This file is indexed.

/usr/include/trilinos/ROL_Bundle_TT.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_BUNDLE_TT_H
#define ROL_BUNDLE_TT_H

#include "ROL_Types.hpp"
#include "ROL_Vector.hpp"
#include "ROL_StdVector.hpp"
#include "ROL_Bundle.hpp"

#include "Teuchos_RCP.hpp"

#include <vector>
#include <limits.h> 
#include <stdint.h> 
#include <float.h> 
#include <math.h> 
#include <algorithm> // TT: std::find

#include "Teuchos_SerialDenseMatrix.hpp" 
#include "Teuchos_SerialDenseVector.hpp" 
#include "Teuchos_LAPACK.hpp" 

#define DEBUG_TT 0
#define EXACT 1
#define TABOO_LIST 1
#define FIRST_VIOLATED 0

/** \class ROL::Bundle_TT
    \brief Provides the interface for and implements a bundle. The semidefinite quadratic subproblem is solved using TT algorithm by Antonio Frangioni (1996).
*/

namespace ROL {

template<class Real>
class Bundle_TT : public Bundle<Real> {

private: 
  unsigned maxSize_;
  Teuchos::LAPACK<int, Real> lapack_; // TT

public:
  Bundle_TT (const unsigned maxSize = 10, const Real coeff = 0.0, const unsigned remSize = 2) 
    : Bundle<Real>(maxSize,coeff,remSize), maxSize_(maxSize) {
    INF = std::numeric_limits<double>::max();
    maxind = std::numeric_limits<int>::max();
    Id.reshape(maxSize_,maxSize_);
    for(unsigned i=0;i<maxSize_;i++)
      Id(i,i) = 1.0;
  }

  Real GiTGj(const int i, const int j){
    return (this->subgradient(i)).dot(this->subgradient(j));
  }

/***********************************************************************************************/
/****************** DUAL CUTTING PLANE SUBPROBLEM ROUTINES *************************************/
/***********************************************************************************************/
private:
  int QPStatus_;
  Real INF;
  int maxind;
  int entering_; // index of entering item
  std::vector<int> taboo_; // list of "taboo" items
  bool optimal_; // flag for optimality of restricted solution
  unsigned dependent_; // number of lin. dependent items in base
  Real rho_;
  unsigned currSize_; // current size of base
  std::vector<int> base; // base
  Teuchos::SerialDenseMatrix<int, Real> L;
  Teuchos::SerialDenseMatrix<int, Real> Id;
  Teuchos::SerialDenseVector<int, Real> tempv;
  Teuchos::SerialDenseVector<int, Real> tempw1;
  Teuchos::SerialDenseVector<int, Real> tempw2;
  Teuchos::SerialDenseVector<int, Real> lh;
  Teuchos::SerialDenseVector<int, Real> lj;
  Teuchos::SerialDenseVector<int, Real> z1;
  Teuchos::SerialDenseVector<int, Real> z2;
  Real lhNorm, ljNorm, z1Tz2, z1Tz1, lhTz1, lhTz2, ljTz1;
  int LiMax; // index of max element of diag(L)
  int LiMin; // index of min element of diag(L)
  Real kappa; // condition number of matrix L ( >= max|L_ii|/min|L_ii| )
  Real Quad, Lin; // quadratic and linear terms of objective
  Real objval; // value of objective
  Real minobjval; // min value of objective (ever reached)
  Real deltaLh, deltaLj; // needed in case dependent row becomes independent

  void swapRowsL(unsigned ind1, unsigned ind2, bool trans=false){
    if( ind1 > ind2){
      unsigned tmp = ind1;
      ind2 = ind1;
      ind1 = tmp;
    }
    unsigned dd = ind1;
    for (unsigned n=ind1+1; n<=ind2; n++){
      Teuchos::SerialDenseMatrix<int, Real> Id_n(Teuchos::Copy,Id,currSize_,currSize_);
      Id_n(dd,dd) = 0; Id_n(dd,n) = 1.0; 
      Id_n(n,dd) = 1.0; Id_n(n,n) = 0;
      Teuchos::SerialDenseMatrix<int, Real> prod(currSize_,currSize_);
      if( !trans )
	prod.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,1.0,Id_n,L,0.0);
      else
	prod.multiply(Teuchos::NO_TRANS,Teuchos::NO_TRANS,1.0,L,Id_n,0.0);
      L = prod;
      dd++;
    }
  }

  void updateK(){
    if (currSize_ <= dependent_) { // L is empty
      kappa = 1.0;
    }
    else{
      Real tmpdiagMax = -INF;
      Real tmpdiagMin = INF;
      for (unsigned j=0;j<currSize_-dependent_;j++){
	if( L(j,j) > tmpdiagMax ){
	  tmpdiagMax = L(j,j);
	  LiMax = j;
	}
	if( L(j,j) < tmpdiagMin ){
	  tmpdiagMin = L(j,j);
	  LiMin = j;
	}
      }
      kappa = tmpdiagMax/tmpdiagMin;
    }
  }

  void addSubgradToBase(unsigned ind, Real delta){
    // update z1, z2, kappa
    // swap rows if: dependent == 1 and we insert independent row (dependent row is always last)
    //               dependent == 2 and Lj has become independent (Lh still dependent)
    if(dependent_ && (ind == currSize_-1)){
	swapRowsL(currSize_-2,currSize_-1);
	int tmp;
	tmp = base[currSize_-2];
	base[currSize_-2] = base[currSize_-1];
	base[currSize_-1] = tmp;
	ind--;
#if( DEBUG_TT )	  
	std::cout << "Swapped last two rows of L " << std::endl;
#endif
    } // end if dependent
    
    L(ind,ind) = delta;
    
    // update z1 and z2
    unsigned zsize = ind+1;
    z1.resize(zsize); z2.resize(zsize);
    z1[ind] = ( 1.0 - lhTz1 ) / delta;
    z2[ind] = ( this->alpha(base[ind]) - lhTz2 ) / delta;  
    //z2[zsize-1] = ( this->alpha(entering_) - lhTz2 ) / delta;  
    
    // update kappa
    if(delta > L(LiMax,LiMax)){
      LiMax = ind;
      kappa = delta/L(LiMin,LiMin);
    }
    if(delta < L(LiMin,LiMin)){
      LiMin = ind;
      kappa = L(LiMax,LiMax)/delta;
    }
  }

  void deleteSubgradFromBase(unsigned ind, Real tol){
    // update L, currSize, base, z1, z2, dependent, dualVariables_, kappa
    if (ind >= currSize_-dependent_){
#if( DEBUG_TT )
      std::cout << "Eliminating dependent item " << base[ind] << std::endl;
#endif
      // if dependent > 0, the last one or two rows of L are lin. dependent	      
      if (ind < currSize_-1){ // eliminate currSize_-2 but keep currSize_-1
#if( DEBUG_TT )
	std::cout << "Eliminating Lh but keeping Lj" << std::endl;
#endif
	// swap the last row with the second to last
	swapRowsL(ind,currSize_-1);
	base[ind] = base[currSize_-1];		
#if( ! EXACT )
	lhNorm = ljNorm; // new last row is lh
#endif
      }
 
      dependent_--;
      currSize_--;
      L.reshape(currSize_,currSize_); // the row to be eliminated is the last row
      base.resize(currSize_);

#if( DEBUG_TT )
      std::cout << "New base = " << std::endl;
      for (unsigned kk=0;kk<base.size();kk++){
	std::cout << base[kk] << std::endl;
      }
      std::cout << "\n";
      std::cout << "New L " << std::endl;
      std::cout << L << std::endl;
      std::cout << "\n";
#endif
      // note: z1, z2, kappa need not be updated
      return;
    } // end if dependent item

#if( DEBUG_TT )
    std::cout << "Eliminating INdependent item " << base[baseitem] << std::endl;
#endif
    /* currently L_B is lower trapezoidal
	    
       | L_1  0  0   |
       L_B = | l    d  0   |
       | Z    v  L_2 | 
	    
       Apply Givens rotations to transform it to
	    
       | L_1  0  0    |
       | l    d  0    |
       | Z    0  L_2' |
	    
       then delete row and column to obtain factorization of L_B' with B' = B/{i}
	     
       L_B' = | L_1  0    |
       | Z    L_2' |
	    
    */
    for (unsigned j=ind+1;j<currSize_-dependent_;j++){
      Real ai = L(j,ind);
      if (std::abs(ai) <= tol*currSize_) // nothing to do
	continue;
      Real aj = L(j,j);
      Real d, Gc, Gs;
      // Find Givens
      // Anderson's implementation
      if (std::abs(aj) <= tol*currSize_){ // aj is zero
	Gc = 0.0; d = std::abs(ai); Gs = (ai < 0) - (ai > 0); // Gs = -sgn(ai)
      }
      else if ( std::abs(ai) > std::abs(aj) ){
	Real t = aj/ai;
	Real sgnb = (ai > 0) - (ai < 0);
	Real u = sgnb * std::sqrt(1.0 + t*t );
	Gs = -1.0/u;
	Gc = -Gs*t;
	d  = ai*u;
      }
      else{
	Real t = ai/aj;
	Real sgna = (aj > 0) - (aj < 0);
	Real u = sgna * std::sqrt(1.0 + t*t );
	Gc = 1.0/u;
	Gs = -Gc*t;
	d  = aj*u;
      }

      // // "Naive" implementation
      // d  = hypot(ai,aj);
      // Gc = aj/d;
      // Gs = -ai/d;
	      
      L(j,j) = d; L(j,ind) = 0.0; 
      // apply Givens to columns i,j of L
      for (unsigned h=j+1;h<currSize_;h++){
	Real tmp1 = L(h,ind);
	Real tmp2 = L(h,j);
	L(h,ind) = Gc*tmp1 + Gs*tmp2;
	L(h,j) = Gc*tmp2 - Gs*tmp1;
      }
      // apply Givens to z1, z2
      Real tmp1 = z1[ind];
      Real tmp2 = z1[j];
      Real tmp3 = z2[ind];
      Real tmp4 = z2[j];
      z1[ind] = Gc*tmp1 + Gs*tmp2;
      z1[j] = Gc*tmp2 - Gs*tmp1;
      z2[ind] = Gc*tmp3 + Gs*tmp4;
      z2[j] = Gc*tmp4 - Gs*tmp3;
    }// end loop over j

#if( DEBUG_TT )
    std::cout << "After Givens: L,z1,z2 " << std::endl;
    std::cout << L << std::endl;
    std::cout << z1 << std::endl;
    std::cout << z2 << std::endl;
#endif

    if(dependent_){
      deltaLh = L(currSize_-dependent_,ind);  // h = currSize_ - dependent
      if( dependent_ > 1 )                 // j = currSize_ - 1, h = currSize_ - 2
	deltaLj = L(currSize_-1,ind);
    }
	    
    // shift rows and columns of L by exchanging i-th row with next row and i-th column with next column until the row to be deleted is the last, then deleting last row and column
    swapRowsL(ind,currSize_-1);
    swapRowsL(ind,currSize_-1,true);
    L.reshape(currSize_-1,currSize_-1);

    // delete i-th item from z1 and z2
    // note: z1 and z2 are of size currSize_-dependent
    unsigned zsize = currSize_-dependent_;
    for( unsigned m=ind; m<zsize; m++ ){
      z1[m] = z1[m+1];
      z2[m] = z2[m+1];
    }
    z1.resize(zsize-1);
    z2.resize(zsize-1);

#if( DEBUG_TT )
    std::cout << "After elimination: L,z1,z2 " << std::endl;
    std::cout << L << std::endl;
    std::cout << z1 << std::endl;
    std::cout << z2 << std::endl;
#endif

    // update base
    base.erase(base.begin()+ind);

#if( DEBUG_TT )
    std::cout << "New base = " << std::endl;
    for (unsigned kk=0;kk<base.size();kk++){
      std::cout << base[kk] << std::endl;
    }
#endif
	    
    currSize_--; // update size

    // update kappa
    updateK();
	    
    if(dependent_){
      // if some previously dependent item have become independent
#if( DEBUG_TT )
      std::cout << "deltaLh = " << deltaLh << std::endl;
#endif
      // recompute deltaLh
      Real ghNorm = GiTGj(base[currSize_-dependent_],base[currSize_-dependent_]);
      Real lhnrm = 0.0; // exact lhNorm
#if( EXACT)
      for (unsigned ii=0;ii<currSize_-dependent_;ii++){
	lhnrm += L(currSize_-dependent_,ii)*L(currSize_-dependent_,ii);
      }
      deltaLh = std::abs(ghNorm - lhnrm);
#else
      Real sgn1 = (deltaLh > 0) ? 1 : ((deltaLh < 0) ? -1 : 0);
      Real sgn2 = (deltaLj > 0) ? 1 : ((deltaLj < 0) ? -1 : 0);
      Real signum = sgn1 * sgn2; // sgn( deltaLh ) * sgn ( deltaLj );
      deltaLh = std::abs( ghNorm - lhNorm + deltaLh * deltaLh);
#endif
	      
#if( DEBUG_TT )
      std::cout << "ghNorm = " << ghNorm << std::endl;
      std::cout << "lhNorm (exact) = " << lhnrm << std::endl;
      std::cout << "lhNorm = " << lhNorm << std::endl;
      std::cout << "deltaLh = " << std::sqrt(deltaLh) << std::endl;
      std::cout << "kappa = " << kappa << std::endl;
#endif

      if( std::sqrt(deltaLh) > tol*kappa*std::max(1.0,ghNorm) ){ // originally had just deltaLh (without sqrt) 
#if( DEBUG_TT )
	std::cout << "Lh has become lin. INdependent" << std::endl;
#endif
	unsigned newind = currSize_-dependent_;
	dependent_--;
	// get the last row of L
	lh.size(newind); // initialize to zeros;
	lhTz1 = 0.0;
	lhTz2 = 0.0;
	for (unsigned ii=0;ii<newind;ii++){
	  lh[ii] = L(newind,ii);
	  lhTz1 += lh[ii]*z1[ii];
	  lhTz2 += lh[ii]*z2[ii];
	}
	deltaLh = std::sqrt(deltaLh);
	addSubgradToBase(newind,deltaLh);		

	if(dependent_){ // dependent was 2
#if( ! EXACT )
	  Real gjNorm = GiTGj(base[currSize_-1],base[currSize_-1]);
	  ljNorm -= deltaLj * deltaLj;
	  lhNorm = gjNorm;
		  
	  deltaLj = std::abs(gjNorm - ljNorm);
	  if ( signum < 0 )
	    deltaLj = - std::sqrt( deltaLj );
	  else
	    deltaLj = std::sqrt( deltaLj );
#else
	  // recompute deltaLj
	  Real gjTgh = GiTGj(base[currSize_-1],base[currSize_-2]);
	  Real ljTlh = 0.0;
	  for (unsigned ii=0;ii<currSize_;ii++){
	    ljTlh += L(currSize_-1,ii)*L(currSize_-2,ii);
	  }
	  deltaLj = (gjTgh - ljTlh) / deltaLh;
#endif

	  L(currSize_-1,currSize_-2) = deltaLj;
	}

#if( DEBUG_TT )
	std::cout << "Updated L, z1, z2: " << std::endl;
	std::cout << L  << std::endl;
	std::cout << z1 << std::endl;
	std::cout << z2 << std::endl;
	std::cout << "kappa = " << kappa << std::endl;
#endif
		
      } // end if deltaLh > 0

      if (dependent_ > 1){ // deltaLh is 0 but deltaLj is not
	// recompute deltaLj
	Real gjNorm = GiTGj(base[currSize_-1],base[currSize_-1]);
	Real ljnrm = 0.0; // exact ljNorm
#if( EXACT )
	for (unsigned ii=0;ii<currSize_;ii++){
	  ljnrm += L(currSize_-1,ii)*L(currSize_-1,ii);
	}
	deltaLj = std::abs(gjNorm - ljnrm);
#else
	deltaLj = std::abs( gjNorm - ljNorm + deltaLj * deltaLj);
#endif
		
#if( DEBUG_TT )
	std::cout << "gjNorm = " << gjNorm << std::endl;
	std::cout << "ljNorm (exact) = " << ljnrm << std::endl;
	std::cout << "ljNorm = " << ljNorm << std::endl; 
	std::cout << "deltaLj = " << std::sqrt(deltaLj) << std::endl;
	std::cout << "kappa = " << kappa << std::endl;
#endif
		
	if( std::sqrt(deltaLj) > tol*kappa*std::max(1.0,gjNorm) ){ // originally just had deltaLj (without sqrt)
#if( DEBUG_TT )
	  std::cout << "Lj has become lin. INdependent" << std::endl;
#endif
	  unsigned newind = currSize_-1;
	  dependent_--;
	  // get the last row of L
	  lj.size(newind-1); // initialize to zeros;
	  Real ljTz1 = 0.0;
	  Real ljTz2 = 0.0;
	  for (unsigned ii=0;ii<newind-1;ii++){
	    lj[ii] = L(newind,ii);
	    ljTz1 += lj[ii]*z1[ii];
	    ljTz2 += lj[ii]*z2[ii];
	  }
	  deltaLj = std::sqrt(deltaLj);
	  addSubgradToBase(newind,deltaLj);	
#if( EXACT )
	  deltaLh = GiTGj(base[currSize_-2],base[currSize_-1]);
	  for (unsigned ii=0;ii<currSize_-1;ii++){
	    deltaLh -= L(currSize_-2,ii)*L(currSize_-1,ii);
	  }
	  deltaLh /= deltaLj;
#else
	  if ( signum < 0)
	    deltaLh = - std::sqrt( deltaLh );
	  else
	    deltaLh = std::sqrt ( deltaLh );
#endif
		  
	  L(currSize_-1,currSize_-2) = deltaLh;
		  
	} // end if deltaLj > 0
      } // end if ( dependent > 1 )

    } // end if(dependent)

  }// end deleteSubgradFromBase()
  
  Real evaluateObjective(std::vector<Real> &g, const std::vector<Real> &x, const Real t) const {
    this->gx_->zero(); this->eG_->zero();
    for (unsigned i = 0; i < this->size(); i++) {
      // Compute Gx using Kahan's compensated sum
      this->tG_->set(*this->gx_);
      this->yG_->set(*this->eG_); this->yG_->axpy(x[i],this->subgradient(i));
      this->gx_->set(*this->tG_); this->gx_->plus(*this->yG_);
      this->eG_->set(*this->tG_); this->eG_->axpy(-1.0,*this->gx_); this->eG_->plus(*this->yG_);
    }
    Real Hx = 0.0, val = 0.0, err = 0.0, tmp = 0.0, y = 0.0;
    for (unsigned i = 0; i < this->size(); i++) {
      // Compute < g_i, Gx >
      Hx   = this->gx_->dot(this->subgradient(i));
      // Add to the objective function value using Kahan's compensated sum
      tmp  = val;
      y    = x[i]*(0.5*Hx + this->alpha(i)/t) + err;
      val  = tmp + y;
      err  = (tmp - val) + y;
      // Add gradient component
      g[i] = Hx + this->alpha(i)/t;
    }
    return val;
  }

  unsigned solveDual_dim1(const Real t, const unsigned maxit = 1000, const Real tol = 1.e-8) {
    this->setDualVariables(0,1.0);
    return 0;
  }

  unsigned solveDual_dim2(const Real t, const unsigned maxit = 1000, const Real tol = 1.e-8) {
    this->gx_->set(this->subgradient(0)); 
    //gx_ = this->subgradient(0).clone();
    this->gx_->axpy(-1.0,this->subgradient(1));
    Real diffg  = this->gx_->dot(*this->gx_);
    if ( std::abs(diffg) > ROL_EPSILON<Real>() ) {
      Real diffa  = (this->alpha(0)-this->alpha(1))/t;
      Real gdiffg = this->subgradient(1).dot(*this->gx_);
      this->setDualVariables(0,std::min(1.0,std::max(0.0,-(gdiffg+diffa)/diffg)));
      this->setDualVariables(1,1.0 - this->getDualVariables(0));
    }
    else {
      if ( std::abs(this->alpha(0)-this->alpha(1)) > ROL_EPSILON<Real>() ) {
        if ( this->alpha(0) < this->alpha(1) ) {
          this->setDualVariables(0,1.0); this->setDualVariables(1,0.0);
        }
        else if ( this->alpha(0) > this->alpha(1) ) {
          this->setDualVariables(0,0.0); this->setDualVariables(1,1.0);
        }
      }
      else {
        this->setDualVariables(0,0.5); this->setDualVariables(1,0.5);
      }
    }
    return 0;
  }
  
  // TT: solving triangular system for TT algorithm
  void solveSystem(int size, char tran, Teuchos::SerialDenseMatrix<int,Real> &L, Teuchos::SerialDenseVector<int,Real> &v){
    int info;
    if( L.numRows()!=size )
      std::cout << "Error: Wrong size matrix!" << std::endl;
    else if( v.numRows()!=size )
      std::cout << "Error: Wrong size vector!" << std::endl;
    else if( size==0 )
      return;
    else{
      //std::cout << L.stride() << ' ' << size << std::endl;
      lapack_.TRTRS( 'L', tran, 'N', size, 1, L.values(), L.stride(), v.values(), v.stride(), &info );
    }
  }

  // TT: check that inequality constraints are satisfied for dual variables
  bool isFeasible(Teuchos::SerialDenseVector<int,Real> &v, const Real &tol){
    bool feas = true;
    for(int i=0;i<v.numRows();i++){
      if(v[i]<-tol){
	feas = false;
      }
    }
    return feas;
  }

  unsigned solveDual_TT(const Real t, const unsigned maxit = 1000, const Real tol = 1.e-8) {
#if( DEBUG_TT )
    std::cout << "Calling solveDual_TT" << std::endl;
    std::cout << "t = " << t << std::endl;
    std::cout << "maxit = " << maxit << std::endl;
    std::cout << "tol = " << tol << std::endl;
#endif
    QPStatus_ = 1; // normal status
    entering_ = maxind;

    // cold start
    optimal_ = true; 
    dependent_ = 0; 
    rho_ = INF; // value of rho = -v
    currSize_ = 1; // current base size
    base.clear();
    base.push_back(0); // initial base
    L.reshape(1,1);
    L(0,0) = std::sqrt(GiTGj(0,0));
    this->resetDualVariables();
    this->setDualVariables(0,1.0);
    tempv.resize(1);
    tempw1.resize(1);
    tempw2.resize(1);
    lh.resize(1);
    lj.resize(1);
    z1.resize(1); z2.resize(1);
    z1[0] = 1.0/L(0,0);
    z2[0] = this->alpha(0)/L(0,0);
    LiMax = 0; // index of max element of diag(L)
    LiMin = 0; // index of min element of diag(L)
    kappa = 1.0; // condition number of matrix L ( >= max|L_ii|/min|L_ii| )
    objval = INF; // value of objective
    minobjval = INF; // min value of objective (ever reached)
    
    unsigned iter;
    //-------------------------- MAIN LOOP --------------------------------//
    for (iter=0;iter<maxit;iter++){
      //---------------------- INNER LOOP -----------------------//
      while( !optimal_ ){
	
	switch( dependent_ ){

	case(0): // KT system admits unique solution
	  {
	    /*
	      L = L_B'
	    */
	    z1Tz2 = z1.dot(z2);
	    z1Tz1 = z1.dot(z1); 
	    rho_ = ( 1 + z1Tz2/t )/z1Tz1;
	    tempv = z1; tempv.scale(rho_);
	    tempw1 = z2; tempw1.scale(1/t);
	    tempv -= tempw1;
	    solveSystem(currSize_,'T',L,tempv); // tempv contains solution
	    optimal_ = true;
#if( DEBUG_TT )
	    std::cout << "In case 0" << std::endl;
	    std::cout << "rho_ = " << rho_ << std::endl;
	    std::cout << "Solution tempv = \n" << tempv << std::endl;
#endif
	    break;
	  }
	case(1): 
	  {
	    /*
	      L = | L_B'   0 | \ currSize
	          | l_h^T  0 | /
	    */
	    Teuchos::SerialDenseMatrix<int,Real> LBprime( Teuchos::Copy,L,currSize_-1,currSize_-1);     
	    lh.size(currSize_-1); // initialize to zeros;
	    lhTz1 = 0.0;
	    lhTz2 = 0.0;
	    for(unsigned i=0;i<currSize_-1;i++){
	      Real tmp = L(currSize_-1,i);
	      lhTz1 += tmp*z1(i);
	      lhTz2 += tmp*z2(i); 
	      lh[i] = tmp;
	    }
#if( DEBUG_TT )
	    bool singular = false;
#endif
	    // Test for singularity
	    if (std::abs(lhTz1-1.0) <= tol*kappa){ 
	      // tempv is an infinite direction
#if( DEBUG_TT )
	      singular = true;
#endif
	      tempv = lh;  
	      solveSystem(currSize_-1,'T',LBprime,tempv);
	      tempv.resize(currSize_);   // add last entry
	      tempv[currSize_-1] = -1.0;
	      optimal_ = false;
	    }
	    else{
	      // system has (unique) solution
	      rho_ = ( (this->alpha(base[currSize_-1]) - lhTz2)/t ) / ( 1.0 - lhTz1 );
	      z1Tz2 = z1.dot(z2);
	      z1Tz1 = z1.dot(z1); 
	      Real tmp = ( 1.0 + z1Tz2 / t - rho_ * z1Tz1 )/( 1.0 - lhTz1 );
	      tempw1 = z1; tempw1.scale(rho_);
	      tempw2 = z2; tempw2.scale(1.0/t);
	      tempw1 -= tempw2;
	      tempw2 = lh; tempw2.scale(tmp);
	      tempw1 -= tempw2;
	      solveSystem(currSize_-1,'T',LBprime,tempw1);
	      tempv = tempw1;
	      tempv.resize(currSize_);
	      tempv[currSize_-1] = tmp;
	      optimal_ = true;
	    }
#if( DEBUG_TT )
	    std::cout << "In case 1" << std::endl;
	    if (!singular){
	      std::cout << "rho_ = " << rho_ << std::endl;
	      std::cout << "Solution tempv = \n" << tempv << std::endl;
	    }
	    else
	      std::cout << "Direction tempv = \n" << tempv << std::endl;
#endif
	    break;
	  } // case(1)
	case(2):
	  {
	    /*     | L_B'  0 0 | \
	       L = | l_h^T 0 0 | | currSize
	           | l_j^T 0 0 | /
	    */
	    Teuchos::SerialDenseMatrix<int,Real> LBprime( Teuchos::Copy,L,currSize_-2,currSize_-2 );
   	    lj.size(currSize_-2); // initialize to zeros;
	    lh.size(currSize_-2); // initialize to zeros;
	    ljTz1 = 0.0;
	    lhTz1 = 0.0;
	    for(unsigned i=0;i<currSize_-2;i++){
	      Real tmp1 = L(currSize_-1,i);
	      Real tmp2 = L(currSize_-2,i);
	      ljTz1 += tmp1*z1(i);
	      lhTz1 += tmp2*z1(i); 
	      lj[i] = tmp1;
	      lh[i] = tmp2;
	    }
	    if(std::abs(ljTz1-1.0) <= tol*kappa){ 
	      // tempv is an infinite direction
	      tempv = lj;    
	      solveSystem(currSize_-2,'T',LBprime,tempv);
	      tempv.resize(currSize_);   // add two last entries
	      tempv[currSize_-2] = 0.0;
	      tempv[currSize_-1] = -1.0;
	    }
	    else{
	      // tempv is an infinite direction
	      Real mu = ( 1.0 - lhTz1 )/( 1.0 - ljTz1 );
	      tempw1 = lj; tempw1.scale(-mu);
	      tempw1 += lh;
	      solveSystem(currSize_-2,'T',LBprime,tempw1);
	      tempv = tempw1;
	      tempv.resize(currSize_);
	      tempv[currSize_-2] = -1.0;
	      tempv[currSize_-1] = mu;
	    }
	    optimal_ = false;
#if( DEBUG_TT )
	    std::cout << "In case 2" << std::endl;
	    std::cout << "Direction tempv = \n" << tempv << std::endl;
#endif
	  }// case(2)
	} // end switch(dependent_)

	// optimal is true if tempv is a solution, otherwise, tempv is an infinite direction
	if (optimal_){
	  // check feasibility (inequality constraints)
	  if (isFeasible(tempv,tol*currSize_)){
#if( DEBUG_TT )
	    std::cout << "Solution tempv is feasible" << std::endl;
#endif
	    // set dual variables to values in tempv
	    this->resetDualVariables();
	    for (unsigned i=0;i<currSize_;i++){
	      this->setDualVariables(base[i],tempv[i]); 
	    }
	  }
	  else{
#if( DEBUG_TT )
	    std::cout << "Solution tempv is NOT feasible" << std::endl;
#endif
	    // w_B = /bar{x}_B - x_B
	    for (unsigned i=0;i<currSize_;i++){
	      tempv[i] -= this->getDualVariables(base[i]);
	    }
	    optimal_ = false;
	  }
	} // if(optimal)
	else{ // choose the direction of descent
	  if ( ( entering_ < maxind ) && ( this->getDualVariables(entering_) == 0.0 ) ){
	    if ( tempv[currSize_-1] < 0 ) // w_h < 0
	      tempv.scale(-1.0);
	  }
	  else{ // no i such that dualVariables_[i] == 0
	    Real sp = 0.0;
	    for( unsigned kk=0;kk<currSize_;kk++)
	      sp += tempv[kk]*this->alpha(base[kk]);
	    if ( sp > 0 )
	      tempv.scale(-1.0);
	  }
	}// end else ( not optimal )

	if(!optimal_){
	  // take a step in direction tempv (possibly infinite)
	  Real myeps = tol*currSize_;
	  Real step = INF;
	  for (unsigned h=0;h<currSize_;h++){
	    if ( (tempv[h] < -myeps) && (-this->getDualVariables(base[h])/tempv[h] < step) )
	      if ( (this->getDualVariables(base[h]) > myeps) || (this->getDualVariables(base[h]) < -myeps) ) // otherwise, consider it 0
		step = -this->getDualVariables(base[h])/tempv[h];
#if( DEBUG_TT )	  	      
	    std::cout << "h = " << h << " tempv[h] = " << tempv[h] << " dualV[base[h]] = " << this->getDualVariables(base[h]) << std::endl;
#endif
	  }

#if( DEBUG_TT )	  
	  std::cout << "Taking step of size " << step << std::endl;
#endif

	  if (step <= 0 || step == INF){
#if( DEBUG_TT )
	    std::cout << "Invalid step!" << std::endl;
#endif
	    QPStatus_ = -1; // invalid step
	    return iter;
	  }
	  
	  for (unsigned i=0;i<currSize_;i++)
	    this->setDualVariables(base[i],this->getDualVariables(base[i]) + step * tempv[i]);	  
	}// if(!optimal)
	
	//------------------------- ITEMS ELIMINATION ---------------------------//
	
	// Eliminate items with 0 multipliers from base
	bool deleted = optimal_;
	for (unsigned baseitem=0;baseitem<currSize_;baseitem++){
	  if (this->getDualVariables(base[baseitem]) <= tol){
	    deleted = true;
	    
#if( TABOO_LIST )
	    // item that just entered shouldn't exit; if it does, mark it as taboo
	    if( base[baseitem] == entering_ ){
#if( DEBUG_TT )
	      std::cout << "Blocking " << entering_ << " because it just entered" << std::endl;
#endif
	      taboo_.push_back(entering_);
	      entering_ = maxind;
	    }
#endif
	    
	    // eliminate item from base; 
	    deleteSubgradFromBase(baseitem,tol);

	  } // end if(dualVariables_[baseitem] < tol)
	} // end loop over baseitem 
	  
	if(!deleted){ // nothing deleted and not optimal
#if( DEBUG_TT )	  
	  std::cout << "Returning because nothing deleted and not optimal" << std::endl;
#endif
	  QPStatus_ = -2; // loop
	  return iter;
	}
      } // end inner loop
      
      Real newobjval; // new objective value
      Lin = 0.0;
      for (unsigned i=0;i<currSize_;i++){
	Lin += this->alpha(base[i])*this->getDualVariables(base[i]);
      }
      
      if (rho_ == -INF){
	Quad = -Lin/t;
	newobjval = - Quad/2;
      }
      else{
	Quad = rho_ - Lin/t;
	newobjval = (rho_ + Lin/t)/2;
      }

#if( DEBUG_TT )	  
      std::cout << "New Obj value = " << newobjval << std::endl;
#endif

#if( TABOO_LIST )
      // -- test for strict decrease -- // 
      // if item didn't provide decrease, move it to taboo list ...
      if( ( entering_ < maxind ) && ( objval < INF ) ){
	if( newobjval >= objval - std::max( tol*std::abs(objval), 1.e-16 ) ){
#if( DEBUG_TT )
	  std::cout << "Blocking " << entering_ << " because it didn't provide decrease" << std::endl;
#endif
	  taboo_.push_back(entering_);
	} 
      }
#endif

      objval = newobjval;

      // if sufficient decrease obtained
      if ( objval + std::max( tol*std::abs(objval), 1.e-16 ) <= minobjval ){
	taboo_.clear(); // reset taboo list
#if( DEBUG_TT )
	std::cout << "Taboo list has been reset." << std::endl;
#endif
	minobjval = objval;
      }

      //---------------------- OPTIMALITY TEST -------------------------//
      if ( (rho_ >= -INF) && (objval <= -INF) ) // if current x (dualVariables_) is feasible
	break;
	
      entering_ = maxind;
      Real minro = - std::max( tol*currSize_*std::abs(objval),1.e-16 );
#if ( ! FIRST_VIOLATED )
      Real diff = -INF, olddiff = -INF;
#endif

      for (unsigned bundleitem=0;bundleitem<this->size();bundleitem++){ // loop over items in bundle
      //for (int bundleitem=size_-1;bundleitem>-1;bundleitem--){ // loop over items in bundle (in reverse order)
	if ( std::find(taboo_.begin(),taboo_.end(),bundleitem) != taboo_.end() ){
#if( DEBUG_TT )	  
	  std::cout << "Item " << bundleitem << " is blocked." << std::endl;
#endif	  
	  continue; // if item is taboo, move on
	}

	if ( std::find(base.begin(),base.end(),bundleitem) == base.end() ){
	  // base does not contain bundleitem
#if( DEBUG_TT )	  
	  std::cout << "Base does not contain index " << bundleitem << std::endl;
#endif
	  Real ro = 0.0;
	  for (unsigned j=0;j<currSize_;j++){
	    ro += this->getDualVariables(base[j]) * GiTGj(bundleitem,base[j]);
	  }
	  ro += this->alpha(bundleitem)/t;

#if( DEBUG_TT )	  
	  std::cout << "RO = " << ro << std::endl;
#endif	  

	  if (rho_ >= -INF){
	    ro = ro - rho_; // note: rho = -v 
	  }
	  else{
	    ro = -INF;
	    minobjval = INF;
	    objval = INF;
	  }
	  
	  if (ro < minro){	   	    
#if ( FIRST_VIOLATED )
	    entering_ = bundleitem;
	    break; // skip going through rest of constraints; alternatively, could look for "most violated"
#else
	    diff = minro - ro;
	    if ( diff > olddiff ){
	      entering_ = bundleitem;
	      olddiff = diff;
	    }
#endif
	  }
	  
	} // end if item not in base
      }// end of loop over items in bundle

#if( DEBUG_TT )	  
	    std::cout << "entering_ = " << entering_ << std::endl;
#endif

      //----------------- INSERTING ITEM ------------------------// 
      if (entering_ < maxind){ // dual constraint is violated
#if( DEBUG_TT )	  
	std::cout << "Inserting " << entering_ << std::endl;
#endif
	optimal_ = false;
	this->setDualVariables(entering_,0.0);
	base.push_back(entering_);
#if( DEBUG_TT )	  
	std::cout << "Current base = " << std::endl;
	for (unsigned k=0;k<base.size();k++){
	  std::cout << base[k] << std::endl;
	}
	std::cout << "dependent_ = " << dependent_ << std::endl;
#endif
	
	// construct new row of L_B
	unsigned zsize = currSize_ - dependent_; // zsize is the size of L_Bprime (current one)
	lh.size(zsize); // initialize to zeros;
	lhTz1 = 0.0;
	lhTz2 = 0.0;
	for (unsigned i=0;i<zsize;i++){
	  lh[i] = GiTGj(entering_,base[i]);
	}
	Teuchos::SerialDenseMatrix<int,Real> LBprime( Teuchos::Copy,L,zsize,zsize);      
	solveSystem(zsize,'N',LBprime,lh); // lh = (L_B^{-1})*(G_B^T*g_h)
	for (unsigned i=0;i<zsize;i++){
	  lhTz1 += lh[i]*z1[i];
	  lhTz2 += lh[i]*z2[i];
	}

	Real nrm = lh.dot(lh);
	Real delta = GiTGj(entering_,entering_) - nrm; // delta squared
#if( DEBUG_TT )	  
	std::cout << "GiTGj = " << GiTGj(entering_,entering_) << std::endl;
	std::cout << "lh_dot_lh = " << nrm << std::endl;
	std::cout << "delta = " << delta << std::endl;
#endif	
	
#if( ! EXACT )
	if(dependent_)
	  ljNorm = nrm; // adding second dependent
	else
	  lhNorm = nrm; // adding first dependent
#endif

	currSize_++; // update base size
	
	L.reshape(currSize_,currSize_);
	zsize = currSize_ - dependent_; // zsize is the size of L_Bprime (new one)
	for (unsigned i=0;i<zsize-1;i++){
	  L(currSize_-1,i) = lh[i];
	}

	Real deltaeps = tol*kappa*std::max(1.0,lh.dot(lh)); 
#if( DEBUG_TT )	  
	std::cout << "kappa = " << kappa << std::endl;
	std::cout << "deltaeps = " << deltaeps << std::endl;
#endif
	if ( delta > deltaeps ){ // new row is independent
	  // add subgradient to the base
	  unsigned ind = currSize_-1;
	  delta = std::sqrt(delta);
	  addSubgradToBase(ind,delta);
	}
	else if(delta < -deltaeps){
#if( DEBUG_TT )	  
	  std::cout << "NEGATIVE delta!" << std::endl;
#endif
	  dependent_++;
	  QPStatus_ = 0; // negative delta
	  return iter;
	}
	else{ // delta zero
	  dependent_++;
	}

#if( DEBUG_TT )	  
	std::cout << "Current L = " << std::endl;
	std::cout << L << std::endl;
	std::cout << "Current z1 = " << std::endl;
	std::cout << z1 << std::endl;
	std::cout << "Current z2 = " << std::endl;
	std::cout << z2 << std::endl;	  
#endif
      } // end if(entering_ < maxind)
      
      else{ // no dual constraint violated
	if( objval - std::max( tol*std::abs( objval ), 1.e-16 ) > minobjval ){ // check if f is as good as minf
#if( DEBUG_TT )	  
	  std::cout << "Returning because no dual constraint violated and f cannot reach min value " << minobjval << std::endl;
#endif
	  QPStatus_ = -3; // loop
	  return iter;
	}
      }

      if(optimal_)
	break; 
    } // end main loop

    taboo_.clear();
    return iter;
  }// end solveDual_TT()

public:
  
  unsigned solveDual(const Real t, const unsigned maxit = 1000, const Real tol = 1.e-8) {
    unsigned iter = 0;
    if (this->size() == 1) {
      iter = solveDual_dim1(t,maxit,tol);
    }
    else if (this->size() == 2) {
      iter = solveDual_dim2(t,maxit,tol);
    }
    else {
      Real mytol = tol;
      unsigned outermaxit = 20;
      bool increase = false, decrease = false;
      iter = 0;
      for ( unsigned it=0; it < outermaxit; it++ ){
	iter += solveDual_TT(t,maxit,mytol);
	if ( QPStatus_ == 1 )
	  break;
	else if ( QPStatus_ == -2  || QPStatus_ == -3 ){
	  mytol /= 10.0;
	  decrease = true;
	}
	else {
	  mytol *= 10.0;
	  increase = true;
	}
	if ( (mytol > 1.e-4) || (mytol < 1.e-16) ){
	  break;
	}
	if ( increase && decrease ){
	  break;
	}
      }// end outer loop
#if ( DEBUG_TT )
      std::cout << "SolveDual returned after " << iter << " iterations with status " << QPStatus_ << " and solution" << std::endl;
      std::vector<Real> sol;
      for(unsigned i=0;i<this->size();i++){
	sol.push_back(this->getDualVariables(i));
      	std::cout << "x[" << i << "] = " << sol[i] << std::endl;
      }
      std::cout << std::endl;
      std::vector<Real> g(this->size(),0.0);
      Real val = evaluateObjective(g,sol,t);
      std::cout << "and objective value = " << val << std::endl; 
      std::cout << "Checking constraints" << std::endl;
      bool success = checkPrimary(g,sol,t);
      std::cout << success << std::endl;
#endif
    }
    return iter;
  }

  bool checkPrimary(std::vector<Real> &g, const std::vector<Real> &x, const Real t) const {
    bool success = true;
    this->gx_->zero(); this->eG_->zero();
    for (unsigned i = 0; i < this->size(); i++) {
      // Compute Gx using Kahan's compensated sum
      this->tG_->set(*this->gx_);
      this->yG_->set(*this->eG_); this->yG_->axpy(x[i],this->subgradient(i));
      this->gx_->set(*this->tG_); this->gx_->plus(*this->yG_);
      this->eG_->set(*this->tG_); this->eG_->axpy(-1.0,*this->gx_); this->eG_->plus(*this->yG_);
    }
    Real Hx = 0.0, v = 0.0, err = 0.0, tmp = 0.0, y = 0.0;
    for (unsigned i = 0; i < this->size(); i++) {
      // Compute < g_i, Gx > = - < g_i, d >
      Hx   = this->gx_->dot(this->subgradient(i));
      // Add to the objective function value using Kahan's compensated sum
      tmp  = v;
      y    = x[i]*(t*Hx + this->alpha(i)) + err;
      v    = tmp + y;
      err  = (tmp - v) + y;
      // Add gradient component
      g[i] = - t*Hx - this->alpha(i);
    }
    v *= -1.0;
    Real myeps = 1.e-8; 
    for (unsigned i = 0; i < this->size(); i++) {
      if ( g[i] > v + myeps ){
  	std::cout << "Constraint " << i << " is violated!: g[" << i << "] = " << g[i] << ", v = " << v  << std::endl;
  	success = false;
      }
      else if ( g[i] < v - myeps ){
  	std::cout << "Constraint " << i << " is inactive" << std::endl;
      }
      else{
  	std::cout << "Constraint " << i << " is active" << std::endl;
      }
    }
    return success;
  }

}; // class Bundle_TT

} // namespace ROL

#endif