOrdinal, Node>::ReplaceCoordinateMap(Level& level) {
    RCP<Operator> Ao = level.Get<RCP<Operator> >("A");
    RCP<Matrix>   A  = rcp_dynamic_cast<Matrix>(Ao);
    if (A.is_null()) {
      GetOStream(Warnings1) << "Hierarchy::ReplaceCoordinateMap: operator is not a matrix, skipping..." << std::endl;
      return;
    }
    if(Teuchos::rcp_dynamic_cast<BlockedCrsMatrix>(A) != Teuchos::null) {
      GetOStream(Warnings1) << "Hierarchy::ReplaceCoordinateMap: operator is a BlockedCrsMatrix, skipping..." << std::endl;
      return;
    }

    typedef Xpetra::MultiVector<double,LO,GO,NO> xdMV;

    RCP<xdMV> coords = level.Get<RCP<xdMV> >("Coordinates");

    if (A->getRowMap()->isSameAs(*(coords->getMap()))) {
      GetOStream(Warnings1) << "Hierarchy::ReplaceCoordinateMap: matrix and coordinates maps are same, skipping..." << std::endl;
      return;
    }

    if (A->IsView("stridedMaps") && rcp_dynamic_cast<const StridedMap>(A->getRowMap("stridedMaps")) != Teuchos::null) {
      RCP<const StridedMap> stridedRowMap = rcp_dynamic_cast<const StridedMap>(A->getRowMap("stridedMaps"));

      // It is better to through an exceptions if maps may be inconsistent, than to ignore it and experience unfathomable breakdowns
      TEUCHOS_TEST_FOR_EXCEPTION(stridedRowMap->getStridedBlockId() != -1 || stridedRowMap->getOffset() != 0,
                                 Exceptions::RuntimeError, "Hierarchy::ReplaceCoordinateMap: nontrivial maps (block id = " << stridedRowMap->getStridedBlockId()
                                 << ", offset = " << stridedRowMap->getOffset() << ")");
    }

    GetOStream(Runtime1) << "Replacing coordinate map" << std::endl;

    size_t blkSize = A->GetFixedBlockSize();

    RCP<const Map> nodeMap = A->getRowMap();
    if (blkSize > 1) {
      // Create a nodal map, as coordinates have not been expanded to a DOF map yet.
      RCP<const Map> dofMap       = A->getRowMap();
      GO             indexBase    = dofMap->getIndexBase();
      size_t         numLocalDOFs = dofMap->getNodeNumElements();
      TEUCHOS_TEST_FOR_EXCEPTION(numLocalDOFs % blkSize, Exceptions::RuntimeError,
        "Hierarchy::ReplaceCoordinateMap: block size (" << blkSize << ") is incompatible with the number of local dofs in a row map (" << numLocalDOFs);
      ArrayView<const GO> GIDs = dofMap->getNodeElementList();

      Array<GO> nodeGIDs(numLocalDOFs/blkSize);
      for (size_t i = 0; i < numLocalDOFs; i += blkSize)
        nodeGIDs[i/blkSize] = (GIDs[i] - indexBase)/blkSize + indexBase;

      Xpetra::global_size_t INVALID = Teuchos::OrdinalTraits<Xpetra::global_size_t>::invalid();
      nodeMap = MapFactory::Build(dofMap->lib(), INVALID, nodeGIDs(), indexBase, dofMap->getComm());
    } else {
      // blkSize == 1
      // Check whether the length of vectors fits to the size of A
      // If yes, make sure that the maps are matching
      // If no, throw a warning but do not touch the Coordinates
      if(coords->getLocalLength() != A->getRowMap()->getNodeNumElements()) {
        GetOStream(Warnings) << "Coordinate vector does not match row map of matrix A!" << std::endl;
        return;
      }
    }

    Array<ArrayView<const double> >      coordDataView;
    std::vector<ArrayRCP<const double> > coordData;
    for (size_t i = 0; i < coords->getNumVectors(); i++) {
      coordData.push_back(coords->getData(i));
      coordDataView.push_back(coordData[i]());
    }

    RCP<xdMV> newCoords = Xpetra::MultiVectorFactory<double,LO,GO,NO>::Build(nodeMap, coordDataView(), coords->getNumVectors());
    level.Set("Coordinates", newCoords);
  }

} //namespace MueLu

#endif // MUELU_HIERARCHY_DEF_HPP