/usr/include/trilinos/ROL_CVaR.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_CVAR_HPP
#define ROL_CVAR_HPP
#include "ROL_RiskMeasure.hpp"
#include "ROL_PlusFunction.hpp"
#include "ROL_RiskVector.hpp"
/** @ingroup risk_group
\class ROL::CVaR
\brief Provides an interface for a convex combination of the
expected value and the conditional value-at-risk.
The conditional value-at-risk (also called the average value-at-risk
or the expected shortfall) with confidence level \f$0\le \beta < 1\f$
is
\f[
\mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{
t + \frac{1}{1-\beta} \mathbb{E}\left[(X-t)_+\right]
\right\}
\f]
where \f$(x)_+ = \max\{0,x\}\f$. If the distribution of \f$X\f$ is
continuous, then \f$\mathcal{R}\f$ is the conditional expectation of
\f$X\f$ exceeding the \f$\beta\f$-quantile of \f$X\f$ and the optimal
\f$t\f$ is the \f$\beta\f$-quantile.
Additionally, \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.
ROL implements this by augmenting the optimization vector \f$x_0\f$ with
the parameter \f$t\f$, then minimizes jointly for \f$(x_0,t)\f$.
When using derivative-based optimization, the user can provide a smooth
approximation of \f$(\cdot)_+\f$ using the ROL::PlusFunction class.
*/
namespace ROL {
template<class Real>
class CVaR : public RiskMeasure<Real> {
private:
Teuchos::RCP<PlusFunction<Real> > plusFunction_;
Real prob_;
Real coeff_;
Teuchos::RCP<Vector<Real> > dualVector_;
Real xvar_;
Real vvar_;
bool firstReset_;
void checkInputs(void) const {
Real zero(0), one(1);
TEUCHOS_TEST_FOR_EXCEPTION((prob_ <= zero) || (prob_ >= one), std::invalid_argument,
">>> ERROR (ROL::CVaR): Confidence level must be between 0 and 1!");
TEUCHOS_TEST_FOR_EXCEPTION((coeff_ < zero) || (coeff_ > one), std::invalid_argument,
">>> ERROR (ROL::CVaR): Convex combination parameter must be positive!");
TEUCHOS_TEST_FOR_EXCEPTION(plusFunction_ == Teuchos::null, std::invalid_argument,
">>> ERROR (ROL::CVaR): PlusFunction pointer is null!");
}
public:
/** \brief Constructor.
@param[in] prob is the confidence level
@param[in] coeff is the convex combination parameter (coeff=0
corresponds to the expected value whereas coeff=1
corresponds to the conditional value-at-risk)
@param[in] pf is the plus function or an approximation
*/
CVaR( const Real prob, const Real coeff,
const Teuchos::RCP<PlusFunction<Real> > &pf )
: RiskMeasure<Real>(), plusFunction_(pf), prob_(prob), coeff_(coeff),
xvar_(0), vvar_(0), firstReset_(true) {
checkInputs();
}
/** \brief Constructor.
@param[in] parlist is a parameter list specifying inputs
parlist should contain sublists "SOL"->"Risk Measure"->"CVaR" and
within the "CVaR" sublist should have the following parameters
\li "Confidence Level" (between 0 and 1)
\li "Convex Combination Parameter" (between 0 and 1)
\li A sublist for plus function information.
*/
CVaR( Teuchos::ParameterList &parlist )
: RiskMeasure<Real>(), xvar_(0), vvar_(0), firstReset_(true) {
Teuchos::ParameterList &list
= parlist.sublist("SOL").sublist("Risk Measure").sublist("CVaR");
// Check CVaR inputs
prob_ = list.get<Real>("Confidence Level");
coeff_ = list.get<Real>("Convex Combination Parameter");
// Build (approximate) plus function
plusFunction_ = Teuchos::rcp(new PlusFunction<Real>(list));
// Check Inputs
checkInputs();
}
void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
RiskMeasure<Real>::reset(x0,x);
xvar_ = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(0);
if ( firstReset_ ) {
dualVector_ = (x0->dual()).clone();
firstReset_ = false;
}
dualVector_->zero();
}
void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
reset(x0,x);
const RiskVector<Real> &vr = Teuchos::dyn_cast<const RiskVector<Real> >(v);
v0 = Teuchos::rcp_const_cast<Vector<Real> >(vr.getVector());
vvar_ = vr.getStatistic(0);
}
void update(const Real val, const Real weight) {
Real one(1);
Real pf = plusFunction_->evaluate(val-xvar_,0);
RiskMeasure<Real>::val_ += weight*((one-coeff_)*val + coeff_/(one-prob_)*pf);
}
void update(const Real val, const Vector<Real> &g, const Real weight) {
Real one(1);
Real pf = plusFunction_->evaluate(val-xvar_,1);
RiskMeasure<Real>::val_ += weight*pf;
Real c = (one-coeff_) + coeff_/(one-prob_)*pf;
RiskMeasure<Real>::g_->axpy(weight*c,g);
}
void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
const Real weight) {
Real one(1);
Real pf1 = plusFunction_->evaluate(val-xvar_,1);
Real pf2 = plusFunction_->evaluate(val-xvar_,2);
RiskMeasure<Real>::val_ += weight*pf2*(vvar_-gv);
Real c = pf2*coeff_/(one-prob_)*(gv-vvar_);
RiskMeasure<Real>::hv_->axpy(weight*c,g);
c = (one-coeff_) + coeff_/(one-prob_)*pf1;
RiskMeasure<Real>::hv_->axpy(weight*c,hv);
}
Real getValue(SampleGenerator<Real> &sampler) {
Real val = RiskMeasure<Real>::val_, cvar(0);
sampler.sumAll(&val,&cvar,1);
cvar += coeff_*xvar_;
return cvar;
}
void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
RiskVector<Real> &gs = Teuchos::dyn_cast<RiskVector<Real> >(g);
Real val = RiskMeasure<Real>::val_, var(0), one(1);
sampler.sumAll(&val,&var,1);
sampler.sumAll(*(RiskMeasure<Real>::g_),*dualVector_);
var *= -coeff_/(one-prob_);
var += coeff_;
gs.setStatistic(var);
gs.setVector(*dualVector_);
}
void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
RiskVector<Real> &hs = Teuchos::dyn_cast<RiskVector<Real> >(hv);
Real val = RiskMeasure<Real>::val_, var(0), one(1);
sampler.sumAll(&val,&var,1);
sampler.sumAll(*(RiskMeasure<Real>::hv_),*dualVector_);
var *= coeff_/(one-prob_);
hs.setStatistic(var);
hs.setVector(*dualVector_);
}
};
}
#endif
|