This file is indexed.

/usr/include/trilinos/ROL_BoundConstraint.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_BOUND_CONSTRAINT_H
#define ROL_BOUND_CONSTRAINT_H

#include "ROL_Vector.hpp"
#include "ROL_Types.hpp"
#include <iostream>

/** @ingroup func_group
    \class ROL::BoundConstraint
    \brief Provides the interface to apply upper and lower bound constraints.

    ROL's bound constraint class is to designed to handle point wise bound 
    constraints on optimization variables.  That is, let \f$\mathcal{X}\f$ 
    be a Banach space of functions from \f$\Xi\f$ into \f$\mathbb{R}\f$ 
    (for example, \f$\Xi\subset\mathbb{R}^d\f$ for some positive integer \f$d\f$
    and \f$\mathcal{X}=L^2(\Xi)\f$ or \f$\Xi = \{1,\ldots,n\}\f$ and 
    \f$\mathcal{X}=\mathbb{R}^n\f$).  For any \f$x\in\mathcal{X}\f$, we consider 
    bounds of the form 
    \f[
        a(\xi) \le x(\xi) \le b(\xi) \quad \text{for almost every }\xi\in\Xi.
    \f] 
    Here, \f$a(\xi)\le b(\xi)\f$ for almost every \f$\xi\in\Xi\f$ and \f$a,b\in \mathcal{X}\f$.
*/


namespace ROL {

template <class Real>
class BoundConstraint {
private:
  int dim_;

  const Teuchos::RCP<Vector<Real> > x_lo_;
  const Teuchos::RCP<Vector<Real> > x_up_;
  const Real scale_;  

  Teuchos::RCP<Vector<Real> > mask_;

  bool activated_; ///< Flag that determines whether or not the constraints are being used.
  Real min_diff_;

  Elementwise::ReductionMin<Real> minimum_;

  class Active : public Elementwise::BinaryFunction<Real> {
    public:
    Active(Real offset) : offset_(offset) {}
    Real apply( const Real &x, const Real &y ) const {
      return ((y <= offset_) ? 0 : x);
    }
    private:
    Real offset_;
  };

  class UpperBinding : public Elementwise::BinaryFunction<Real> {
    public:
    UpperBinding(Real offset) : offset_(offset) {}
    Real apply( const Real &x, const Real &y ) const {
      return ((y < 0 && x <= offset_) ? 0 : 1);
    }
    private:
    Real offset_;
  };

  class LowerBinding : public Elementwise::BinaryFunction<Real> {
    public:
    LowerBinding(Real offset) : offset_(offset) {}
    Real apply( const Real &x, const Real &y ) const {
      return ((y > 0 && x <= offset_) ? 0 : 1);
    }
    private:
    Real offset_;
  };

  class PruneBinding : public Elementwise::BinaryFunction<Real> {
    public:
      Real apply( const Real &x, const Real &y ) const {
        return ((y == 1) ? x : 0);
      }
  } prune_;

public:

  virtual ~BoundConstraint() {}

  BoundConstraint(void)
    : x_lo_(Teuchos::null), x_up_(Teuchos::null), scale_(1),
      mask_(Teuchos::null), activated_(false), min_diff_(0) {}

  BoundConstraint( const Vector<Real> &x ) : x_lo_(x.clone()), 
      x_up_(x.clone()), scale_(1),
      mask_(Teuchos::null), activated_(false), min_diff_(0) {
    x_lo_->applyUnary(Elementwise::Fill<Real>(ROL_NINF<Real>()));
    x_up_->applyUnary(Elementwise::Fill<Real>(ROL_INF<Real>()));

  }
  /** \brief Default constructor.

      The default constructor automatically turns the constraints on.
  */
  BoundConstraint(const Teuchos::RCP<Vector<Real> > &x_lo,
                  const Teuchos::RCP<Vector<Real> > &x_up,
                  const Real scale = 1)
    : x_lo_(x_lo), x_up_(x_up), scale_(scale), activated_(true) {
    Real half(0.5), one(1);
    mask_ = x_lo_->clone();

    // Compute difference between upper and lower bounds
    mask_->set(*x_up_);
    mask_->axpy(-one,*x_lo_);

    // Compute minimum difference
    min_diff_ = mask_->reduce(minimum_);
    min_diff_ *= half;

  }

  /** \brief Update bounds.

      The update function allows the user to update the bounds at each new iterations.
          @param[in]      x      is the optimization variable.
          @param[in]      flag   is set to true if control is changed.
          @param[in]      iter   is the outer algorithm iterations count.
  */
  virtual void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {}

  /** \brief Project optimization variables onto the bounds.

      This function implements the projection of \f$x\f$ onto the bounds, i.e.,
      \f[
         (P_{[a,b]}(x))(\xi) = \min\{b(\xi),\max\{a(\xi),x(\xi)\}\} \quad \text{for almost every }\xi\in\Xi.
      \f]
       @param[in,out]      x is the optimization variable.
  */
  virtual void project( Vector<Real> &x ) {

    struct Lesser : public Elementwise::BinaryFunction<Real> {
      Real apply(const Real &xc, const Real &yc) const { return xc<yc ? xc : yc; }
    } lesser;

    struct Greater : public Elementwise::BinaryFunction<Real> {
      Real apply(const Real &xc, const Real &yc) const { return xc>yc ? xc : yc; }
    } greater;

    x.applyBinary(lesser, *x_up_); // Set x to the elementwise minimum of x and x_up_
    x.applyBinary(greater,*x_lo_); // Set x to the elementwise maximum of x and x_lo_

  }

  /** \brief Set variables to zero if they correspond to the upper \f$\epsilon\f$-active set.

      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}^+_\epsilon(x)\f$.  Here,
      the upper \f$\epsilon\f$-active set is defined as
      \f[
         \mathcal{A}^+_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = b(\xi)-\epsilon\,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  virtual void pruneUpperActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {

    Real one(1), epsn(std::min(scale_*eps,min_diff_));

    mask_->set(*x_up_);
    mask_->axpy(-one,x);

    Active op(epsn);
    v.applyBinary(op,*mask_);

  }

  /** \brief Set variables to zero if they correspond to the upper \f$\epsilon\f$-binding set.

      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}^+_\epsilon(x)\f$.  Here,
      the upper \f$\epsilon\f$-binding set is defined as
      \f[
         \mathcal{B}^+_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = b(\xi)-\epsilon,\;
                g(\xi) < 0 \,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       g   is the negative search direction.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  virtual void pruneUpperActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {

    Real one(1), epsn(std::min(scale_*eps,min_diff_));

    mask_->set(*x_up_);
    mask_->axpy(-one,x);
    
    UpperBinding op(epsn);
    mask_->applyBinary(op,g);

    v.applyBinary(prune_,*mask_);

  }

  /** \brief Set variables to zero if they correspond to the lower \f$\epsilon\f$-active set.

      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}^-_\epsilon(x)\f$.  Here,
      the lower \f$\epsilon\f$-active set is defined as
      \f[
         \mathcal{A}^-_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = a(\xi)+\epsilon\,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  virtual void pruneLowerActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {

    Real one(1), epsn(std::min(scale_*eps,min_diff_));

    mask_->set(x);
    mask_->axpy(-one,*x_lo_);

    Active op(epsn);
    v.applyBinary(op,*mask_);

  }

  /** \brief Set variables to zero if they correspond to the lower \f$\epsilon\f$-binding set.

      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}^-_\epsilon(x)\f$.  Here,
      the lower \f$\epsilon\f$-binding set is defined as
      \f[
         \mathcal{B}^-_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = a(\xi)+\epsilon,\;
                g(\xi) > 0 \,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       g   is the negative search direction.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  virtual void pruneLowerActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {

    Real one(1), epsn(std::min(scale_*eps,min_diff_));

    mask_->set(x);
    mask_->axpy(-one,*x_lo_);

    LowerBinding op(epsn);
    mask_->applyBinary(op,g);

    v.applyBinary(prune_,*mask_);

  }

  /** \brief Return the ref count pointer to the lower bound vector */
  virtual const Teuchos::RCP<const Vector<Real> > getLowerVectorRCP( void ) const {
    return x_lo_;
  }

  /** \brief Return the ref count pointer to the upper bound vector */
  virtual const Teuchos::RCP<const Vector<Real> > getUpperVectorRCP( void ) const {
    return x_up_;
  }

   /** \brief Return the ref count pointer to the lower bound vector */
  virtual  const Teuchos::RCP<Vector<Real> > getLowerVectorRCP( void ) {
    return x_lo_;
  }

  /** \brief Return the ref count pointer to the upper bound vector */
  virtual const Teuchos::RCP<Vector<Real> > getUpperVectorRCP( void ) {
    return x_up_;
  }

    

  /** \brief Set the input vector to the upper bound.

      This function sets the input vector \f$u\f$ to the upper bound \f$b\f$.
      @param[out]    u   is the vector to be set to the upper bound.
  */ 
  virtual void setVectorToUpperBound( Vector<Real> &u ) {
    if( x_up_ == Teuchos::null ) {
      u.applyUnary(Elementwise::Fill<Real>(ROL_INF<Real>()));
    }
    else {
      u.set(*x_up_);
    }
  }

  /** \brief Set the input vector to the lower bound.

      This function sets the input vector \f$l\f$ to the lower bound \f$a\f$.
      @param[out]    l   is the vector to be set to the lower bound.
  */ 
  virtual void setVectorToLowerBound( Vector<Real> &l ) {
    if( x_lo_ == Teuchos::null ) {
      l.applyUnary(Elementwise::Fill<Real>(ROL_NINF<Real>()));
    }
    else {
      l.set(*x_lo_);
    }
  }

  /** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-active set.

      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}_\epsilon(x)\f$.  Here,
      the \f$\epsilon\f$-active set is defined as
      \f[
         \mathcal{A}_\epsilon(x) = \mathcal{A}^+_\epsilon(x)\cap\mathcal{A}^-_\epsilon(x).
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  virtual void pruneActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
    pruneUpperActive(v,x,eps);
    pruneLowerActive(v,x,eps);
  }

  /** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-binding set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}_\epsilon(x)\f$.  Here, 
      the \f$\epsilon\f$-binding set is defined as 
      \f[
         \mathcal{B}^+_\epsilon(x) = \mathcal{B}^+_\epsilon(x)\cap\mathcal{B}^-_\epsilon(x).
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       g   is the negative search direction.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  virtual void pruneActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) {
    pruneUpperActive(v,g,x,eps);
    pruneLowerActive(v,g,x,eps);
  }

  /** \brief Check if the vector, v, is feasible.

      This function returns true if \f$v = P_{[a,b]}(v)\f$.
      @param[in]    v   is the vector to be checked.
  */
  virtual bool isFeasible( const Vector<Real> &v ) { 
    bool flag = true;
    Real one(1);
    if ( activated_ ) {
      mask_->set(*x_up_);
      mask_->axpy(-one,v);
      Real uminusv = mask_->reduce(minimum_);

      mask_->set(v);
      mask_->axpy(-one,*x_lo_);
      Real vminusl = mask_->reduce(minimum_);

      flag = (((uminusv < 0) || (vminusl<0)) ? false : true);
    }
    return flag;
  }

  /** \brief Turn on bounds.
   
      This function turns the bounds on. 
  */
  void activate(void)    { activated_ = true;  }

  /** \brief Turn off bounds.

      This function turns the bounds off.
  */
  void deactivate(void)  { activated_ = false; }

  /** \brief Check if bounds are on.

      This function returns true if the bounds are turned on.
  */
  bool isActivated(void) { return activated_;  }

  /** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-inactive set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\Xi\setminus\mathcal{A}_\epsilon(x)\f$.  Here, 
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneInactive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) { 
    Real one(1);
    Teuchos::RCP<Vector<Real> > tmp = v.clone(); 
    tmp->set(v);
    pruneActive(*tmp,x,eps);
    v.axpy(-one,*tmp);
  }
  void pruneLowerInactive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) {
    Real one(1);
    Teuchos::RCP<Vector<Real> > tmp = v.clone(); 
    tmp->set(v);
    pruneLowerActive(*tmp,x,eps);
    v.axpy(-one,*tmp);
  }
  void pruneUpperInactive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0 ) { 
    Real one(1);
    Teuchos::RCP<Vector<Real> > tmp = v.clone(); 
    tmp->set(v);
    pruneUpperActive(*tmp,x,eps);
    v.axpy(-one,*tmp);
  }


  /** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-nonbinding set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\Xi\setminus\mathcal{B}_\epsilon(x)\f$.  
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       g   is the negative search direction.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneInactive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) { 
    Real one(1);
    Teuchos::RCP<Vector<Real> > tmp = v.clone(); 
    tmp->set(v);
    pruneActive(*tmp,g,x,eps);
    v.axpy(-one,*tmp);
  }
  void pruneLowerInactive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) { 
    Real one(1);
    Teuchos::RCP<Vector<Real> > tmp = v.clone(); 
    tmp->set(v);
    pruneLowerActive(*tmp,g,x,eps);
    v.axpy(-one,*tmp);
  }
  void pruneUpperInactive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0 ) { 
    Real one(1);
    Teuchos::RCP<Vector<Real> > tmp = v.clone(); 
    tmp->set(v);
    pruneUpperActive(*tmp,g,x,eps);
    v.axpy(-one,*tmp);
  }
 
  /** \brief Compute projected gradient.

      This function projects the gradient \f$g\f$ onto the tangent cone.
           @param[in,out]    g  is the gradient of the objective function at x.
           @param[in]        x  is the optimization variable
  */
  void computeProjectedGradient( Vector<Real> &g, const Vector<Real> &x ) {
    Teuchos::RCP<Vector<Real> > tmp = g.clone();
    tmp->set(g);
    pruneActive(g,*tmp,x);
  }
 
  /** \brief Compute projected step.

      This function computes the projected step \f$P_{[a,b]}(x+v) - x\f$.
      @param[in,out]         v  is the step variable.
      @param[in]             x is the optimization variable.
  */
  void computeProjectedStep( Vector<Real> &v, const Vector<Real> &x ) { 
    Real one(1);
    v.plus(x);
    project(v);
    v.axpy(-one,x);
  }

}; // class BoundConstraint

} // namespace ROL

#endif