This file is indexed.

/usr/include/trilinos/ROL_ChebyshevKusuoka.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_CHEBYSHEVKUSUOKA_HPP
#define ROL_CHEBYSHEVKUSUOKA_HPP

#include "ROL_SpectralRisk.hpp"
#include "ROL_GaussChebyshev1Quadrature.hpp"
#include "ROL_GaussChebyshev2Quadrature.hpp"
#include "ROL_GaussChebyshev3Quadrature.hpp"

/** @ingroup risk_group
    \class ROL::ChebyshevKusuoka
    \brief Provides an interface for the Chebyshev-Kusuoka risk measure.

    The Chebyshev-Kusuoka risk measure is defined as
    \f[
       \mathcal{R}(X) = \int_{\alpha_0}^{\alpha_1} w(\alpha)
          \mathrm{CVaR}_{\alpha}(X) \,\mathrm{d}\alpha
    \f]
    where \f$0\le \alpha_0 < \alpha_1 < 1\f$ and the conditional value-at-risk
    (CVaR) with confidence level \f$0\le \alpha < 1\f$ is
    \f[
       \mathrm{CVaR}_\alpha(X) = \inf_{t\in\mathbb{R}} \left\{
         t + \frac{1}{1-\alpha} \mathbb{E}\left[(X-t)_+\right]
         \right\}, \quad (x)_+ = \max\{0,x\}.
    \f]
    There are three choices of weight functions \f$w\f$: (i) the first weight
    function generates the Chebyshev polynomials of the first kind and has
    the specific form
    \f[
       w(x) = \frac{1}{\sqrt{(x-\alpha_0)(\alpha_1-x)}};
    \f]
    (ii) the second weight function generates the Chebyshev polynomials of the
    second kind and has the specific form
    \f[
       w(x) = \sqrt{(x-\alpha_0)(\alpha_1-x)};
    \f]
    and (iii) the third weight function is related again to the Chebyshev
    polynomials of the first kind and has the specific form
    \f[
       w(x) = \sqrt{\frac{x-\alpha_0}{\alpha_1-x}}.
    \f]
    As defined, \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.

    ROL implements \f$\mathcal{R}\f$ by approximating the integral with
    the appropriate Gauss-Chebyshev quadrature rule.  The corresponding
    quadrature points and weights are then used to construct a
    ROL::MixedQuantileQuadrangle risk measure.
    When using derivative-based optimization, the user can provide a smooth
    approximation of \f$(\cdot)_+\f$ using the ROL::PlusFunction class.
*/

namespace ROL {

template<class Real>
class ChebyshevKusuoka : public SpectralRisk<Real> {
private:
  Teuchos::RCP<PlusFunction<Real> > plusFunction_;

  Real lower_, upper_;
  int nQuad_; 
  int wType_;

  std::vector<Real> wts_;
  std::vector<Real> pts_;

  void checkInputs(void) const {
    TEUCHOS_TEST_FOR_EXCEPTION(lower_ > upper_, std::invalid_argument,
      ">>> ERROR (ROL::ChebyshevKusuoka): Lower bound exceeds upper!");
    TEUCHOS_TEST_FOR_EXCEPTION(lower_ < static_cast<Real>(0), std::invalid_argument,
      ">>> ERROR (ROL::ChebyshevKusuoka): Lower bound is less than zero!");
    TEUCHOS_TEST_FOR_EXCEPTION(static_cast<Real>(1) < upper_, std::invalid_argument,
      ">>> ERROR (ROL::ChebyshevKusuoka): Upper bound is greater than one!");
    TEUCHOS_TEST_FOR_EXCEPTION((wType_ < 1 || wType_ > 3), std::invalid_argument,
      ">>> ERROR (ROL::ChebyshevKusuoka): Weight must be 1, 2 or 3!");
    TEUCHOS_TEST_FOR_EXCEPTION(plusFunction_ == Teuchos::null, std::invalid_argument,
      ">>> ERROR (ROL::ChebyshevKusuoka): PlusFunction pointer is null!");
  }

  void initialize(void) {
     Teuchos::RCP<Quadrature1D<Real> > quad;
     if ( wType_ == 1 ) {
       quad = Teuchos::rcp(new GaussChebyshev1Quadrature<Real>(nQuad_));
     }
     else if ( wType_ == 2 ) {
       quad = Teuchos::rcp(new GaussChebyshev2Quadrature<Real>(nQuad_));
     }
     else if ( wType_ == 3 ) {
       quad = Teuchos::rcp(new GaussChebyshev3Quadrature<Real>(nQuad_));
     }
     // quad->test();
     quad->get(pts_,wts_);
     Real sum(0), half(0.5), one(1);
     for (int i = 0; i < nQuad_; ++i) {
       sum += wts_[i];
     }
     for (int i = 0; i < nQuad_; ++i) {
       wts_[i] /= sum;
       pts_[i] = lower_ + (upper_-lower_)*half*(pts_[i] + one);
     }
     SpectralRisk<Real>::buildMixedQuantile(pts_,wts_,plusFunction_);
  }

public:
  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"Chebyshev-Kusuoka"
      and the "Chebyshev-Kusuoka" sublist should have the following parameters
      \li "Lower Bound" (between 0 and 1)
      \li "Upper Bound" (between 0 and 1, greater than "Lower Bound")
      \li "Weight Type" (either 1, 2, or 3)
      \li "Number of Quadrature Points"
      \li A sublist for plus function information.
  */
  ChebyshevKusuoka( Teuchos::ParameterList &parlist )
    : SpectralRisk<Real>() {
    Teuchos::ParameterList &list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("Chebyshev-Kusuoka");
    // Grab confidence level and quadrature order
    lower_ = list.get("Lower Bound",0.0);
    upper_ = list.get("Upper Bound",1.0);
    nQuad_ = list.get("Number of Quadrature Points",5);
    wType_ = list.get("Weight Type",1);
    plusFunction_ = Teuchos::rcp(new PlusFunction<Real>(list));
    // Check inputs
    checkInputs();
    initialize();
  }

  /** \brief Constructor.

      @param[in]     lower   is the lower confidence level (between 0 and 1)
      @param[in]     upper   is the upper confidence level (between 0 and 1, greater than lower)
      @param[in]     nQuad   is the number of quadrature points
      @param[in]     wType   is the weight type (either 1, 2, or 3)
      @param[in]     pf      is the plus function or an approximation
  */
  ChebyshevKusuoka(const Real lower, const Real upper,
                   const int nQuad, const int wType,
                   const Teuchos::RCP<PlusFunction<Real> > &pf)
    : RiskMeasure<Real>(), plusFunction_(pf),
      lower_(lower), upper_(upper), nQuad_(nQuad), wType_(wType) {
    // Check inputs
    checkInputs();
    initialize();
  }
};

}

#endif