This file is indexed.

/usr/include/trilinos/Piro_LOCAAdaptiveSolver_Def.hpp is in libtrilinos-piro-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// @HEADER
// ************************************************************************
//
//        Piro: Strategy package for embedded analysis capabilitites
//                  Copyright (2010) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Glen Hansen (gahanse@sandia.gov), Sandia
// National Laboratories.
//
// ************************************************************************
// @HEADER

#ifndef PIRO_LOCAADAPTIVESOLVER_DEF_HPP
#define PIRO_LOCAADAPTIVESOLVER_DEF_HPP

#include "Piro_LOCAAdaptiveSolver.hpp"

#include "Piro_ObserverToLOCASaveDataStrategyAdapter.hpp"

#include "Piro_MatrixFreeDecorator.hpp"

#include "Thyra_DetachedVectorView.hpp"
#include "Thyra_ModelEvaluatorDelegatorBase.hpp"

#include "NOX_StatusTest_Factory.H"

#include "Teuchos_as.hpp"
#include "Teuchos_TestForException.hpp"
#include "Teuchos_Assert.hpp"

#include <stdexcept>
#include <ostream>

namespace Piro {

namespace Detail {

class ModelEvaluatorParamName {
public:
  explicit ModelEvaluatorParamName(const Teuchos::RCP<const Teuchos::Array<std::string> > &p_names);
  std::string operator()(Teuchos_Ordinal k) const;

private:
  Teuchos::RCP<const Teuchos::Array<std::string> > p_names_;
  enum { Default, OneShared, FullList } type_;
};

} // namespace Detail

} // namespace Piro


template <typename Scalar>
Piro::LOCAAdaptiveSolver<Scalar>::LOCAAdaptiveSolver(
    const Teuchos::RCP<Teuchos::ParameterList> &piroParams,
    const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &model,
    const Teuchos::RCP<Thyra::AdaptiveSolutionManager> &solMgr,
    const Teuchos::RCP<LOCA::Thyra::SaveDataStrategy> &saveDataStrategy) :
  SteadyStateSolver<Scalar>(model, model->Np() > 0), // Only one parameter supported
  piroParams_(piroParams),
  saveDataStrategy_(saveDataStrategy),
  globalData_(LOCA::createGlobalData(piroParams)),
  paramVector_(),
  solMgr_(solMgr),
  locaStatusTests_(),
  noxStatusTests_(),
  stepper_(),
  model_(model)
{
  const int l = 0; // TODO: Allow user to select parameter index
  const Detail::ModelEvaluatorParamName paramName(this->getModel().get_p_names(l));
  const Thyra::Ordinal p_entry_count = this->getModel().get_p_space(l)->dim();
  for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) {
    (void) paramVector_.addParameter(paramName(k));
  }
  
  std::string jacobianSource = piroParams->get("Jacobian Operator", "Have Jacobian");
  if (jacobianSource == "Matrix-Free") {
    if (piroParams->isParameter("Matrix-Free Perturbation")) {
      model_ = Teuchos::rcp(new Piro::MatrixFreeDecorator<Scalar>(model,
                           piroParams->get<double>("Matrix-Free Perturbation")));
    }
    else model_ = Teuchos::rcp(new Piro::MatrixFreeDecorator<Scalar>(model));
  }

  solMgr_->initialize(Teuchos::rcp(new Thyra::LOCAAdaptiveState(model_, saveDataStrategy_, globalData_, 
            Teuchos::rcpFromRef(paramVector_), l)));

  // TODO: Create non-trivial stopping criterion for the stepper
  locaStatusTests_ = Teuchos::null;

  // Create stopping criterion for the nonlinear solver
  const Teuchos::RCP<Teuchos::ParameterList> noxStatusParams =
    Teuchos::sublist(Teuchos::sublist(piroParams_, "NOX"), "Status Tests");
  noxStatusTests_ = NOX::StatusTest::buildStatusTests(*noxStatusParams, *(globalData_->locaUtils));

  stepper_ = Teuchos::rcp(new LOCA::AdaptiveStepper(piroParams_, solMgr_, globalData_, noxStatusTests_));

  if (piroParams_->isSublist("NOX") &&
      piroParams_->sublist("NOX").isSublist("Printing"))
    utils_.reset(piroParams_->sublist("NOX").sublist("Printing"));
}

template<typename Scalar>
Piro::LOCAAdaptiveSolver<Scalar>::~LOCAAdaptiveSolver()
{
  LOCA::destroyGlobalData(globalData_);
}

template <typename Scalar>
void
Piro::LOCAAdaptiveSolver<Scalar>::evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
  const int l = 0; // TODO: Allow user to select parameter index
  const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs = inArgs.get_p(l);

  // Forward parameter values to the LOCAAdaptive stepper
  {
    const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs_or_nominal =
      Teuchos::nonnull(p_inargs) ? p_inargs : this->getNominalValues().get_p(l);
    const Thyra::ConstDetachedVectorView<Scalar> p_init_values(p_inargs_or_nominal);
    const Teuchos_Ordinal p_entry_count = p_init_values.subDim();
    TEUCHOS_ASSERT(p_entry_count == Teuchos::as<Teuchos_Ordinal>(paramVector_.length()));

    for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) {
      paramVector_[k] = p_init_values[k];
    }

//    solMgr_->getSolutionGroup()->setParams(paramVector_);
    Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
                 ->getSolutionGroup()->setParams(paramVector_);
  }

  LOCA::Abstract::Iterator::IteratorStatus status;

  status = stepper_->run();

  if (status == LOCA::Abstract::Iterator::Finished) {
    utils_.out() << "Continuation Stepper Finished.\n";
  } else if (status == LOCA::Abstract::Iterator::NotFinished) {
    utils_.out() << "Continuation Stepper did not reach final value.\n";
  } else {
    utils_.out() << "Nonlinear solver failed to converge.\n";
    outArgs.setFailed();
  }

  // The time spent
  globalData_->locaUtils->out() << std::endl <<
    "#### Statistics ########" << std::endl;

  // Check number of steps
  int numSteps = stepper_->getStepNumber();
  globalData_->locaUtils->out() << std::endl <<
    " Number of continuation Steps = " << numSteps << std::endl;

  // Check number of failed steps
  int numFailedSteps = stepper_->getNumFailedSteps();
  globalData_->locaUtils->out() << std::endl <<
    " Number of failed continuation Steps = " << numFailedSteps << std::endl;

  globalData_->locaUtils->out() << std::endl;


  // Note: the last g is used to store the final solution. It can be null - if it is just
  // skip the store. If adaptation has occurred, g is not the correct size.

  const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g());
  Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final;

  int x_args_dim = 0;
  int f_sol_dim = 0;

  // Pardon the nasty cast to resize the last g in outArgs - need to fit the solution
  Thyra::ModelEvaluatorBase::OutArgs<Scalar>* mutable_outArgsPtr =
    const_cast<Thyra::ModelEvaluatorBase::OutArgs<Scalar>* >(&outArgs);

  if(Teuchos::nonnull(x_outargs)){ // g has been allocated, calculate the sizes of g and the solution

    x_args_dim = x_outargs->space()->dim();
//    f_sol_dim = solMgr_->getSolutionGroup()->getX().length();
    f_sol_dim = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
          ->getSolutionGroup()->getX().length();


  }

  if(Teuchos::is_null(x_outargs) || (x_args_dim != f_sol_dim)){ // g is not the right size

      x_final = Thyra::createMember(this->get_g_space(this->num_g()));

      mutable_outArgsPtr->set_g(this->num_g(), x_final);

  }
  else { // g is OK, use it
    x_final = x_outargs;
  }

  {
    // Deep copy final solution from LOCA group
    NOX::Thyra::Vector finalSolution(x_final);
//    finalSolution = solMgr_->getSolutionGroup()->getX();
    finalSolution = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
                      ->getSolutionGroup()->getX();

  }

  // If the arrays need resizing
  if(x_args_dim != f_sol_dim){

    const int parameterCount = this->Np();

    for (int pc = 0; pc < parameterCount; ++pc) {
      const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
        outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, this->num_g(), pc);
      const Thyra::ModelEvaluatorBase::EDerivativeMultiVectorOrientation dgdp_orient =
        Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM;
      if (dgdp_support.supports(dgdp_orient)) {
        const Thyra::ModelEvaluatorBase::DerivativeMultiVector<Scalar> dgdp =
          Thyra::create_DgDp_mv(*this, this->num_g(), pc, dgdp_orient);
        mutable_outArgsPtr->set_DgDp(this->num_g(), pc, dgdp);
      }
    }
  }

  // Compute responses for the final solution
  {
    Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs =
      this->getModel().createInArgs();
    {
      modelInArgs.set_x(x_final);
      modelInArgs.set_p(l, p_inargs);
    }

    this->evalConvergedModel(modelInArgs, outArgs);

    // Save the final solution TODO: this needs to be redone

    Teuchos::RCP<Thyra::ModelEvaluatorBase::InArgs<Scalar> > fp
         = Teuchos::rcp_const_cast<Thyra::ModelEvaluatorBase::InArgs<Scalar> >(finalPoint_);
    Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> ia;
    ia.setSupports(Thyra::ModelEvaluatorBase::IN_ARG_x, true);
    *fp = ia;
    fp->set_x(x_final);

  }
}


template <typename Scalar>
Teuchos::RCP<Piro::LOCAAdaptiveSolver<Scalar> >
Piro::observedLocaSolver(
    const Teuchos::RCP<Teuchos::ParameterList> &appParams,
    const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &model,
    const Teuchos::RCP<Thyra::AdaptiveSolutionManager> &solMgr,
    const Teuchos::RCP<Piro::ObserverBase<Scalar> > &observer)
{
  const Teuchos::RCP<LOCA::Thyra::SaveDataStrategy> saveDataStrategy =
    Teuchos::nonnull(observer) ?
    Teuchos::rcp(new Piro::ObserverToLOCASaveDataStrategyAdapter(observer)) :
    Teuchos::null;

  return Teuchos::rcp(new Piro::LOCAAdaptiveSolver<Scalar>(appParams, model, solMgr, saveDataStrategy));
}

#endif /* PIRO_LOCAADAPTIVESOLVER_DEF_HPP */