This file is indexed.

/usr/include/trilinos/ROL_BoundConstraint_Partitioned.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_BOUND_CONSTRAINT_PARTITIONED_H
#define ROL_BOUND_CONSTRAINT_PARTITIONED_H

#include "ROL_BoundConstraint.hpp"
#include "ROL_PartitionedVector.hpp"
#include "ROL_Types.hpp"
#include <iostream>

/** @ingroup func_group
    \class ROL::BoundConstraint_Partitioned
    \brief A composite composite BoundConstraint formed
           from bound constraints on subvectors of a PartitionedVector

*/
namespace ROL {

template <class Real>
class BoundConstraint_Partitioned : public BoundConstraint<Real> {

  typedef Vector<Real>                          V;
  typedef PartitionedVector<Real>               PV;
  typedef typename std::vector<Real>::size_type uint;

private:
  std::vector<Teuchos::RCP<BoundConstraint<Real> > > bnd_;

  Teuchos::RCP<V> l_;
  Teuchos::RCP<V> u_;

  uint dim_;
 
public:
  ~BoundConstraint_Partitioned() {}

  /** \brief Default constructor.

      The default constructor automatically turns the constraints on.
  */
  BoundConstraint_Partitioned(const std::vector<Teuchos::RCP<BoundConstraint<Real> > > &bnd )
    : bnd_(bnd), dim_(bnd.size()) {
    BoundConstraint<Real>::deactivate();
    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        BoundConstraint<Real>::activate();
        break;
      }
    }
    std::vector<Teuchos::RCP<Vector<Real> > > lp;
    std::vector<Teuchos::RCP<Vector<Real> > > up;

    for( uint k=0; k<dim_; ++k ) {
      lp.push_back(bnd_[k]->getLowerVectorRCP());
      up.push_back(bnd_[k]->getUpperVectorRCP());
    }

    l_ = Teuchos::rcp(new PV(lp) );
    u_ = Teuchos::rcp(new PV(up) );

  }

  /** \brief Update bounds. 

      The update function allows the user to update the bounds at each new iterations. 
          @param[in]      x      is the optimization variable.
          @param[in]      flag   is set to true if control is changed.
          @param[in]      iter   is the outer algorithm iterations count.
  */
  void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {

    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        bnd_[k]->update(*(xpv.get(k)),flag,iter);   
      }
    }
  }

  /** \brief Project optimization variables onto the bounds.

      This function implements the projection of \f$x\f$ onto the bounds, i.e., 
      \f[
         (P_{[a,b]}(x))(\xi) = \min\{b(\xi),\max\{a(\xi),x(\xi)\}\} \quad \text{for almost every }\xi\in\Xi. 
      \f]
       @param[in,out]      x is the optimization variable.
  */
  void project( Vector<Real> &x ) {

    PV &xpv = Teuchos::dyn_cast<PV>(x);
    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        bnd_[k]->project(*xpv.get(k));
      }
    }
  }

  /** \brief Set variables to zero if they correspond to the upper \f$\epsilon\f$-active set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}^+_\epsilon(x)\f$.  Here, 
      the upper \f$\epsilon\f$-active set is defined as 
      \f[
         \mathcal{A}^+_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = b(\xi)-\epsilon\,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneUpperActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0.0 ) {

          PV &vpv = Teuchos::dyn_cast<PV>(v);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        bnd_[k]->pruneUpperActive(*(vpv.get(k)),*(xpv.get(k)),eps);
//        Teuchos::RCP<V> vk = vpv.get(k)->clone(); vk->set(*(vpv.get(k)));
//        bnd_[k]->pruneUpperActive(*vk,*(xpv.get(k)),eps); 
//        vpv.set(k,*vk);
      }
    }
 }

  /** \brief Set variables to zero if they correspond to the upper \f$\epsilon\f$-binding set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}^+_\epsilon(x)\f$.  Here, 
      the upper \f$\epsilon\f$-binding set is defined as 
      \f[
         \mathcal{B}^+_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = b(\xi)-\epsilon,\; 
                g(\xi) < 0 \,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       g   is the negative search direction.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneUpperActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0.0 ) {

          PV &vpv = Teuchos::dyn_cast<PV>(v);
    const PV &gpv = Teuchos::dyn_cast<const PV>(g);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        bnd_[k]->pruneUpperActive(*(vpv.get(k)),*(gpv.get(k)),*(xpv.get(k)),eps);
//        Teuchos::RCP<V> vk = vpv.get(k)->clone(); vk->set(*(vpv.get(k)));
//        bnd_[k]->pruneUpperActive(*vk,*(gpv.get(k)),*(xpv.get(k)),eps);
//        vpv.set(k,*vk);
      }
    }
  }
 
  /** \brief Set variables to zero if they correspond to the lower \f$\epsilon\f$-active set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}^-_\epsilon(x)\f$.  Here, 
      the lower \f$\epsilon\f$-active set is defined as 
      \f[
         \mathcal{A}^-_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = a(\xi)+\epsilon\,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneLowerActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0.0 ) {
     
          PV &vpv = Teuchos::dyn_cast<PV>(v);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x);
 
   for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        bnd_[k]->pruneLowerActive(*(vpv.get(k)),*(xpv.get(k)),eps);
//        Teuchos::RCP<V> vk = vpv.get(k)->clone(); vk->set(*(vpv.get(k)));
//        bnd_[k]->pruneLowerActive(*vk,*(xpv.get(k)),eps); 
//        vpv.set(k,*vk);
      }
    }
  }

  /** \brief Set variables to zero if they correspond to the lower \f$\epsilon\f$-binding set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}^-_\epsilon(x)\f$.  Here, 
      the lower \f$\epsilon\f$-binding set is defined as 
      \f[
         \mathcal{B}^-_\epsilon(x) = \{\,\xi\in\Xi\,:\,x(\xi) = a(\xi)+\epsilon,\; 
                g(\xi) > 0 \,\}.
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       g   is the negative search direction.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneLowerActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0.0 ) {
          PV &vpv = Teuchos::dyn_cast<PV>(v);
    const PV &gpv = Teuchos::dyn_cast<const PV>(g);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
        bnd_[k]->pruneLowerActive(*(vpv.get(k)),*(gpv.get(k)),*(xpv.get(k)),eps);
//        Teuchos::RCP<V> vk = vpv.get(k)->clone(); vk->set(*(vpv.get(k)));
//        bnd_[k]->pruneLowerActive(*vk,*(gpv.get(k)),*(xpv.get(k)),eps);
//        vpv.set(k,*vk);
      }
    }
  }
 
  const Teuchos::RCP<const Vector<Real> > getLowerVectorRCP( void ) const {
    return l_;
  }
       
  

  const Teuchos::RCP<const Vector<Real> > getUpperVectorRCP( void ) const {
    return u_;
  }

  const Teuchos::RCP<Vector<Real> > getLowerVectorRCP( void ) {
    return l_;
  }

  const Teuchos::RCP<Vector<Real> > getUpperVectorRCP( void ) {
    return u_;
  }



  /** \brief Set the input vector to the upper bound.

      This function sets the input vector \f$u\f$ to the upper bound \f$b\f$.
      @param[out]    u   is the vector to be set to the upper bound.
  */ 
  void setVectorToUpperBound( Vector<Real> &u ) {
/*    PV &upv = Teuchos::dyn_cast<PV>(u);

    for( uint k=0; k<dim_; ++k ) {
      Teuchos::RCP<V> uk = upv.get(k)->clone();
      bnd_[k]->setVectorToUpperBound(*uk);
      upv.set(k,*uk);
    }  */
    u.set(*u_);
  }

  /** \brief Set the input vector to the lower bound.

      This function sets the input vector \f$l\f$ to the lower bound \f$a\f$.
      @param[out]    l   is the vector to be set to the lower bound.
  */ 
  void setVectorToLowerBound( Vector<Real> &l ) {
/*    PV &lpv = Teuchos::dyn_cast<PV>(l);

    for( uint k=0; k<dim_; ++k ) {
      Teuchos::RCP<V> lk = lpv.get(k)->clone();
      bnd_[k]->setVectorToLowerBound(*lk);
      lpv.set(k,*lk);
    }  */
    l.set(*l_);
  }

  /** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-active set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{A}_\epsilon(x)\f$.  Here, 
      the \f$\epsilon\f$-active set is defined as 
      \f[
         \mathcal{A}_\epsilon(x) = \mathcal{A}^+_\epsilon(x)\cap\mathcal{A}^-_\epsilon(x).
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneActive( Vector<Real> &v, const Vector<Real> &x, Real eps = 0.0 ) {

          PV &vpv = Teuchos::dyn_cast<PV>(v);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x); 
 
    for( uint k=0; k<dim_; ++k ) {
      if( bnd_[k]->isActivated() ) {
//        Teuchos::RCP<V> vk = vpv.get(k)->clone();
//        bnd_[k]->pruneActive(*vk,*(xpv.get(k)),eps);
//        vpv.set(k,*vk);
        bnd_[k]->pruneActive(*(vpv.get(k)),*(xpv.get(k)),eps);
      }
    }
  }

  /** \brief Set variables to zero if they correspond to the \f$\epsilon\f$-binding set.
  
      This function sets \f$v(\xi)=0\f$ if \f$\xi\in\mathcal{B}_\epsilon(x)\f$.  Here, 
      the \f$\epsilon\f$-binding set is defined as 
      \f[
         \mathcal{B}^+_\epsilon(x) = \mathcal{B}^+_\epsilon(x)\cap\mathcal{B}^-_\epsilon(x).
      \f]
      @param[out]      v   is the variable to be pruned.
      @param[in]       x   is the current optimization variable.
      @param[in]       g   is the negative search direction.
      @param[in]       eps is the active-set tolerance \f$\epsilon\f$.
  */
  void pruneActive( Vector<Real> &v, const Vector<Real> &g, const Vector<Real> &x, Real eps = 0.0 ) {
 
          PV &vpv = Teuchos::dyn_cast<PV>(v);
    const PV &gpv = Teuchos::dyn_cast<const PV>(g);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    for( uint k=0; k<dim_; ++k ) {
      if(bnd_[k]->isActivated()) {
/*
        Teuchos::RCP<V> vk = vpv.get(k)->clone();
        bnd_[k]->pruneActive(*vk,*(gpv.get(k)),*(xpv.get(k)),eps);
        vpv.set(k,*vk);
*/      
        bnd_[k]->pruneActive(*(vpv.get(k)),*(gpv.get(k)),*(xpv.get(k)),eps);

      }
    }
  }

  /** \brief Check if the vector, v, is feasible.

      This function returns true if \f$v = P_{[a,b]}(v)\f$.
      @param[in]    v   is the vector to be checked.
  */
  bool isFeasible( const Vector<Real> &v ) { 
    bool feasible = true;
    const PV &vs = Teuchos::dyn_cast<const PV>(v);
    
    for( uint k=0; k<dim_; ++k ) {
      if(bnd_[k]->isActivated()) {
        feasible = feasible && bnd_[k]->isFeasible(*(vs.get(k)));
      }
    }
    return feasible;
  }

/*
  bool isActivated(void) {
    return activated_;
  } 
  // This looks suspicious
  void activate(void) {
    for( uint k=0; k<dim_; ++k ) {
      bnd_->activate();
    }   
    activated_ = true;
  }

  void deactivate(void) {
    std::cout << "deactivate()" << std::endl;
    for( uint k=0; k<dim_; ++k ) {
      bnd_->deactivate();
    }   
    activated_ = false;
  }
*/
}; // class BoundConstraint_Partitioned



template<class Real>
Teuchos::RCP<BoundConstraint<Real> > 
CreateBoundConstraint_Partitioned( const Teuchos::RCP<BoundConstraint<Real> > &bnd1,
                                   const Teuchos::RCP<BoundConstraint<Real> > &bnd2 ) {

  using Teuchos::RCP;   using Teuchos::rcp;
  typedef BoundConstraint<Real>             BND;
  typedef BoundConstraint_Partitioned<Real> BNDP;
  RCP<BND> temp[] = {bnd1, bnd2};
  return rcp( new BNDP( std::vector<RCP<BND> >(temp,temp+2) ) );
}


} // namespace ROL

#endif