/usr/include/trilinos/Piro_VelocityVerletSolver_Def.hpp is in libtrilinos-piro-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | // @HEADER
// ************************************************************************
//
// Piro: Strategy package for embedded analysis capabilitites
// Copyright (2010) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Andy Salinger (agsalin@sandia.gov), Sandia
// National Laboratories.
//
// ************************************************************************
// @HEADER
#include <cmath>
#include "Thyra_DefaultModelEvaluatorWithSolveFactory.hpp"
#include "Piro_TransientDecorator.hpp"
#define ALBANY_BUILD
#include "Piro_InvertMassMatrixDecorator.hpp"
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::
VelocityVerletSolver(const Teuchos::RCP<Teuchos::ParameterList> &appParams_,
const Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > &model_,
const Teuchos::RCP<Thyra::AdaptiveSolutionManager> &solMgr_,
const Teuchos::RCP<Piro::ObserverBase<Scalar> > &observer_ ) :
appParams(appParams_),
model(model_),
observer(observer_),
solMgr(solMgr_),
out(Teuchos::VerboseObjectBase::getDefaultOStream())
{
using Teuchos::RCP;
using Teuchos::rcp;
num_p = model->Np();
num_g = model->Ng();
TEUCHOS_TEST_FOR_EXCEPTION(num_p > 1, Teuchos::Exceptions::InvalidParameter,
std::endl << "Error in Piro::VelocityVerletSolver " <<
"Not Implemented for Np>1 : " << num_p << std::endl);
TEUCHOS_TEST_FOR_EXCEPTION(num_g > 1, Teuchos::Exceptions::InvalidParameter,
std::endl << "Error in Piro::VelocityVerletSolver " <<
"Not Implemented for Ng>1 : " << num_g << std::endl);
*out << "\nA) Get the base parameter list ...\n";
RCP<Teuchos::ParameterList> vvPL = sublist(appParams, "Velocity Verlet", true);
vvPL->validateParameters(*getValidVelocityVerletParameters(),0);
{
const std::string verbosity = vvPL->get("Verbosity Level", "VERB_DEFAULT");
solnVerbLevel = Teuchos::VERB_DEFAULT;
if (verbosity == "VERB_NONE") solnVerbLevel = Teuchos::VERB_NONE;
else if (verbosity == "VERB_LOW") solnVerbLevel = Teuchos::VERB_LOW;
else if (verbosity == "VERB_MEDIUM") solnVerbLevel = Teuchos::VERB_MEDIUM;
else if (verbosity == "VERB_HIGH") solnVerbLevel = Teuchos::VERB_HIGH;
else if (verbosity == "VERB_EXTREME") solnVerbLevel = Teuchos::VERB_EXTREME;
}
numTimeSteps = vvPL->get("Num Time Steps", 10);
t_final = vvPL->get("Final Time", 0.1);
t_init = vvPL->get("Initial Time", 0.0);
delta_t = t_final / numTimeSteps;
if (vvPL->get("Invert Mass Matrix", false)) {
Teuchos::RCP<Thyra::ModelEvaluator<Scalar> > origModel = model;
bool lump=vvPL->get("Lump Mass Matrix", false);
*out << "\nB) Using InvertMassMatrix Decorator\n";
model = Teuchos::rcp(new Piro::InvertMassMatrixDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node>(
sublist(vvPL,"Stratimikos", true), origModel,
true, lump, true));
}
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::get_x() const
{
return model->get_x();
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::get_x_dot() const
{
return model->get_x_dot();
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::get_p_space(int l) const
{
TEUCHOS_TEST_FOR_EXCEPTION(
l >= num_p || l < 0,
Teuchos::Exceptions::InvalidParameter,
std::endl <<
"Error in Piro::VelocityVerletSolver::get_p_map(): " <<
"Invalid parameter index l = " <<
l << std::endl);
return model->get_p_space(l);
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Thyra::VectorSpaceBase<Scalar> >
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::get_g_space(int j) const
{
TEUCHOS_TEST_FOR_EXCEPTION(
j > num_g || j < 0,
Teuchos::Exceptions::InvalidParameter,
std::endl <<
"Error in Piro::VelocityVerletSolver::get_g_map(): " <<
"Invalid response index j = " <<
j << std::endl);
if (j < num_g) {
return model->get_g_space(j);
} else {
// j == num_g
return model->get_x_space();
}
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getNominalValues() const
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> result = this->createInArgs();
const Thyra::ModelEvaluatorBase::InArgs<Scalar> modelNominalValues = model->getNominalValues();
for (int l = 0; l < num_p; ++l) {
result.set_p(l, modelNominalValues.get_p(l));
}
return result;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::createInArgs() const
{
Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> inArgs;
inArgs.setModelEvalDescription(this->description());
inArgs.set_Np(num_p);
return inArgs;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Thyra::ModelEvaluatorBase::OutArgs<Scalar>
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::createOutArgsImpl() const
{
Thyra::ModelEvaluatorBase::OutArgsSetup<Scalar> outArgs;
outArgs.setModelEvalDescription(this->description());
// One additional response slot for the solution vector
outArgs.set_Np_Ng(num_p, num_g + 1);
const Thyra::ModelEvaluatorBase::OutArgs<Scalar> modelOutArgs = model->createOutArgs();
if (num_p > 0) {
// Only one parameter supported
const int l = 0;
// Computing the DxDp sensitivity for a transient problem currently requires the evaluation of
// the mutilivector-based, Jacobian-oriented DfDp derivatives of the underlying transient model.
const Thyra::ModelEvaluatorBase::DerivativeSupport model_dfdp_support =
modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DfDp, l);
if (!model_dfdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
// Ok to return early since only one parameter supported
return outArgs;
}
// Solution sensitivity
outArgs.setSupports(
Thyra::ModelEvaluatorBase::OUT_ARG_DgDp,
num_g,
l,
Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
if (num_g > 0) {
// Only one response supported
const int j = 0;
const Thyra::ModelEvaluatorBase::DerivativeSupport model_dgdx_support =
modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDx, j);
if (!model_dgdx_support.none()) {
const Thyra::ModelEvaluatorBase::DerivativeSupport model_dgdp_support =
modelOutArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
// Response sensitivity
Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support;
if (model_dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM);
}
if (model_dgdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP)) {
dgdp_support.plus(Thyra::ModelEvaluatorBase::DERIV_LINEAR_OP);
}
outArgs.setSupports(
Thyra::ModelEvaluatorBase::OUT_ARG_DgDp,
j,
l,
dgdp_support);
}
}
}
return outArgs;
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
void
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::evalModelImpl(
const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
using Teuchos::RCP;
using Teuchos::rcp;
// TODO: Support more than 1 parameter and 1 response
const int j = 0;
const int l = 0;
// Parse InArgs
RCP<const Thyra::VectorBase<Scalar> > p_in;
if (num_p > 0) {
p_in = inArgs.get_p(l);
}
// Parse OutArgs
RCP<Thyra::VectorBase<Scalar> > g_out;
if (num_g > 0) {
g_out = outArgs.get_g(j);
}
const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);
// create a new vector and fill it with the contents of model->get_x()
// Build a multivector holding x (0th vector), v (1st vector), and a (2nd vector)
// Teuchos::RCP<Thyra::MultiVectorBase<Scalar> > soln = createMembers(model->get_x_space(), 3);
// create a new vector and fill it with the contents of model->get_x()
/*
Teuchos::RCP<Thyra::VectorBase<Scalar> > x = soln->col(0);
assign(x.ptr(), *model->getNominalValues().get_x());
Teuchos::RCP<Thyra::VectorBase<Scalar> > v = soln->col(1);
assign(v.ptr(), *model->getNominalValues().get_x_dot());
Teuchos::RCP<Thyra::VectorBase<Scalar> > a = soln->col(2);
assign(a.ptr(), *model->get_x_dotdot());
*/
Teuchos::RCP<Thyra::VectorBase<Scalar> > x = model->getNominalValues().get_x()->clone_v();
Teuchos::RCP<Thyra::VectorBase<Scalar> > v = model->getNominalValues().get_x_dot()->clone_v();
// Note that Thyra doesn't have x_dotdot - go get it from the transient decorator around the Albany model
// Teuchos::RCP<Thyra::VectorBase<Scalar> > a = model->get_x_dotdot()->clone_v();
Teuchos::RCP<Thyra::DefaultModelEvaluatorWithSolveFactory<Scalar> >
DMEWSF(Teuchos::rcp_dynamic_cast<Thyra::DefaultModelEvaluatorWithSolveFactory<Scalar> >(model));
Teuchos::RCP<const Piro::TransientDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node> > dec =
Teuchos::rcp_dynamic_cast<const Piro::TransientDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node> >
(DMEWSF->getUnderlyingModel());
TEUCHOS_TEST_FOR_EXCEPTION(Teuchos::is_null(dec), std::logic_error,
"Underlying model in VelovityVerletSolver does not cast to a Piro::TransientDecorator<Scalar, LocalOrdinal, GlobalOrdinal, Node>"
<< std::endl);
Teuchos::RCP<Thyra::VectorBase<Scalar> > a = dec->get_x_dotdot()->clone_v();
RCP<Thyra::VectorBase<Scalar> > finalSolution;
// Zero out the acceleration vector
put_scalar(0.0, a.ptr());
TEUCHOS_TEST_FOR_EXCEPTION(v == Teuchos::null || x == Teuchos::null,
Teuchos::Exceptions::InvalidParameter,
std::endl << "Error in Piro::VelocityVerletSolver " <<
"Requires initial x and x_dot: " << std::endl);
Scalar t = t_init;
// Observe initial condition
// if (observer != Teuchos::null) observer->observeSolution(*soln, t);
Scalar vo = norm_2(*v);
*out << "Initial Velocity = " << vo << std::endl;
if (Teuchos::VERB_MEDIUM <= solnVerbLevel) *out << std::endl;
Thyra::ModelEvaluatorBase::InArgs<Scalar> model_inargs = model->createInArgs();
Thyra::ModelEvaluatorBase::OutArgs<Scalar> model_outargs = model->createOutArgs();
model_inargs.set_x(x);
if (num_p > 0) model_inargs.set_p(0, p_in);
model_outargs.set_f(a);
if (g_out != Teuchos::null) model_outargs.set_g(0, g_out);
Scalar ddt = 0.5 * delta_t * delta_t;
// Calculate acceleration at time 0
model->evalModel(model_inargs, model_outargs);
for (int timeStep = 1; timeStep <= numTimeSteps; timeStep++) {
// x->Update(delta_t, *v, ddt, *a, 1.0);
Vp_StV(x.ptr(), delta_t, *v);
Vp_StV(x.ptr(), ddt, *a);
t += delta_t;
model_inargs.set_t(t);
// v->Update(0.5*delta_t, *a, 1.0);
Vp_StV(v.ptr(), 0.5 * delta_t, *a);
//calc a(x,t,p);
model->evalModel(model_inargs, model_outargs);
// v->Update(0.5*delta_t, *a, 1.0);
Vp_StV(v.ptr(), 0.5 * delta_t, *a);
// Observe completed time step
if (observer != Teuchos::null) observer->observeSolution(*x, *v, *a, t);
}
// return the final solution as an additional g-vector, if requested
if (finalSolution != Teuchos::null) finalSolution = x->clone_v();
// Return the final solution as an additional g-vector, if requested
if (Teuchos::nonnull(gx_out)) {
Thyra::copy(*finalSolution, gx_out.ptr());
}
}
template <typename Scalar, typename LocalOrdinal, typename GlobalOrdinal, typename Node>
Teuchos::RCP<const Teuchos::ParameterList>
Piro::VelocityVerletSolver<Scalar, LocalOrdinal, GlobalOrdinal, Node>::getValidVelocityVerletParameters() const
{
Teuchos::RCP<Teuchos::ParameterList> validPL =
Teuchos::rcp(new Teuchos::ParameterList("ValidVelocityVerletParams"));;
validPL->set<int>("Num Time Steps", 0, "");
validPL->set<double>("Final Time", 1.0, "");
validPL->set<double>("Initial Time", 0.0, "");
validPL->set<std::string>("Verbosity Level", "", "");
validPL->set<bool>("Invert Mass Matrix", false, "");
validPL->set<bool>("Lump Mass Matrix", false, "");
validPL->sublist("Stratimikos", false, "");
return validPL;
}
|