/usr/include/trilinos/Piro_RythmosSolver_Def.hpp is in libtrilinos-piro-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 | // @HEADER
// ************************************************************************
//
// Piro: Strategy package for embedded analysis capabilitites
// Copyright (2010) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Andy Salinger (agsalin@sandia.gov), Sandia
// National Laboratories.
//
// ************************************************************************
// @HEADER
#include "Piro_RythmosSolver.hpp"
#include "Piro_ObserverToRythmosIntegrationObserverAdapter.hpp"
#include "Piro_ValidPiroParameters.hpp"
#include "Piro_MatrixFreeDecorator.hpp"
#include "Rythmos_BackwardEulerStepper.hpp"
#include "Rythmos_ForwardEulerStepper.hpp"
#include "Rythmos_ExplicitRKStepper.hpp"
#include "Rythmos_ImplicitBDFStepper.hpp"
#include "Rythmos_ThetaStepper.hpp"
#include "Rythmos_SimpleIntegrationControlStrategy.hpp"
#include "Rythmos_RampingIntegrationControlStrategy.hpp"
#include "Rythmos_ForwardSensitivityStepper.hpp"
#include "Rythmos_ImplicitBDFStepperRampingStepControl.hpp"
#include "Rythmos_StepperAsModelEvaluator.hpp"
#include "Rythmos_CompositeIntegrationObserver.hpp"
#include "Rythmos_IntegratorBuilder.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_Tuple.hpp"
#include "Teuchos_XMLParameterListHelpers.hpp"
#include "Teuchos_Assert.hpp"
#include "Thyra_DefaultAddedLinearOp.hpp"
#include "Thyra_DefaultMultipliedLinearOp.hpp"
#include "Thyra_DefaultZeroLinearOp.hpp"
#include "Thyra_VectorStdOps.hpp"
#include "Thyra_DefaultModelEvaluatorWithSolveFactory.hpp"
#include "Stratimikos_DefaultLinearSolverBuilder.hpp"
#include "Piro_InvertMassMatrixDecorator.hpp"
#ifdef HAVE_PIRO_IFPACK2
#include "Thyra_Ifpack2PreconditionerFactory.hpp"
#include "Tpetra_CrsMatrix.hpp"
#endif
#ifdef HAVE_PIRO_MUELU
#include <Thyra_MueLuPreconditionerFactory.hpp>
#include "Stratimikos_MueLuHelpers.hpp"
#endif
#ifdef HAVE_PIRO_NOX
# include "Thyra_NonlinearSolver_NOX.hpp"
#endif
#include <string>
#include <stdexcept>
#include <iostream>
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::RythmosSolver() :
#else
template <typename Scalar>
Piro::RythmosSolver<Scalar>::RythmosSolver() :
#endif
out(Teuchos::VerboseObjectBase::getDefaultOStream()),
isInitialized(false)
{
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::RythmosSolver(
#else
template <typename Scalar>
Piro::RythmosSolver<Scalar>::RythmosSolver(
#endif
const Teuchos::RCP<Teuchos::ParameterList> &appParams,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &in_model,
const Teuchos::RCP<Rythmos::IntegrationObserverBase<Scalar> > &observer) :
out(Teuchos::VerboseObjectBase::getDefaultOStream()),
isInitialized(false)
{
std::string jacobianSource = appParams->get("Jacobian Operator", "Have Jacobian");
if (jacobianSource == "Matrix-Free") {
Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > model;
if (appParams->isParameter("Matrix-Free Perturbation")) {
model = Teuchos::rcp(new Piro::MatrixFreeDecorator<Scalar>(in_model,
appParams->get<double>("Matrix-Free Perturbation")));
}
else model = Teuchos::rcp(new Piro::MatrixFreeDecorator<Scalar>(in_model));
initialize(appParams, model, observer);
}
else
initialize(appParams, in_model, observer);
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
void Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::initialize(
#else
template <typename Scalar>
void Piro::RythmosSolver<Scalar>::initialize(
#endif
const Teuchos::RCP<Teuchos::ParameterList> &appParams,
const Teuchos::RCP< Thyra::ModelEvaluator<Scalar> > &in_model,
const Teuchos::RCP<Rythmos::IntegrationObserverBase<Scalar> > &observer)
{
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::RCP;
using Teuchos::rcp;
// set some internals
model = in_model;
num_p = in_model->Np();
num_g = in_model->Ng();
//
*out << "\nA) Get the base parameter list ...\n";
//
if (appParams->isSublist("Rythmos")) {
RCP<Teuchos::ParameterList> rythmosPL = sublist(appParams, "Rythmos", true);
rythmosPL->validateParameters(*getValidRythmosParameters(),0);
{
const std::string verbosity = rythmosPL->get("Verbosity Level", "VERB_DEFAULT");
if (verbosity == "VERB_NONE") solnVerbLevel = Teuchos::VERB_NONE;
else if (verbosity == "VERB_DEFAULT") solnVerbLevel = Teuchos::VERB_DEFAULT;
else if (verbosity == "VERB_LOW") solnVerbLevel = Teuchos::VERB_LOW;
else if (verbosity == "VERB_MEDIUM") solnVerbLevel = Teuchos::VERB_MEDIUM;
else if (verbosity == "VERB_HIGH") solnVerbLevel = Teuchos::VERB_HIGH;
else if (verbosity == "VERB_EXTREME") solnVerbLevel = Teuchos::VERB_EXTREME;
else TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,"Unknown verbosity option specified in Piro_RythmosSolver.");
}
t_initial = rythmosPL->get("Initial Time", 0.0);
t_final = rythmosPL->get("Final Time", 0.1);
const std::string stepperType = rythmosPL->get("Stepper Type", "Backward Euler");
//
*out << "\nC) Create and initalize the forward model ...\n";
//
*out << "\nD) Create the stepper and integrator for the forward problem ...\n";
//
if (rythmosPL->get<std::string>("Nonlinear Solver Type") == "Rythmos") {
Teuchos::RCP<Rythmos::TimeStepNonlinearSolver<Scalar> > rythmosTimeStepSolver =
Rythmos::timeStepNonlinearSolver<Scalar>();
if (rythmosPL->getEntryPtr("NonLinear Solver")) {
RCP<Teuchos::ParameterList> nonlinePL =
sublist(rythmosPL, "NonLinear Solver", true);
rythmosTimeStepSolver->setParameterList(nonlinePL);
}
fwdTimeStepSolver = rythmosTimeStepSolver;
}
else if (rythmosPL->get<std::string>("Nonlinear Solver Type") == "NOX") {
#ifdef HAVE_PIRO_NOX
Teuchos::RCP<Thyra::NOXNonlinearSolver> nox_solver = Teuchos::rcp(new Thyra::NOXNonlinearSolver);
Teuchos::RCP<Teuchos::ParameterList> nox_params = Teuchos::rcp(new Teuchos::ParameterList);
*nox_params = appParams->sublist("NOX");
nox_solver->setParameterList(nox_params);
fwdTimeStepSolver = nox_solver;
#else
TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,"Requested NOX solver for a Rythmos Transient solve, Trilinos was not built with NOX enabled. Please rebuild Trilinos or use the native Rythmos nonlinear solver.");
#endif
}
if (stepperType == "Backward Euler") {
fwdStateStepper = Rythmos::backwardEulerStepper<Scalar> (model, fwdTimeStepSolver);
fwdStateStepper->setParameterList(sublist(rythmosPL, "Rythmos Stepper", true));
}
else if (stepperType == "Forward Euler") {
fwdStateStepper = Rythmos::forwardEulerStepper<Scalar> (model);
fwdStateStepper->setParameterList(sublist(rythmosPL, "Rythmos Stepper", true));
}
else if (stepperType == "Explicit RK") {
fwdStateStepper = Rythmos::explicitRKStepper<Scalar>(model);
fwdStateStepper->setParameterList(sublist(rythmosPL, "Rythmos Stepper", true));
}
else if (stepperType == "BDF") {
Teuchos::RCP<Teuchos::ParameterList> BDFparams =
Teuchos::sublist(rythmosPL, "Rythmos Stepper", true);
Teuchos::RCP<Teuchos::ParameterList> BDFStepControlPL =
Teuchos::sublist(BDFparams,"Step Control Settings");
fwdStateStepper = Teuchos::rcp( new Rythmos::ImplicitBDFStepper<Scalar>(model,fwdTimeStepSolver,BDFparams) );
fwdStateStepper->setInitialCondition(model->getNominalValues());
} else if (stepperType == "Theta Stepper") {
Teuchos::RCP<Teuchos::ParameterList> CrankNicholsonPL =
Teuchos::sublist(rythmosPL, "Rythmos Stepper", true);
fwdStateStepper = Rythmos::thetaStepper<Scalar>(model, fwdTimeStepSolver, CrankNicholsonPL);
}
else {
// first (before failing) check to see if the user has added stepper factory
typename std::map<std::string,Teuchos::RCP<Piro::RythmosStepperFactory<Scalar> > >::const_iterator
stepFactItr = stepperFactories.find(stepperType);
if(stepFactItr!=stepperFactories.end()) {
// the user has added it, hot dog lets build a new stepper!
Teuchos::RCP<Teuchos::ParameterList> stepperParams = Teuchos::sublist(rythmosPL, "Rythmos Stepper", true);
// build the stepper using the factory
fwdStateStepper = stepFactItr->second->buildStepper(model,fwdTimeStepSolver,stepperParams);
// the user decided to override the model being used (let them)
if(fwdStateStepper->getModel()!=model && fwdStateStepper->getModel()!=Teuchos::null) {
model = Teuchos::rcp_const_cast<Thyra::ModelEvaluator<Scalar> >(fwdStateStepper->getModel());
num_p = in_model->Np();
num_g = in_model->Ng();
}
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(
true, Teuchos::Exceptions::InvalidParameter,
std::endl << "Error! Piro::RythmosSolver: Invalid Steper Type: "
<< stepperType << std::endl);
}
}
// Step control strategy
{
// If the stepper can accept a step control strategy, then attempt to build one.
RCP<Rythmos::StepControlStrategyAcceptingStepperBase<Scalar> > scsa_stepper =
Teuchos::rcp_dynamic_cast<Rythmos::StepControlStrategyAcceptingStepperBase<Scalar> >(fwdStateStepper);
if (Teuchos::nonnull(scsa_stepper)) {
const std::string step_control_strategy = rythmosPL->get("Step Control Strategy Type", "None");
if (step_control_strategy == "None") {
// don't do anything, stepper will build default
} else if (step_control_strategy == "ImplicitBDFRamping") {
const RCP<Rythmos::ImplicitBDFStepperRampingStepControl<Scalar> > rscs =
rcp(new Rythmos::ImplicitBDFStepperRampingStepControl<Scalar>);
const RCP<ParameterList> p = parameterList(rythmosPL->sublist("Rythmos Step Control Strategy"));
rscs->setParameterList(p);
scsa_stepper->setStepControlStrategy(rscs);
}
else {
// first (before failing) check to see if the user has added step control factory
typename std::map<std::string,Teuchos::RCP<Piro::RythmosStepControlFactory<Scalar> > >::const_iterator
stepControlFactItr = stepControlFactories.find(step_control_strategy);
if (stepControlFactItr != stepControlFactories.end())
{
const RCP<Rythmos::StepControlStrategyBase<Scalar> > rscs = stepControlFactItr->second->buildStepControl();
const RCP<ParameterList> p = parameterList(rythmosPL -> sublist("Rythmos Step Control Strategy"));
rscs->setParameterList(p);
scsa_stepper->setStepControlStrategy(rscs);
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::logic_error,
"Error! Piro::RythmosSolver: Invalid step control strategy type: "
<< step_control_strategy << std::endl);
}
}
}
}
{
const RCP<Teuchos::ParameterList> integrationControlPL =
Teuchos::sublist(rythmosPL, "Rythmos Integration Control", true);
RCP<Rythmos::DefaultIntegrator<Scalar> > defaultIntegrator;
if (rythmosPL->get("Rythmos Integration Control Strategy", "Simple") == "Simple") {
defaultIntegrator = Rythmos::controlledDefaultIntegrator<Scalar>(Rythmos::simpleIntegrationControlStrategy<Scalar>(integrationControlPL));
}
else if(rythmosPL->get<std::string>("Rythmos Integration Control Strategy") == "Ramping") {
defaultIntegrator = Rythmos::controlledDefaultIntegrator<Scalar>(Rythmos::rampingIntegrationControlStrategy<Scalar>(integrationControlPL));
}
fwdStateIntegrator = defaultIntegrator;
}
fwdStateIntegrator->setParameterList(sublist(rythmosPL, "Rythmos Integrator", true));
if (Teuchos::nonnull(observer)) {
fwdStateIntegrator->setIntegrationObserver(observer);
}
}
else if (appParams->isSublist("Rythmos Solver")) {
/** New parameter list format **/
RCP<Teuchos::ParameterList> rythmosSolverPL = sublist(appParams, "Rythmos Solver", true);
RCP<Teuchos::ParameterList> rythmosPL = sublist(rythmosSolverPL, "Rythmos", true);
{
const std::string verbosity = rythmosSolverPL->get("Verbosity Level", "VERB_DEFAULT");
if (verbosity == "VERB_NONE") solnVerbLevel = Teuchos::VERB_NONE;
else if (verbosity == "VERB_DEFAULT") solnVerbLevel = Teuchos::VERB_DEFAULT;
else if (verbosity == "VERB_LOW") solnVerbLevel = Teuchos::VERB_LOW;
else if (verbosity == "VERB_MEDIUM") solnVerbLevel = Teuchos::VERB_MEDIUM;
else if (verbosity == "VERB_HIGH") solnVerbLevel = Teuchos::VERB_HIGH;
else if (verbosity == "VERB_EXTREME") solnVerbLevel = Teuchos::VERB_EXTREME;
else TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,
"Unknown verbosity option specified in Piro_RythmosSolver.");
}
t_initial = rythmosPL->sublist("Integrator Settings").get("Initial Time", 0.0);
t_final = rythmosPL->sublist("Integrator Settings").get("Final Time", 0.1);
const std::string stepperType = rythmosPL->sublist("Stepper Settings")
.sublist("Stepper Selection").get("Stepper Type", "Backward Euler");
//
// *out << "\nB) Create the Stratimikos linear solver factory ...\n";
//
// This is the linear solve strategy that will be used to solve for the
// linear system with the W.
//
Stratimikos::DefaultLinearSolverBuilder linearSolverBuilder;
#ifdef HAVE_PIRO_IFPACK2
typedef Thyra::PreconditionerFactoryBase<double> Base;
#ifdef ALBANY_BUILD
typedef Thyra::Ifpack2PreconditionerFactory<Tpetra::CrsMatrix<double, LocalOrdinal, GlobalOrdinal, Node> > Impl;
#else
typedef Thyra::Ifpack2PreconditionerFactory<Tpetra::CrsMatrix<double> > Impl;
#endif
linearSolverBuilder.setPreconditioningStrategyFactory(Teuchos::abstractFactoryStd<Base, Impl>(), "Ifpack2");
#endif
#ifdef HAVE_PIRO_MUELU
#ifdef ALBANY_BUILD
Stratimikos::enableMueLu<LocalOrdinal, GlobalOrdinal, Node>(linearSolverBuilder);
#else
Stratimikos::enableMueLu(linearSolverBuilder);
#endif
#endif
linearSolverBuilder.setParameterList(sublist(rythmosSolverPL, "Stratimikos", true));
rythmosSolverPL->validateParameters(*getValidRythmosSolverParameters(),0);
RCP<Thyra::LinearOpWithSolveFactoryBase<double> > lowsFactory =
createLinearSolveStrategy(linearSolverBuilder);
//
*out << "\nC) Create and initalize the forward model ...\n";
//
// C.1) Create the underlying Thyra::ModelEvaluator
// already constructed as "model". Decorate if needed.
if (
stepperType == "Explicit RK" ||
stepperType == "Forward Euler" ||
stepperType == "Explicit Taylor Polynomial") {
bool invertMassMatrix = rythmosSolverPL->get("Invert Mass Matrix", false);
if (!invertMassMatrix) {
*out << "\n WARNING in Piro::RythmosSolver! You are attempting to run \n"
<< " Explicit Stepper (" << stepperType << ") with 'Invert Mass Matrix' set to 'false'. \n"
<< "This option should be set to 'true' unless your mass matrix is the identiy.\n";
}
else {
Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > origModel = model;
rythmosSolverPL->get("Lump Mass Matrix", false); //JF line does not do anything
#ifdef ALBANY_BUILD
model = Teuchos::rcp(new Piro::InvertMassMatrixDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node>(
#else
model = Teuchos::rcp(new Piro::InvertMassMatrixDecorator<Scalar>(
#endif
sublist(rythmosSolverPL,"Stratimikos", true), origModel,
true,rythmosSolverPL->get("Lump Mass Matrix", false),false));
}
}
// C.2) Create the Thyra-wrapped ModelEvaluator
thyraModel = rcp(new Thyra::DefaultModelEvaluatorWithSolveFactory<Scalar>(model, lowsFactory));
const RCP<const Thyra::VectorSpaceBase<double> > x_space =
thyraModel->get_x_space();
//
*out << "\nD) Create the stepper and integrator for the forward problem ...\n";
//
fwdTimeStepSolver = Rythmos::timeStepNonlinearSolver<double>();
if (rythmosSolverPL->getEntryPtr("NonLinear Solver")) {
const RCP<Teuchos::ParameterList> nonlinePL =
sublist(rythmosSolverPL, "NonLinear Solver", true);
fwdTimeStepSolver->setParameterList(nonlinePL);
}
// Force Default Integrator since this is needed for Observers
rythmosPL->sublist("Integrator Settings").sublist("Integrator Selection").
set("Integrator Type","Default Integrator");
RCP<Rythmos::IntegratorBuilder<double> > ib = Rythmos::integratorBuilder<double>();
ib->setParameterList(rythmosPL);
Thyra::ModelEvaluatorBase::InArgs<double> ic = thyraModel->getNominalValues();
RCP<Rythmos::IntegratorBase<double> > integrator = ib->create(thyraModel,ic,fwdTimeStepSolver);
fwdStateIntegrator = Teuchos::rcp_dynamic_cast<Rythmos::DefaultIntegrator<double> >(integrator,true);
fwdStateStepper = fwdStateIntegrator->getNonconstStepper();
if (Teuchos::nonnull(observer))
fwdStateIntegrator->setIntegrationObserver(observer);
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(
appParams->isSublist("Rythmos") || appParams->isSublist("Rythmos Solver"),
Teuchos::Exceptions::InvalidParameter, std::endl <<
"Error! Piro::RythmosSolver: must have either Rythmos or Rythmos Solver sublist ");
}
isInitialized = true;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::RythmosSolver(
#else
template <typename Scalar>
Piro::RythmosSolver<Scalar>::RythmosSolver(
#endif
const Teuchos::RCP<Rythmos::DefaultIntegrator<Scalar> > &stateIntegrator,
const Teuchos::RCP<Rythmos::StepperBase<Scalar> > &stateStepper,
const Teuchos::RCP<Thyra::NonlinearSolverBase<Scalar> > &timeStepSolver,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &underlyingModel,
Scalar finalTime,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &icModel,
Teuchos::EVerbosityLevel verbosityLevel) :
fwdStateIntegrator(stateIntegrator),
fwdStateStepper(stateStepper),
fwdTimeStepSolver(timeStepSolver),
model(underlyingModel),
initialConditionModel(icModel),
t_initial(0.0),
t_final(finalTime),
num_p(model->Np()),
num_g(model->Ng()),
out(Teuchos::VerboseObjectBase::getDefaultOStream()),
solnVerbLevel(verbosityLevel),
isInitialized(true)
{
if (fwdStateStepper->acceptsModel() && fwdStateStepper->getModel() != underlyingModel) {
fwdStateStepper->setNonconstModel(underlyingModel);
}
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::RythmosSolver(
#else
template <typename Scalar>
Piro::RythmosSolver<Scalar>::RythmosSolver(
#endif
const Teuchos::RCP<Rythmos::DefaultIntegrator<Scalar> > &stateIntegrator,
const Teuchos::RCP<Rythmos::StepperBase<Scalar> > &stateStepper,
const Teuchos::RCP<Thyra::NonlinearSolverBase<Scalar> > &timeStepSolver,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &underlyingModel,
Scalar initialTime,
Scalar finalTime,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &icModel,
Teuchos::EVerbosityLevel verbosityLevel) :
fwdStateIntegrator(stateIntegrator),
fwdStateStepper(stateStepper),
fwdTimeStepSolver(timeStepSolver),
model(underlyingModel),
initialConditionModel(icModel),
t_initial(initialTime),
t_final(finalTime),
num_p(model->Np()),
num_g(model->Ng()),
out(Teuchos::VerboseObjectBase::getDefaultOStream()),
solnVerbLevel(verbosityLevel),
isInitialized(true)
{
if (fwdStateStepper->acceptsModel() && fwdStateStepper->getModel() != underlyingModel) {
fwdStateStepper->setNonconstModel(underlyingModel);
}
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Rythmos::IntegratorBase<Scalar> >
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getRythmosIntegrator() const
#else
template <typename Scalar>
Teuchos::RCP<const Rythmos::IntegratorBase<Scalar> >
Piro::RythmosSolver<Scalar>::getRythmosIntegrator() const
#endif
{
return fwdStateIntegrator;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::get_p_space(int l) const
#else
template<typename Scalar>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::RythmosSolver<Scalar>::get_p_space(int l) const
#endif
{
TEUCHOS_TEST_FOR_EXCEPTION(
l >= num_p || l < 0,
Teuchos::Exceptions::InvalidParameter,
std::endl <<
"Error in Piro::RythmosSolver::get_p_map(): " <<
"Invalid parameter index l = " <<
l << std::endl);
return model->get_p_space(l);
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::get_g_space(int j) const
#else
template<typename Scalar>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::RythmosSolver<Scalar>::get_g_space(int j) const
#endif
{
TEUCHOS_TEST_FOR_EXCEPTION(
j > num_g || j < 0,
Teuchos::Exceptions::InvalidParameter,
std::endl <<
"Error in Piro::RythmosSolver::get_g_map(): " <<
"Invalid response index j = " <<
j << std::endl);
if (j < num_g) {
return model->get_g_space(j);
} else {
// j == num_g
return model->get_x_space();
}
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getNominalValues() const
#else
template<typename Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::RythmosSolver<Scalar>::getNominalValues() const
#endif
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> result = this->createInArgs();
const Thyra::ModelEvaluatorBase::InArgs<Scalar> modelNominalValues = model->getNominalValues();
for (int l = 0; l < num_p; ++l) {
result.set_p(l, modelNominalValues.get_p(l));
}
return result;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::createInArgs() const
#else
template <typename Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::RythmosSolver<Scalar>::createInArgs() const
#endif
{
Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> inArgs;
inArgs.setModelEvalDescription(this->description());
inArgs.set_Np(num_p);
return inArgs;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Thyra::ModelEvaluatorBase::OutArgs<Scalar>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::createOutArgsImpl() const
#else
template <typename Scalar>
Thyra::ModelEvaluatorBase::OutArgs<Scalar>
Piro::RythmosSolver<Scalar>::createOutArgsImpl() const
#endif
{
Thyra::ModelEvaluatorBase::OutArgsSetup<Scalar> outArgs;
outArgs.setModelEvalDescription(this->description());
// One additional response slot for the solution vector
outArgs.set_Np_Ng(num_p, num_g + 1);
const Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs();
if (num_p > 0) {
// Only one parameter supported
const int l = 0;
if (Teuchos::nonnull(initialConditionModel)) {
const Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs =
initialConditionModel->createOutArgs();
const Thyra::ModelEvaluatorBase::DerivativeSupport init_dxdp_support =
initCondOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, initCondOutArgs.Ng() - 1, l);
if (!init_dxdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
// Ok to return early since only one parameter supported
return outArgs;
}
}
// Computing the DxDp sensitivity for a transient problem currently requires the evaluation of
// the mutilivector-based, Jacobian-oriented DfDp derivatives of the underlying transient model.
const Thyra::ModelEvaluatorBase::DerivativeSupport model_dfdp_support =
modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DfDp, l);
if (!model_dfdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
// Ok to return early since only one parameter supported
return outArgs;
}
// Solution sensitivity
outArgs.setSupports(
Thyra::ModelEvaluatorBase::OUT_ARG_DgDp,
num_g,
l,
Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
if (num_g > 0) {
// Only one response supported
const int j = 0;
const Thyra::ModelEvaluatorBase::DerivativeSupport model_dgdx_support =
modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDx, j);
if (!model_dgdx_support.none()) {
const Thyra::ModelEvaluatorBase::DerivativeSupport model_dgdp_support =
modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
// Response sensitivity
Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support;
if (model_dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
}
if (model_dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP)) {
dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
}
outArgs.setSupports(
Thyra::ModelEvaluatorBase::OUT_ARG_DgDp,
j,
l,
dgdp_support);
}
}
}
return outArgs;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
void Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::evalModelImpl(
#else
template <typename Scalar>
void Piro::RythmosSolver<Scalar>::evalModelImpl(
#endif
const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
using Teuchos::RCP;
using Teuchos::rcp;
// TODO: Support more than 1 parameter and 1 response
const int j = 0;
const int l = 0;
// Parse InArgs
RCP<const Thyra::VectorBase<Scalar> > p_in;
if (num_p > 0) {
p_in = inArgs.get_p(l);
}
RCP<const Thyra::VectorBase<Scalar> > p_in2; //JF add for multipoint
if (num_p > 1) {
p_in2 = inArgs.get_p(l+1);
}
// Parse OutArgs
RCP<Thyra::VectorBase<Scalar> > g_out;
if (num_g > 0) {
g_out = outArgs.get_g(j);
}
const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);
Thyra::ModelEvaluatorBase::InArgs<Scalar> state_ic = model->getNominalValues();
// Set initial time in ME if needed
if(t_initial > 0.0 && state_ic.supports(Thyra::ModelEvaluatorBase::IN_ARG_t))
state_ic.set_t(t_initial);
if (Teuchos::nonnull(initialConditionModel)) {
// The initial condition depends on the parameter
// It is found by querying the auxiliary model evaluator as the last response
const RCP<Thyra::VectorBase<Scalar> > initialState =
Thyra::createMember(model->get_x_space());
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs();
if (num_p > 0) {
initCondInArgs.set_p(l, inArgs.get_p(l));
}
Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs();
initCondOutArgs.set_g(initCondOutArgs.Ng() - 1, initialState);
initialConditionModel->evalModel(initCondInArgs, initCondOutArgs);
}
state_ic.set_x(initialState);
}
// Set paramters p_in as part of initial conditions
if (num_p > 0) {
if (Teuchos::nonnull(p_in)) {
state_ic.set_p(l, p_in);
}
}
if (num_p > 1) { //JF added for multipoint
if (Teuchos::nonnull(p_in2)) {
state_ic.set_p(l+1, p_in2);
}
}
*out << "\nstate_ic:\n" << Teuchos::describe(state_ic, solnVerbLevel);
//JF may need a version of the following for multipoint, i.e. num_p>1, l+1, if we want sensitivities
RCP<Thyra::MultiVectorBase<Scalar> > dgxdp_out;
Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv_out;
if (num_p > 0) {
const Thyra::ModelEvaluatorBase::DerivativeSupport dgxdp_support =
outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, num_g, l);
if (dgxdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgxdp_deriv =
outArgs.get_DgDp(num_g, l);
dgxdp_out = dgxdp_deriv.getMultiVector();
}
if (num_g > 0) {
const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
if (!dgdp_support.none()) {
dgdp_deriv_out = outArgs.get_DgDp(j, l);
}
}
}
const bool requestedSensitivities =
Teuchos::nonnull(dgxdp_out) || !dgdp_deriv_out.isEmpty();
RCP<const Thyra::VectorBase<Scalar> > finalSolution;
if (!requestedSensitivities) {
//
*out << "\nE) Solve the forward problem ...\n";
//
fwdStateStepper->setInitialCondition(state_ic);
fwdStateIntegrator->setStepper(fwdStateStepper, t_final, true);
*out << "T final : " << t_final << " \n";
Teuchos::Array<RCP<const Thyra::VectorBase<Scalar> > > x_final_array;
fwdStateIntegrator->getFwdPoints(
Teuchos::tuple<Scalar>(t_final), &x_final_array, NULL, NULL);
finalSolution = x_final_array[0];
if (Teuchos::VERB_MEDIUM <= solnVerbLevel) {
std::cout << "Final Solution\n" << *finalSolution << std::endl;
}
} else { // Computing sensitivities
//
*out << "\nE) Solve the forward problem with Sensitivities...\n";
//
RCP<Rythmos::ForwardSensitivityStepper<Scalar> > stateAndSensStepper =
Rythmos::forwardSensitivityStepper<Scalar>();
stateAndSensStepper->initializeSyncedSteppers(
model, l, model->getNominalValues(),
fwdStateStepper, fwdTimeStepSolver);
//
// Set the initial condition for the state and forward sensitivities
//
const RCP<Thyra::VectorBase<Scalar> > s_bar_init =
Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space());
const RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init =
Thyra::createMember(stateAndSensStepper->getFwdSensModel()->get_x_space());
if (Teuchos::is_null(initialConditionModel)) {
// The initial condition is assumed to be independent from the parameters
// Therefore, the initial condition for the sensitivity is zero
Thyra::assign(s_bar_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero());
} else {
// Use initialConditionModel to compute initial condition for sensitivity
Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs();
initCondInArgs.set_p(l, inArgs.get_p(l));
Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs();
typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV;
const RCP<DMVPV> s_bar_init_downcasted = Teuchos::rcp_dynamic_cast<DMVPV>(s_bar_init);
const Thyra::ModelEvaluatorBase::Derivative<Scalar> initCond_deriv(
s_bar_init_downcasted->getNonconstMultiVector(),
Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
initCondOutArgs.set_DgDp(initCondOutArgs.Ng() - 1, l, initCond_deriv);
initialConditionModel->evalModel(initCondInArgs, initCondOutArgs);
}
Thyra::assign(s_bar_dot_init.ptr(), Teuchos::ScalarTraits<Scalar>::zero());
RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> >
stateAndSensModel = stateAndSensStepper->getStateAndFwdSensModel();
Thyra::ModelEvaluatorBase::InArgs<Scalar>
state_and_sens_ic = stateAndSensStepper->getModel()->createInArgs();
// Copy time, parameters etc.
state_and_sens_ic.setArgs(state_ic);
// Set initial condition for x_bar = [ x; s_bar ]
state_and_sens_ic.set_x(stateAndSensModel->create_x_bar_vec(state_ic.get_x(), s_bar_init));
// Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ]
state_and_sens_ic.set_x_dot(stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(), s_bar_dot_init));
stateAndSensStepper->setInitialCondition(state_and_sens_ic);
//
// Use a StepperAsModelEvaluator to integrate the state+sens
//
const RCP<Rythmos::StepperAsModelEvaluator<Scalar> >
stateAndSensIntegratorAsModel = Rythmos::stepperAsModelEvaluator(
Teuchos::rcp_implicit_cast<Rythmos::StepperBase<Scalar> >(stateAndSensStepper),
Teuchos::rcp_implicit_cast<Rythmos::IntegratorBase<Scalar> >(fwdStateIntegrator),
state_and_sens_ic);
// StepperAsModelEvaluator outputs the solution as its last response
const int stateAndSensModelStateResponseIndex = stateAndSensIntegratorAsModel->Ng() - 1;
*out << "\nUse the StepperAsModelEvaluator to integrate state + sens x_bar(p,t_final) ... \n";
Teuchos::OSTab tab(out);
// Solution sensitivity in column-oriented (Jacobian) MultiVector form
RCP<const Thyra::MultiVectorBase<Scalar> > dxdp;
const RCP<Thyra::VectorBase<Scalar> > x_bar_final =
Thyra::createMember(stateAndSensIntegratorAsModel->get_g_space(stateAndSensModelStateResponseIndex));
// Extract pieces of x_bar_final to prepare output
{
const RCP<const Thyra::ProductVectorBase<Scalar> > x_bar_final_downcasted =
Thyra::productVectorBase<Scalar>(x_bar_final);
// Solution
const int solutionBlockIndex = 0;
finalSolution = x_bar_final_downcasted->getVectorBlock(solutionBlockIndex);
// Sensitivity
const int sensitivityBlockIndex = 1;
const RCP<const Thyra::VectorBase<Scalar> > s_bar_final =
x_bar_final_downcasted->getVectorBlock(sensitivityBlockIndex);
{
typedef Thyra::DefaultMultiVectorProductVector<Scalar> DMVPV;
const RCP<const DMVPV> s_bar_final_downcasted = Teuchos::rcp_dynamic_cast<const DMVPV>(s_bar_final);
dxdp = s_bar_final_downcasted->getMultiVector();
}
}
Thyra::eval_g(
*stateAndSensIntegratorAsModel,
l, *state_ic.get_p(l),
t_final,
stateAndSensModelStateResponseIndex, x_bar_final.get()
);
*out
<< "\nx_bar_final = x_bar(p,t_final) evaluated using "
<< "stateAndSensIntegratorAsModel:\n"
<< Teuchos::describe(*x_bar_final,solnVerbLevel);
if (Teuchos::nonnull(dgxdp_out)) {
Thyra::assign(dgxdp_out.ptr(), *dxdp);
}
if (!dgdp_deriv_out.isEmpty()) {
RCP<Thyra::DefaultAddedLinearOp<Scalar> > dgdp_op_out;
{
const RCP<Thyra::LinearOpBase<Scalar> > dgdp_op = dgdp_deriv_out.getLinearOp();
if (Teuchos::nonnull(dgdp_op)) {
dgdp_op_out = Teuchos::rcp_dynamic_cast<Thyra::DefaultAddedLinearOp<Scalar> >(dgdp_op);
dgdp_op_out.assert_not_null();
}
}
Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs();
{
modelInArgs.set_x(finalSolution);
if (num_p > 0) {
modelInArgs.set_p(l, p_in);
}
}
// require dgdx, dgdp from model
Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs();
{
const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdx_deriv(model->create_DgDx_op(j));
modelOutArgs.set_DgDx(j, dgdx_deriv);
Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv;
if (Teuchos::nonnull(dgdp_op_out)) {
dgdp_deriv = model->create_DgDp_op(j, l);
} else {
dgdp_deriv = dgdp_deriv_out;
}
modelOutArgs.set_DgDp(j, l, dgdp_deriv);
}
model->evalModel(modelInArgs, modelOutArgs);
const RCP<const Thyra::LinearOpBase<Scalar> > dgdx =
modelOutArgs.get_DgDx(j).getLinearOp();
// dgdp_out = dgdp + <dgdx, dxdp>
if (Teuchos::nonnull(dgdp_op_out)) {
Teuchos::Array<RCP<const Thyra::LinearOpBase<Scalar> > > op_args(2);
{
op_args[0] = modelOutArgs.get_DgDp(j, l).getLinearOp();
op_args[1] = Thyra::multiply<Scalar>(dgdx, dxdp);
}
dgdp_op_out->initialize(op_args);
} else {
const RCP<Thyra::MultiVectorBase<Scalar> > dgdp_mv_out = dgdp_deriv_out.getMultiVector();
Thyra::apply(
*dgdx,
Thyra::NOTRANS,
*dxdp,
dgdp_mv_out.ptr(),
Teuchos::ScalarTraits<Scalar>::one(),
Teuchos::ScalarTraits<Scalar>::one());
}
}
}
*out << "\nF) Check the solution to the forward problem ...\n";
// As post-processing step, calculate responses at final solution
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs = model->createInArgs();
{
modelInArgs.set_x(finalSolution);
if (num_p > 0) {
modelInArgs.set_p(l, p_in);
}
if (num_p > 1) { //JF added for multipoint
modelInArgs.set_p(l+1, p_in2);
}
//Set time to be final time at which the solve occurs (< t_final in the case we don't make it to t_final).
modelInArgs.set_t(fwdStateStepper->getTimeRange().lower());
}
Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs();
if (Teuchos::nonnull(g_out)) {
Thyra::put_scalar(Teuchos::ScalarTraits<Scalar>::zero(), g_out.ptr());
modelOutArgs.set_g(j, g_out);
}
model->evalModel(modelInArgs, modelOutArgs);
}
// Return the final solution as an additional g-vector, if requested
if (Teuchos::nonnull(gx_out)) {
Thyra::copy(*finalSolution, gx_out.ptr());
}
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::create_DgDp_op_impl(int j, int l) const
#else
template <typename Scalar>
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Piro::RythmosSolver<Scalar>::create_DgDp_op_impl(int j, int l) const
#endif
{
TEUCHOS_ASSERT(j != num_g);
const Teuchos::Array<Teuchos::RCP<const Thyra::LinearOpBase<Scalar> > > dummy =
Teuchos::tuple(Thyra::zero<Scalar>(this->get_g_space(j), this->get_p_space(l)));
return Teuchos::rcp(new Thyra::DefaultAddedLinearOp<Scalar>(dummy));
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Teuchos::ParameterList>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getValidRythmosParameters() const
#else
template <typename Scalar>
Teuchos::RCP<const Teuchos::ParameterList>
Piro::RythmosSolver<Scalar>::getValidRythmosParameters() const
#endif
{
Teuchos::RCP<Teuchos::ParameterList> validPL =
Teuchos::rcp(new Teuchos::ParameterList("ValidRythmosParams"));
validPL->set<std::string>("Nonlinear Solver Type", "");
Teuchos::setStringToIntegralParameter<int>(
"Nonlinear Solver Type",
"Rythmos",
"Determines which nonlinear solver to use.",
Teuchos::tuple<std::string>("Rythmos","NOX"),
validPL.get()
);
validPL->sublist("NonLinear Solver", false, "");
validPL->sublist("Rythmos Builder", false, "");
validPL->set<double>("Initial Time", 0.0, "");
validPL->set<double>("Final Time", 1.0, "");
validPL->sublist("Rythmos Stepper", false, "");
validPL->sublist("Rythmos Integrator", false, "");
validPL->set<std::string>("Rythmos Integration Control Strategy", "Simple", "");
validPL->set<std::string>("Step Control Strategy Type", "None", "");
validPL->sublist("Rythmos Step Control Strategy", false, "");
validPL->sublist("Rythmos Integration Control", false, "");
validPL->sublist("Stratimikos", false, "");
validPL->set<std::string>("Verbosity Level", "", "");
validPL->set<std::string>("Stepper Type", "", "");
validPL->set<double>("Alpha", 1.0, "");
validPL->set<double>("Beta", 1.0, "");
validPL->set<double>("Max State Error", 1.0, "");
validPL->set<std::string>("Name", "", "");
validPL->set<bool>("Invert Mass Matrix", false, "");
return validPL;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Teuchos::ParameterList>
Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getValidRythmosSolverParameters() const
#else
template <typename Scalar>
Teuchos::RCP<const Teuchos::ParameterList>
Piro::RythmosSolver<Scalar>::getValidRythmosSolverParameters() const
#endif
{
Teuchos::RCP<Teuchos::ParameterList> validPL =
Teuchos::rcp(new Teuchos::ParameterList("ValidRythmosSolverParams"));;
validPL->sublist("Rythmos", false, "");
validPL->sublist("Stratimikos", false, "");
validPL->sublist("NonLinear Solver", false, "");
validPL->set<std::string>("Verbosity Level", "", "");
validPL->set<bool>("Invert Mass Matrix", false, "");
validPL->set<bool>("Lump Mass Matrix", false, "");
return validPL;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
void Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::
#else
template <typename Scalar>
void Piro::RythmosSolver<Scalar>::
#endif
addStepperFactory(const std::string & stepperName,const Teuchos::RCP<Piro::RythmosStepperFactory<Scalar> > & factory)
{
stepperFactories[stepperName] = factory;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
void Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::
#else
template <typename Scalar>
void Piro::RythmosSolver<Scalar>::
#endif
addStepControlFactory(const std::string & stepControlName,
const Teuchos::RCP<Piro::RythmosStepControlFactory<Scalar>> & step_control_strategy)
{
stepControlFactories[stepControlName] = step_control_strategy;
}
#ifdef ALBANY_BUILD
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<Piro::RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
#else
template <typename Scalar>
Teuchos::RCP<Piro::RythmosSolver<Scalar> >
#endif
Piro::rythmosSolver(
const Teuchos::RCP<Teuchos::ParameterList> &appParams,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &in_model,
const Teuchos::RCP<Piro::ObserverBase<Scalar> > &piroObserver)
{
Teuchos::RCP<Rythmos::IntegrationObserverBase<Scalar> > observer;
if (Teuchos::nonnull(piroObserver)) {
observer = Teuchos::rcp(
new ObserverToRythmosIntegrationObserverAdapter<Scalar>(piroObserver));
}
#ifdef ALBANY_BUILD
return Teuchos::rcp(new RythmosSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>(appParams, in_model, observer));
#else
return Teuchos::rcp(new RythmosSolver<Scalar>(appParams, in_model, observer));
#endif
}
|