This file is indexed.

/usr/include/trilinos/ROL_CVaR.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_CVAR_HPP
#define ROL_CVAR_HPP

#include "ROL_RiskMeasure.hpp"
#include "ROL_PlusFunction.hpp"
#include "ROL_RiskVector.hpp"

/** @ingroup risk_group
    \class ROL::CVaR
    \brief Provides an interface for a convex combination of the
           expected value and the conditional value-at-risk.

    The conditional value-at-risk (also called the average value-at-risk
    or the expected shortfall) with confidence level \f$0\le \beta < 1\f$
    is
    \f[
       \mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{
         t + \frac{1}{1-\beta} \mathbb{E}\left[(X-t)_+\right]
         \right\}
    \f]
    where \f$(x)_+ = \max\{0,x\}\f$.  If the distribution of \f$X\f$ is
    continuous, then \f$\mathcal{R}\f$ is the conditional expectation of
    \f$X\f$ exceeding the \f$\beta\f$-quantile of \f$X\f$ and the optimal
    \f$t\f$ is the \f$\beta\f$-quantile.
    Additionally, \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.
    ROL implements this by augmenting the optimization vector \f$x_0\f$ with
    the parameter \f$t\f$, then minimizes jointly for \f$(x_0,t)\f$.

    When using derivative-based optimization, the user can provide a smooth
    approximation of \f$(\cdot)_+\f$ using the ROL::PlusFunction class.
*/

namespace ROL {

template<class Real>
class CVaR : public RiskMeasure<Real> {
private:
  Teuchos::RCP<PlusFunction<Real> > plusFunction_;

  Real prob_;
  Real coeff_;

  Teuchos::RCP<Vector<Real> > dualVector_;
  Real xvar_;
  Real vvar_;

  bool firstReset_;

  void checkInputs(void) const {
    Real zero(0), one(1);
    TEUCHOS_TEST_FOR_EXCEPTION((prob_ <= zero) || (prob_ >= one), std::invalid_argument,
      ">>> ERROR (ROL::CVaR): Confidence level must be between 0 and 1!");
    TEUCHOS_TEST_FOR_EXCEPTION((coeff_ < zero) || (coeff_ > one), std::invalid_argument,
      ">>> ERROR (ROL::CVaR): Convex combination parameter must be positive!");
    TEUCHOS_TEST_FOR_EXCEPTION(plusFunction_ == Teuchos::null, std::invalid_argument,
      ">>> ERROR (ROL::CVaR): PlusFunction pointer is null!");
  }

public:

  /** \brief Constructor.

      @param[in]     prob    is the confidence level
      @param[in]     coeff   is the convex combination parameter (coeff=0
                             corresponds to the expected value whereas coeff=1
                             corresponds to the conditional value-at-risk)
      @param[in]     pf      is the plus function or an approximation
  */
  CVaR( const Real prob, const Real coeff,
        const Teuchos::RCP<PlusFunction<Real> > &pf )
    : RiskMeasure<Real>(), plusFunction_(pf), prob_(prob), coeff_(coeff),
      xvar_(0), vvar_(0), firstReset_(true) {
    checkInputs();
  }

  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"CVaR" and
      within the "CVaR" sublist should have the following parameters
      \li "Confidence Level" (between 0 and 1)
      \li "Convex Combination Parameter" (between 0 and 1)
      \li A sublist for plus function information.
  */
  CVaR( Teuchos::ParameterList &parlist )
    : RiskMeasure<Real>(), xvar_(0), vvar_(0), firstReset_(true) {
    Teuchos::ParameterList &list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("CVaR");
    // Check CVaR inputs
    prob_  = list.get<Real>("Confidence Level");
    coeff_ = list.get<Real>("Convex Combination Parameter");
    // Build (approximate) plus function
    plusFunction_ = Teuchos::rcp(new PlusFunction<Real>(list));
    // Check Inputs
    checkInputs();
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
    RiskMeasure<Real>::reset(x0,x);
    xvar_ = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(0);
    if ( firstReset_ ) {
      dualVector_ = (x0->dual()).clone();
      firstReset_ = false;
    }
    dualVector_->zero();
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
             Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
    reset(x0,x);
    const RiskVector<Real> &vr = Teuchos::dyn_cast<const RiskVector<Real> >(v);
    v0    = Teuchos::rcp_const_cast<Vector<Real> >(vr.getVector());
    vvar_ = vr.getStatistic(0);
  }

  void update(const Real val, const Real weight) {
    Real one(1);
    Real pf = plusFunction_->evaluate(val-xvar_,0);
    RiskMeasure<Real>::val_ += weight*((one-coeff_)*val + coeff_/(one-prob_)*pf);
  }

  void update(const Real val, const Vector<Real> &g, const Real weight) {
    Real one(1);
    Real pf = plusFunction_->evaluate(val-xvar_,1);
    RiskMeasure<Real>::val_ += weight*pf;
    Real c  = (one-coeff_) + coeff_/(one-prob_)*pf;
    RiskMeasure<Real>::g_->axpy(weight*c,g);
  }

  void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
              const Real weight) {
    Real one(1);
    Real pf1 = plusFunction_->evaluate(val-xvar_,1);
    Real pf2 = plusFunction_->evaluate(val-xvar_,2);
    RiskMeasure<Real>::val_ += weight*pf2*(vvar_-gv);
    Real c  = pf2*coeff_/(one-prob_)*(gv-vvar_);
    RiskMeasure<Real>::hv_->axpy(weight*c,g);
    c = (one-coeff_) + coeff_/(one-prob_)*pf1;
    RiskMeasure<Real>::hv_->axpy(weight*c,hv);
  }

  Real getValue(SampleGenerator<Real> &sampler) {
    Real val  = RiskMeasure<Real>::val_, cvar(0);
    sampler.sumAll(&val,&cvar,1);
    cvar += coeff_*xvar_;
    return cvar;
  }

  void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
    RiskVector<Real> &gs = Teuchos::dyn_cast<RiskVector<Real> >(g);
    Real val = RiskMeasure<Real>::val_, var(0), one(1);
    sampler.sumAll(&val,&var,1);
    
    sampler.sumAll(*(RiskMeasure<Real>::g_),*dualVector_);
    var *= -coeff_/(one-prob_);
    var += coeff_;
    gs.setStatistic(var);
    gs.setVector(*dualVector_); 
  }

  void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
    RiskVector<Real> &hs = Teuchos::dyn_cast<RiskVector<Real> >(hv);
    Real val = RiskMeasure<Real>::val_, var(0), one(1);
    sampler.sumAll(&val,&var,1);

    sampler.sumAll(*(RiskMeasure<Real>::hv_),*dualVector_);
    var *= coeff_/(one-prob_);
    hs.setStatistic(var);
    hs.setVector(*dualVector_);
  }
};

}

#endif