This file is indexed.

/usr/include/trilinos/ROL_Brents.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_BRENTS_H
#define ROL_BRENTS_H

/** \class ROL::Brents
    \brief Implements a Brent's method line search.
*/

#include "ROL_LineSearch.hpp"
#include "ROL_BackTracking.hpp"

namespace ROL { 

template<class Real>
class Brents : public LineSearch<Real> {
private:
  Real tol_;
  int niter_;
  bool test_;

  Teuchos::RCP<Vector<Real> > xnew_; 
//  Teuchos::RCP<LineSearch<Real> > btls_;

public:

  virtual ~Brents() {}

  // Constructor
  Brents( Teuchos::ParameterList &parlist ) : LineSearch<Real>(parlist) {
    Real oem10(1.e-10);
    Teuchos::ParameterList &list
      = parlist.sublist("Step").sublist("Line Search").sublist("Line-Search Method").sublist("Brent's");
    tol_ = list.get("Tolerance",oem10);
    niter_ = list.get("Iteration Limit",1000);
    test_ = list.get("Run Test Upon Initialization",true);
//    tol_ = parlist.sublist("Step").sublist("Line Search").sublist("Line-Search Method").get("Bracketing Tolerance",1.e-8);
//    btls_ = Teuchos::rcp(new BackTracking<Real>(parlist));
  }

  void initialize( const Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
                   Objective<Real> &obj, BoundConstraint<Real> &con ) {
    LineSearch<Real>::initialize(x,s,g,obj,con);
    xnew_ = x.clone();
//    btls_->initialize(x,s,g,obj,con);

    if ( test_ ) {
      if ( test_brents() ) {
        std::cout << "Brent's Test Passed!\n";
      }
      else {
        std::cout << "Brent's Test Failed!\n";
      }
    }
  }

  // Find the minimum of phi(alpha) = f(x + alpha*s) using Brent's method
  void run( Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad,
            const Real &gs, const Vector<Real> &s, const Vector<Real> &x, 
            Objective<Real> &obj, BoundConstraint<Real> &con ) {
    ls_neval = 0; ls_ngrad = 0;

    // Get initial line search parameter
    alpha = LineSearch<Real>::getInitialAlpha(ls_neval,ls_ngrad,fval,gs,x,s,obj,con);

    // TODO: Bracketing

    // Run Brents
    Teuchos::RCP<typename LineSearch<Real>::ScalarFunction> phi
      = Teuchos::rcp(new typename LineSearch<Real>::Phi(*xnew_,x,s,obj,con));
    int neval = 0;
    Real A(0), B = alpha;
    run_brents(neval, fval, alpha, *phi, A, B);
    ls_neval += neval;
  }

private:
  void run_brents(int &neval, Real &fval, Real &alpha,
                  typename LineSearch<Real>::ScalarFunction &phi,
                  const Real A, const Real B) const {
    neval = 0;
    // ---> Set algorithmic constants
    const Real zero(0), half(0.5), one(1), two(2), three(3), five(5);
    const Real c   = half*(three - std::sqrt(five));
    const Real eps = std::sqrt(ROL_EPSILON<Real>());
    // ---> Set end points and initial guess
    Real a = A, b = B;
    alpha = a + c*(b-a);
    // ---> Evaluate function
    Real fx = phi.value(alpha);
    neval++;
    // ---> Initialize algorithm storage
    Real v = alpha, w = v, u(0), fu(0);
    Real p(0), q(0), r(0), d(0), e(0);
    Real fv = fx, fw = fx, tol(0), t2(0), m(0);
    for (int i = 0; i < niter_; i++) {
      m = half*(a+b);
      tol = eps*std::abs(alpha) + tol_; t2 = two*tol;
      // Check stopping criterion
      if (std::abs(alpha-m) <= t2 - half*(b-a)) {
        break;
      }
      p = zero; q = zero; r = zero;
      if ( std::abs(e) > tol ) {
        // Fit parabola
        r = (alpha-w)*(fx-fv);         q = (alpha-v)*(fx-fw);
        p = (alpha-v)*q - (alpha-w)*r; q = two*(q-r);
        if ( q > zero ) {
          p *= -one;
        }
        q = std::abs(q);
        r = e; e = d;
      }
      if ( std::abs(p) < std::abs(half*q*r) && p > q*(a-alpha) && p < q*(b-alpha) ) {
        // A parabolic interpolation step
        d = p/q; u = alpha + d;
        // f must not be evaluated too close to a or b
        if ( (u - a) < t2 || (b - u) < t2 ) {
          d = (alpha < m) ? tol : -tol;
        }
      }
      else {
        // A golden section step
        e = ((alpha < m) ? b : a) - alpha; d = c*e;
      }
      // f must not be evaluated too close to alpha
      u  = alpha + ((std::abs(d) >= tol) ? d : ((d > zero) ? tol : -tol));
      fu = phi.value(u);
      neval++;
      // Update a, b, v, w, and alpha
      if ( fu <= fx ) {
        if ( u < alpha ) {
          b = alpha;
        }
        else {
          a = alpha;
        }
        v = w; fv = fw; w = alpha; fw = fx; alpha = u; fx = fu;
      }
      else {
        if ( u < alpha ) {
          a = u;
        }
        else {
          b = u;
        }
        if ( fu <= fw || w == alpha ) {
          v = w; fv = fw; w = u; fw = fu;
        }
        else if ( fu <= fv || v == alpha || v == w ) {
          v = u; fv = fu;
        }
      }
    }
    fval = fx;
  }

  class testFunction : public LineSearch<Real>::ScalarFunction {
  public:
    Real value(const Real x) {
      Real val(0), I(0), two(2), five(5);
      for (int i = 0; i < 20; i++) {
        I = (Real)(i+1);
        val += std::pow((two*I - five)/(x-(I*I)),two);
      }
      return val;
    }
  };

  bool test_brents(void) const {
    Teuchos::RCP<typename LineSearch<Real>::ScalarFunction> phi
       = Teuchos::rcp(new testFunction());
    Real A(0), B(0), alpha(0), fval(0);
    Real error(0), error_i(0);
    Real zero(0), two(2), three(3);
    int neval = 0;
    std::vector<Real> fvector(19,zero), avector(19,zero);
    fvector[0]  = 3.6766990169; avector[0]  =   3.0229153;
    fvector[1]  = 1.1118500100; avector[1]  =   6.6837536;
    fvector[2]  = 1.2182217637; avector[2]  =  11.2387017;
    fvector[3]  = 2.1621103109; avector[3]  =  19.6760001;
    fvector[4]  = 3.0322905193; avector[4]  =  29.8282273;
    fvector[5]  = 3.7583856477; avector[5]  =  41.9061162;
    fvector[6]  = 4.3554103836; avector[6]  =  55.9535958;
    fvector[7]  = 4.8482959563; avector[7]  =  71.9856656;
    fvector[8]  = 5.2587585400; avector[8]  =  90.0088685;
    fvector[9]  = 5.6036524295; avector[9]  = 110.0265327;
    fvector[10] = 5.8956037976; avector[10] = 132.0405517;
    fvector[11] = 6.1438861542; avector[11] = 156.0521144;
    fvector[12] = 6.3550764593; avector[12] = 182.0620604;
    fvector[13] = 6.5333662003; avector[13] = 210.0711010;
    fvector[14] = 6.6803639849; avector[14] = 240.0800483;
    fvector[15] = 6.7938538365; avector[15] = 272.0902669;
    fvector[16] = 6.8634981053; avector[16] = 306.1051233;
    fvector[17] = 6.8539024631; avector[17] = 342.1369454;
    fvector[18] = 6.6008470481; avector[18] = 380.2687097;
    for ( int i = 0; i < 19; i++ ) {
      A = std::pow((Real)(i+1),two);
      B = std::pow((Real)(i+2),two);
      run_brents(neval, fval, alpha, *phi, A, B);
      error_i = std::max(std::abs(fvector[i]-fval)/fvector[i],
                         std::abs(avector[i]-alpha)/avector[i]);
      error = std::max(error,error_i);
    }
    return (error < three*(std::sqrt(ROL_EPSILON<Real>())*avector[18]+tol_)) ? true : false;
  }

};

}

#endif